ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blex GIF version

Theorem blex 13027
Description: A ball is a set. (Contributed by Jim Kingdon, 4-May-2023.)
Assertion
Ref Expression
blex (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷) ∈ V)

Proof of Theorem blex
Dummy variables 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 blfval 13026 . 2 (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷) = (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}))
2 xmetrel 12983 . . . 4 Rel ∞Met
3 relelfvdm 5518 . . . 4 ((Rel ∞Met ∧ 𝐷 ∈ (∞Met‘𝑋)) → 𝑋 ∈ dom ∞Met)
42, 3mpan 421 . . 3 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
5 xrex 9792 . . 3 * ∈ V
6 mpoexga 6180 . . 3 ((𝑋 ∈ dom ∞Met ∧ ℝ* ∈ V) → (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}) ∈ V)
74, 5, 6sylancl 410 . 2 (𝐷 ∈ (∞Met‘𝑋) → (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}) ∈ V)
81, 7eqeltrd 2243 1 (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2136  {crab 2448  Vcvv 2726   class class class wbr 3982  dom cdm 4604  Rel wrel 4609  cfv 5188  (class class class)co 5842  cmpo 5844  *cxr 7932   < clt 7933  ∞Metcxmet 12620  ballcbl 12622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-map 6616  df-pnf 7935  df-mnf 7936  df-xr 7937  df-psmet 12627  df-xmet 12628  df-bl 12630
This theorem is referenced by:  blbas  13073  metrest  13146  xmettxlem  13149  xmettx  13150  tgioo  13186
  Copyright terms: Public domain W3C validator