Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isnghm | Structured version Visualization version GIF version |
Description: A normed group homomorphism is a group homomorphism with bounded norm. (Contributed by Mario Carneiro, 18-Oct-2015.) |
Ref | Expression |
---|---|
nmofval.1 | ⊢ 𝑁 = (𝑆 normOp 𝑇) |
Ref | Expression |
---|---|
isnghm | ⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) ↔ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁‘𝐹) ∈ ℝ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmofval.1 | . . . 4 ⊢ 𝑁 = (𝑆 normOp 𝑇) | |
2 | 1 | nghmfval 23896 | . . 3 ⊢ (𝑆 NGHom 𝑇) = (◡𝑁 “ ℝ) |
3 | 2 | eleq2i 2830 | . 2 ⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) ↔ 𝐹 ∈ (◡𝑁 “ ℝ)) |
4 | n0i 4267 | . . . 4 ⊢ (𝐹 ∈ (◡𝑁 “ ℝ) → ¬ (◡𝑁 “ ℝ) = ∅) | |
5 | nmoffn 23885 | . . . . . . . . . . 11 ⊢ normOp Fn (NrmGrp × NrmGrp) | |
6 | 5 | fndmi 6529 | . . . . . . . . . 10 ⊢ dom normOp = (NrmGrp × NrmGrp) |
7 | 6 | ndmov 7446 | . . . . . . . . 9 ⊢ (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑆 normOp 𝑇) = ∅) |
8 | 1, 7 | eqtrid 2790 | . . . . . . . 8 ⊢ (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁 = ∅) |
9 | 8 | cnveqd 5777 | . . . . . . 7 ⊢ (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → ◡𝑁 = ◡∅) |
10 | cnv0 6037 | . . . . . . 7 ⊢ ◡∅ = ∅ | |
11 | 9, 10 | eqtrdi 2794 | . . . . . 6 ⊢ (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → ◡𝑁 = ∅) |
12 | 11 | imaeq1d 5961 | . . . . 5 ⊢ (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (◡𝑁 “ ℝ) = (∅ “ ℝ)) |
13 | 0ima 5979 | . . . . 5 ⊢ (∅ “ ℝ) = ∅ | |
14 | 12, 13 | eqtrdi 2794 | . . . 4 ⊢ (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (◡𝑁 “ ℝ) = ∅) |
15 | 4, 14 | nsyl2 141 | . . 3 ⊢ (𝐹 ∈ (◡𝑁 “ ℝ) → (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp)) |
16 | 1 | nmof 23893 | . . . 4 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁:(𝑆 GrpHom 𝑇)⟶ℝ*) |
17 | ffn 6592 | . . . 4 ⊢ (𝑁:(𝑆 GrpHom 𝑇)⟶ℝ* → 𝑁 Fn (𝑆 GrpHom 𝑇)) | |
18 | elpreima 6927 | . . . 4 ⊢ (𝑁 Fn (𝑆 GrpHom 𝑇) → (𝐹 ∈ (◡𝑁 “ ℝ) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁‘𝐹) ∈ ℝ))) | |
19 | 16, 17, 18 | 3syl 18 | . . 3 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝐹 ∈ (◡𝑁 “ ℝ) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁‘𝐹) ∈ ℝ))) |
20 | 15, 19 | biadanii 819 | . 2 ⊢ (𝐹 ∈ (◡𝑁 “ ℝ) ↔ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁‘𝐹) ∈ ℝ))) |
21 | 3, 20 | bitri 274 | 1 ⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) ↔ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁‘𝐹) ∈ ℝ))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∅c0 4256 × cxp 5582 ◡ccnv 5583 “ cima 5587 Fn wfn 6421 ⟶wf 6422 ‘cfv 6426 (class class class)co 7267 ℝcr 10880 ℝ*cxr 11018 GrpHom cghm 18841 NrmGrpcngp 23743 normOp cnmo 23879 NGHom cnghm 23880 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-cnex 10937 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-pre-mulgt0 10958 ax-pre-sup 10959 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-id 5484 df-po 5498 df-so 5499 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-1st 7820 df-2nd 7821 df-er 8485 df-en 8721 df-dom 8722 df-sdom 8723 df-sup 9188 df-inf 9189 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-sub 11217 df-neg 11218 df-ico 13095 df-nmo 23882 df-nghm 23883 |
This theorem is referenced by: isnghm2 23898 nghmcl 23901 nmoi 23902 nghmrcl1 23906 nghmrcl2 23907 nghmghm 23908 isnmhm2 23926 |
Copyright terms: Public domain | W3C validator |