ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blex GIF version

Theorem blex 14903
Description: A ball is a set. Also see blfn 14357 in case you just know 𝐷 is a set, not 𝐷 ∈ (∞Met‘𝑋). (Contributed by Jim Kingdon, 4-May-2023.)
Assertion
Ref Expression
blex (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷) ∈ V)

Proof of Theorem blex
Dummy variables 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 blfval 14902 . 2 (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷) = (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}))
2 xmetrel 14859 . . . 4 Rel ∞Met
3 relelfvdm 5615 . . . 4 ((Rel ∞Met ∧ 𝐷 ∈ (∞Met‘𝑋)) → 𝑋 ∈ dom ∞Met)
42, 3mpan 424 . . 3 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
5 xrex 9985 . . 3 * ∈ V
6 mpoexga 6305 . . 3 ((𝑋 ∈ dom ∞Met ∧ ℝ* ∈ V) → (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}) ∈ V)
74, 5, 6sylancl 413 . 2 (𝐷 ∈ (∞Met‘𝑋) → (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}) ∈ V)
81, 7eqeltrd 2283 1 (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2177  {crab 2489  Vcvv 2773   class class class wbr 4047  dom cdm 4679  Rel wrel 4684  cfv 5276  (class class class)co 5951  cmpo 5953  *cxr 8113   < clt 8114  ∞Metcxmet 14342  ballcbl 14344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-map 6744  df-pnf 8116  df-mnf 8117  df-xr 8118  df-psmet 14349  df-xmet 14350  df-bl 14352
This theorem is referenced by:  blbas  14949  metrest  15022  xmettxlem  15025  xmettx  15026  tgioo  15070
  Copyright terms: Public domain W3C validator