Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0cnf Structured version   Visualization version   GIF version

Theorem 0cnf 45833
Description: The empty set is a continuous function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
0cnf ∅ ∈ ({∅} Cn {∅})

Proof of Theorem 0cnf
StepHypRef Expression
1 f0 6790 . 2 ∅:∅⟶∅
2 cnv0 6163 . . . . . 6 ∅ = ∅
32imaeq1i 6077 . . . . 5 (∅ “ 𝑥) = (∅ “ 𝑥)
4 0ima 6098 . . . . 5 (∅ “ 𝑥) = ∅
53, 4eqtri 2763 . . . 4 (∅ “ 𝑥) = ∅
6 0ex 5313 . . . . 5 ∅ ∈ V
76snid 4667 . . . 4 ∅ ∈ {∅}
85, 7eqeltri 2835 . . 3 (∅ “ 𝑥) ∈ {∅}
98rgenw 3063 . 2 𝑥 ∈ {∅} (∅ “ 𝑥) ∈ {∅}
10 sn0topon 23021 . . 3 {∅} ∈ (TopOn‘∅)
11 iscn 23259 . . 3 (({∅} ∈ (TopOn‘∅) ∧ {∅} ∈ (TopOn‘∅)) → (∅ ∈ ({∅} Cn {∅}) ↔ (∅:∅⟶∅ ∧ ∀𝑥 ∈ {∅} (∅ “ 𝑥) ∈ {∅})))
1210, 10, 11mp2an 692 . 2 (∅ ∈ ({∅} Cn {∅}) ↔ (∅:∅⟶∅ ∧ ∀𝑥 ∈ {∅} (∅ “ 𝑥) ∈ {∅}))
131, 9, 12mpbir2an 711 1 ∅ ∈ ({∅} Cn {∅})
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2106  wral 3059  c0 4339  {csn 4631  ccnv 5688  cima 5692  wf 6559  cfv 6563  (class class class)co 7431  TopOnctopon 22932   Cn ccn 23248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8867  df-top 22916  df-topon 22933  df-cn 23251
This theorem is referenced by:  cncfiooicc  45850
  Copyright terms: Public domain W3C validator