| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > blex | GIF version | ||
| Description: A ball is a set. Also see blfn 14357 in case you just know 𝐷 is a set, not 𝐷 ∈ (∞Met‘𝑋). (Contributed by Jim Kingdon, 4-May-2023.) |
| Ref | Expression |
|---|---|
| blex | ⊢ (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | blfval 14902 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷) = (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟})) | |
| 2 | xmetrel 14859 | . . . 4 ⊢ Rel ∞Met | |
| 3 | relelfvdm 5615 | . . . 4 ⊢ ((Rel ∞Met ∧ 𝐷 ∈ (∞Met‘𝑋)) → 𝑋 ∈ dom ∞Met) | |
| 4 | 2, 3 | mpan 424 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met) |
| 5 | xrex 9985 | . . 3 ⊢ ℝ* ∈ V | |
| 6 | mpoexga 6305 | . . 3 ⊢ ((𝑋 ∈ dom ∞Met ∧ ℝ* ∈ V) → (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}) ∈ V) | |
| 7 | 4, 5, 6 | sylancl 413 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}) ∈ V) |
| 8 | 1, 7 | eqeltrd 2283 | 1 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 {crab 2489 Vcvv 2773 class class class wbr 4047 dom cdm 4679 Rel wrel 4684 ‘cfv 5276 (class class class)co 5951 ∈ cmpo 5953 ℝ*cxr 8113 < clt 8114 ∞Metcxmet 14342 ballcbl 14344 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-map 6744 df-pnf 8116 df-mnf 8117 df-xr 8118 df-psmet 14349 df-xmet 14350 df-bl 14352 |
| This theorem is referenced by: blbas 14949 metrest 15022 xmettxlem 15025 xmettx 15026 tgioo 15070 |
| Copyright terms: Public domain | W3C validator |