| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 0cnf | Structured version Visualization version GIF version | ||
| Description: The empty set is a continuous function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| 0cnf | ⊢ ∅ ∈ ({∅} Cn {∅}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f0 6723 | . 2 ⊢ ∅:∅⟶∅ | |
| 2 | cnv0 6101 | . . . . . 6 ⊢ ◡∅ = ∅ | |
| 3 | 2 | imaeq1i 6017 | . . . . 5 ⊢ (◡∅ “ 𝑥) = (∅ “ 𝑥) |
| 4 | 0ima 6038 | . . . . 5 ⊢ (∅ “ 𝑥) = ∅ | |
| 5 | 3, 4 | eqtri 2752 | . . . 4 ⊢ (◡∅ “ 𝑥) = ∅ |
| 6 | 0ex 5257 | . . . . 5 ⊢ ∅ ∈ V | |
| 7 | 6 | snid 4622 | . . . 4 ⊢ ∅ ∈ {∅} |
| 8 | 5, 7 | eqeltri 2824 | . . 3 ⊢ (◡∅ “ 𝑥) ∈ {∅} |
| 9 | 8 | rgenw 3048 | . 2 ⊢ ∀𝑥 ∈ {∅} (◡∅ “ 𝑥) ∈ {∅} |
| 10 | sn0topon 22918 | . . 3 ⊢ {∅} ∈ (TopOn‘∅) | |
| 11 | iscn 23155 | . . 3 ⊢ (({∅} ∈ (TopOn‘∅) ∧ {∅} ∈ (TopOn‘∅)) → (∅ ∈ ({∅} Cn {∅}) ↔ (∅:∅⟶∅ ∧ ∀𝑥 ∈ {∅} (◡∅ “ 𝑥) ∈ {∅}))) | |
| 12 | 10, 10, 11 | mp2an 692 | . 2 ⊢ (∅ ∈ ({∅} Cn {∅}) ↔ (∅:∅⟶∅ ∧ ∀𝑥 ∈ {∅} (◡∅ “ 𝑥) ∈ {∅})) |
| 13 | 1, 9, 12 | mpbir2an 711 | 1 ⊢ ∅ ∈ ({∅} Cn {∅}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 ∅c0 4292 {csn 4585 ◡ccnv 5630 “ cima 5634 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 TopOnctopon 22830 Cn ccn 23144 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-map 8778 df-top 22814 df-topon 22831 df-cn 23147 |
| This theorem is referenced by: cncfiooicc 45885 |
| Copyright terms: Public domain | W3C validator |