| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 0cnf | Structured version Visualization version GIF version | ||
| Description: The empty set is a continuous function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| 0cnf | ⊢ ∅ ∈ ({∅} Cn {∅}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f0 6704 | . 2 ⊢ ∅:∅⟶∅ | |
| 2 | cnv0 6086 | . . . . . 6 ⊢ ◡∅ = ∅ | |
| 3 | 2 | imaeq1i 6005 | . . . . 5 ⊢ (◡∅ “ 𝑥) = (∅ “ 𝑥) |
| 4 | 0ima 6026 | . . . . 5 ⊢ (∅ “ 𝑥) = ∅ | |
| 5 | 3, 4 | eqtri 2754 | . . . 4 ⊢ (◡∅ “ 𝑥) = ∅ |
| 6 | 0ex 5243 | . . . . 5 ⊢ ∅ ∈ V | |
| 7 | 6 | snid 4612 | . . . 4 ⊢ ∅ ∈ {∅} |
| 8 | 5, 7 | eqeltri 2827 | . . 3 ⊢ (◡∅ “ 𝑥) ∈ {∅} |
| 9 | 8 | rgenw 3051 | . 2 ⊢ ∀𝑥 ∈ {∅} (◡∅ “ 𝑥) ∈ {∅} |
| 10 | sn0topon 22913 | . . 3 ⊢ {∅} ∈ (TopOn‘∅) | |
| 11 | iscn 23150 | . . 3 ⊢ (({∅} ∈ (TopOn‘∅) ∧ {∅} ∈ (TopOn‘∅)) → (∅ ∈ ({∅} Cn {∅}) ↔ (∅:∅⟶∅ ∧ ∀𝑥 ∈ {∅} (◡∅ “ 𝑥) ∈ {∅}))) | |
| 12 | 10, 10, 11 | mp2an 692 | . 2 ⊢ (∅ ∈ ({∅} Cn {∅}) ↔ (∅:∅⟶∅ ∧ ∀𝑥 ∈ {∅} (◡∅ “ 𝑥) ∈ {∅})) |
| 13 | 1, 9, 12 | mpbir2an 711 | 1 ⊢ ∅ ∈ ({∅} Cn {∅}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ∀wral 3047 ∅c0 4280 {csn 4573 ◡ccnv 5613 “ cima 5617 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 TopOnctopon 22825 Cn ccn 23139 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-top 22809 df-topon 22826 df-cn 23142 |
| This theorem is referenced by: cncfiooicc 46002 |
| Copyright terms: Public domain | W3C validator |