Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0cnf | Structured version Visualization version GIF version |
Description: The empty set is a continuous function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
0cnf | ⊢ ∅ ∈ ({∅} Cn {∅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f0 6673 | . 2 ⊢ ∅:∅⟶∅ | |
2 | cnv0 6048 | . . . . . 6 ⊢ ◡∅ = ∅ | |
3 | 2 | imaeq1i 5967 | . . . . 5 ⊢ (◡∅ “ 𝑥) = (∅ “ 𝑥) |
4 | 0ima 5987 | . . . . 5 ⊢ (∅ “ 𝑥) = ∅ | |
5 | 3, 4 | eqtri 2761 | . . . 4 ⊢ (◡∅ “ 𝑥) = ∅ |
6 | 0ex 5234 | . . . . 5 ⊢ ∅ ∈ V | |
7 | 6 | snid 4600 | . . . 4 ⊢ ∅ ∈ {∅} |
8 | 5, 7 | eqeltri 2830 | . . 3 ⊢ (◡∅ “ 𝑥) ∈ {∅} |
9 | 8 | rgenw 3063 | . 2 ⊢ ∀𝑥 ∈ {∅} (◡∅ “ 𝑥) ∈ {∅} |
10 | sn0topon 22176 | . . 3 ⊢ {∅} ∈ (TopOn‘∅) | |
11 | iscn 22414 | . . 3 ⊢ (({∅} ∈ (TopOn‘∅) ∧ {∅} ∈ (TopOn‘∅)) → (∅ ∈ ({∅} Cn {∅}) ↔ (∅:∅⟶∅ ∧ ∀𝑥 ∈ {∅} (◡∅ “ 𝑥) ∈ {∅}))) | |
12 | 10, 10, 11 | mp2an 688 | . 2 ⊢ (∅ ∈ ({∅} Cn {∅}) ↔ (∅:∅⟶∅ ∧ ∀𝑥 ∈ {∅} (◡∅ “ 𝑥) ∈ {∅})) |
13 | 1, 9, 12 | mpbir2an 707 | 1 ⊢ ∅ ∈ ({∅} Cn {∅}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2101 ∀wral 3059 ∅c0 4259 {csn 4564 ◡ccnv 5590 “ cima 5594 ⟶wf 6443 ‘cfv 6447 (class class class)co 7295 TopOnctopon 22087 Cn ccn 22403 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3224 df-v 3436 df-sbc 3719 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-br 5078 df-opab 5140 df-mpt 5161 df-id 5491 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-fv 6455 df-ov 7298 df-oprab 7299 df-mpo 7300 df-map 8637 df-top 22071 df-topon 22088 df-cn 22406 |
This theorem is referenced by: cncfiooicc 43470 |
Copyright terms: Public domain | W3C validator |