ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blex GIF version

Theorem blex 15069
Description: A ball is a set. Also see blfn 14523 in case you just know 𝐷 is a set, not 𝐷 ∈ (∞Met‘𝑋). (Contributed by Jim Kingdon, 4-May-2023.)
Assertion
Ref Expression
blex (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷) ∈ V)

Proof of Theorem blex
Dummy variables 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 blfval 15068 . 2 (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷) = (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}))
2 xmetrel 15025 . . . 4 Rel ∞Met
3 relelfvdm 5661 . . . 4 ((Rel ∞Met ∧ 𝐷 ∈ (∞Met‘𝑋)) → 𝑋 ∈ dom ∞Met)
42, 3mpan 424 . . 3 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
5 xrex 10060 . . 3 * ∈ V
6 mpoexga 6364 . . 3 ((𝑋 ∈ dom ∞Met ∧ ℝ* ∈ V) → (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}) ∈ V)
74, 5, 6sylancl 413 . 2 (𝐷 ∈ (∞Met‘𝑋) → (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}) ∈ V)
81, 7eqeltrd 2306 1 (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200  {crab 2512  Vcvv 2799   class class class wbr 4083  dom cdm 4719  Rel wrel 4724  cfv 5318  (class class class)co 6007  cmpo 6009  *cxr 8188   < clt 8189  ∞Metcxmet 14508  ballcbl 14510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-map 6805  df-pnf 8191  df-mnf 8192  df-xr 8193  df-psmet 14515  df-xmet 14516  df-bl 14518
This theorem is referenced by:  blbas  15115  metrest  15188  xmettxlem  15191  xmettx  15192  tgioo  15236
  Copyright terms: Public domain W3C validator