| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 0cnf | Structured version Visualization version GIF version | ||
| Description: The empty set is a continuous function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| 0cnf | ⊢ ∅ ∈ ({∅} Cn {∅}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f0 6741 | . 2 ⊢ ∅:∅⟶∅ | |
| 2 | cnv0 6113 | . . . . . 6 ⊢ ◡∅ = ∅ | |
| 3 | 2 | imaeq1i 6028 | . . . . 5 ⊢ (◡∅ “ 𝑥) = (∅ “ 𝑥) |
| 4 | 0ima 6049 | . . . . 5 ⊢ (∅ “ 𝑥) = ∅ | |
| 5 | 3, 4 | eqtri 2752 | . . . 4 ⊢ (◡∅ “ 𝑥) = ∅ |
| 6 | 0ex 5262 | . . . . 5 ⊢ ∅ ∈ V | |
| 7 | 6 | snid 4626 | . . . 4 ⊢ ∅ ∈ {∅} |
| 8 | 5, 7 | eqeltri 2824 | . . 3 ⊢ (◡∅ “ 𝑥) ∈ {∅} |
| 9 | 8 | rgenw 3048 | . 2 ⊢ ∀𝑥 ∈ {∅} (◡∅ “ 𝑥) ∈ {∅} |
| 10 | sn0topon 22885 | . . 3 ⊢ {∅} ∈ (TopOn‘∅) | |
| 11 | iscn 23122 | . . 3 ⊢ (({∅} ∈ (TopOn‘∅) ∧ {∅} ∈ (TopOn‘∅)) → (∅ ∈ ({∅} Cn {∅}) ↔ (∅:∅⟶∅ ∧ ∀𝑥 ∈ {∅} (◡∅ “ 𝑥) ∈ {∅}))) | |
| 12 | 10, 10, 11 | mp2an 692 | . 2 ⊢ (∅ ∈ ({∅} Cn {∅}) ↔ (∅:∅⟶∅ ∧ ∀𝑥 ∈ {∅} (◡∅ “ 𝑥) ∈ {∅})) |
| 13 | 1, 9, 12 | mpbir2an 711 | 1 ⊢ ∅ ∈ ({∅} Cn {∅}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 ∅c0 4296 {csn 4589 ◡ccnv 5637 “ cima 5641 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 TopOnctopon 22797 Cn ccn 23111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 df-top 22781 df-topon 22798 df-cn 23114 |
| This theorem is referenced by: cncfiooicc 45892 |
| Copyright terms: Public domain | W3C validator |