Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > blex | GIF version |
Description: A ball is a set. (Contributed by Jim Kingdon, 4-May-2023.) |
Ref | Expression |
---|---|
blex | ⊢ (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | blfval 13026 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷) = (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟})) | |
2 | xmetrel 12983 | . . . 4 ⊢ Rel ∞Met | |
3 | relelfvdm 5518 | . . . 4 ⊢ ((Rel ∞Met ∧ 𝐷 ∈ (∞Met‘𝑋)) → 𝑋 ∈ dom ∞Met) | |
4 | 2, 3 | mpan 421 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met) |
5 | xrex 9792 | . . 3 ⊢ ℝ* ∈ V | |
6 | mpoexga 6180 | . . 3 ⊢ ((𝑋 ∈ dom ∞Met ∧ ℝ* ∈ V) → (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}) ∈ V) | |
7 | 4, 5, 6 | sylancl 410 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}) ∈ V) |
8 | 1, 7 | eqeltrd 2243 | 1 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 {crab 2448 Vcvv 2726 class class class wbr 3982 dom cdm 4604 Rel wrel 4609 ‘cfv 5188 (class class class)co 5842 ∈ cmpo 5844 ℝ*cxr 7932 < clt 7933 ∞Metcxmet 12620 ballcbl 12622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-map 6616 df-pnf 7935 df-mnf 7936 df-xr 7937 df-psmet 12627 df-xmet 12628 df-bl 12630 |
This theorem is referenced by: blbas 13073 metrest 13146 xmettxlem 13149 xmettx 13150 tgioo 13186 |
Copyright terms: Public domain | W3C validator |