ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ntropn GIF version

Theorem ntropn 13702
Description: The interior of a subset of a topology's underlying set is open. (Contributed by NM, 11-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
clscld.1 𝑋 = βˆͺ 𝐽
Assertion
Ref Expression
ntropn ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋) β†’ ((intβ€˜π½)β€˜π‘†) ∈ 𝐽)

Proof of Theorem ntropn
StepHypRef Expression
1 clscld.1 . . 3 𝑋 = βˆͺ 𝐽
21ntrval 13695 . 2 ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋) β†’ ((intβ€˜π½)β€˜π‘†) = βˆͺ (𝐽 ∩ 𝒫 𝑆))
3 inss1 3357 . . . 4 (𝐽 ∩ 𝒫 𝑆) βŠ† 𝐽
4 uniopn 13586 . . . 4 ((𝐽 ∈ Top ∧ (𝐽 ∩ 𝒫 𝑆) βŠ† 𝐽) β†’ βˆͺ (𝐽 ∩ 𝒫 𝑆) ∈ 𝐽)
53, 4mpan2 425 . . 3 (𝐽 ∈ Top β†’ βˆͺ (𝐽 ∩ 𝒫 𝑆) ∈ 𝐽)
65adantr 276 . 2 ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋) β†’ βˆͺ (𝐽 ∩ 𝒫 𝑆) ∈ 𝐽)
72, 6eqeltrd 2254 1 ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋) β†’ ((intβ€˜π½)β€˜π‘†) ∈ 𝐽)
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   = wceq 1353   ∈ wcel 2148   ∩ cin 3130   βŠ† wss 3131  π’« cpw 3577  βˆͺ cuni 3811  β€˜cfv 5218  Topctop 13582  intcnt 13678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-top 13583  df-ntr 13681
This theorem is referenced by:  ntrss3  13708  ntrin  13709  isopn3  13710  ntridm  13711  neiint  13730  topssnei  13747  iscnp4  13803  cnntri  13809  cnptoprest  13824  dvfvalap  14235  dvfgg  14242
  Copyright terms: Public domain W3C validator