| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > blex | GIF version | ||
| Description: A ball is a set. Also see blfn 14480 in case you just know 𝐷 is a set, not 𝐷 ∈ (∞Met‘𝑋). (Contributed by Jim Kingdon, 4-May-2023.) |
| Ref | Expression |
|---|---|
| blex | ⊢ (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | blfval 15025 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷) = (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟})) | |
| 2 | xmetrel 14982 | . . . 4 ⊢ Rel ∞Met | |
| 3 | relelfvdm 5635 | . . . 4 ⊢ ((Rel ∞Met ∧ 𝐷 ∈ (∞Met‘𝑋)) → 𝑋 ∈ dom ∞Met) | |
| 4 | 2, 3 | mpan 424 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met) |
| 5 | xrex 10020 | . . 3 ⊢ ℝ* ∈ V | |
| 6 | mpoexga 6328 | . . 3 ⊢ ((𝑋 ∈ dom ∞Met ∧ ℝ* ∈ V) → (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}) ∈ V) | |
| 7 | 4, 5, 6 | sylancl 413 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}) ∈ V) |
| 8 | 1, 7 | eqeltrd 2286 | 1 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2180 {crab 2492 Vcvv 2779 class class class wbr 4062 dom cdm 4696 Rel wrel 4701 ‘cfv 5294 (class class class)co 5974 ∈ cmpo 5976 ℝ*cxr 8148 < clt 8149 ∞Metcxmet 14465 ballcbl 14467 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-map 6767 df-pnf 8151 df-mnf 8152 df-xr 8153 df-psmet 14472 df-xmet 14473 df-bl 14475 |
| This theorem is referenced by: blbas 15072 metrest 15145 xmettxlem 15148 xmettx 15149 tgioo 15193 |
| Copyright terms: Public domain | W3C validator |