| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isnghm | Structured version Visualization version GIF version | ||
| Description: A normed group homomorphism is a group homomorphism with bounded norm. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| Ref | Expression |
|---|---|
| nmofval.1 | ⊢ 𝑁 = (𝑆 normOp 𝑇) |
| Ref | Expression |
|---|---|
| isnghm | ⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) ↔ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁‘𝐹) ∈ ℝ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmofval.1 | . . . 4 ⊢ 𝑁 = (𝑆 normOp 𝑇) | |
| 2 | 1 | nghmfval 24640 | . . 3 ⊢ (𝑆 NGHom 𝑇) = (◡𝑁 “ ℝ) |
| 3 | 2 | eleq2i 2825 | . 2 ⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) ↔ 𝐹 ∈ (◡𝑁 “ ℝ)) |
| 4 | n0i 4289 | . . . 4 ⊢ (𝐹 ∈ (◡𝑁 “ ℝ) → ¬ (◡𝑁 “ ℝ) = ∅) | |
| 5 | nmoffn 24629 | . . . . . . . . . . 11 ⊢ normOp Fn (NrmGrp × NrmGrp) | |
| 6 | 5 | fndmi 6592 | . . . . . . . . . 10 ⊢ dom normOp = (NrmGrp × NrmGrp) |
| 7 | 6 | ndmov 7538 | . . . . . . . . 9 ⊢ (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑆 normOp 𝑇) = ∅) |
| 8 | 1, 7 | eqtrid 2780 | . . . . . . . 8 ⊢ (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁 = ∅) |
| 9 | 8 | cnveqd 5821 | . . . . . . 7 ⊢ (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → ◡𝑁 = ◡∅) |
| 10 | cnv0 6093 | . . . . . . 7 ⊢ ◡∅ = ∅ | |
| 11 | 9, 10 | eqtrdi 2784 | . . . . . 6 ⊢ (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → ◡𝑁 = ∅) |
| 12 | 11 | imaeq1d 6014 | . . . . 5 ⊢ (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (◡𝑁 “ ℝ) = (∅ “ ℝ)) |
| 13 | 0ima 6033 | . . . . 5 ⊢ (∅ “ ℝ) = ∅ | |
| 14 | 12, 13 | eqtrdi 2784 | . . . 4 ⊢ (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (◡𝑁 “ ℝ) = ∅) |
| 15 | 4, 14 | nsyl2 141 | . . 3 ⊢ (𝐹 ∈ (◡𝑁 “ ℝ) → (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp)) |
| 16 | 1 | nmof 24637 | . . . 4 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁:(𝑆 GrpHom 𝑇)⟶ℝ*) |
| 17 | ffn 6658 | . . . 4 ⊢ (𝑁:(𝑆 GrpHom 𝑇)⟶ℝ* → 𝑁 Fn (𝑆 GrpHom 𝑇)) | |
| 18 | elpreima 6999 | . . . 4 ⊢ (𝑁 Fn (𝑆 GrpHom 𝑇) → (𝐹 ∈ (◡𝑁 “ ℝ) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁‘𝐹) ∈ ℝ))) | |
| 19 | 16, 17, 18 | 3syl 18 | . . 3 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝐹 ∈ (◡𝑁 “ ℝ) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁‘𝐹) ∈ ℝ))) |
| 20 | 15, 19 | biadanii 821 | . 2 ⊢ (𝐹 ∈ (◡𝑁 “ ℝ) ↔ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁‘𝐹) ∈ ℝ))) |
| 21 | 3, 20 | bitri 275 | 1 ⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) ↔ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁‘𝐹) ∈ ℝ))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∅c0 4282 × cxp 5619 ◡ccnv 5620 “ cima 5624 Fn wfn 6483 ⟶wf 6484 ‘cfv 6488 (class class class)co 7354 ℝcr 11014 ℝ*cxr 11154 GrpHom cghm 19128 NrmGrpcngp 24495 normOp cnmo 24623 NGHom cnghm 24624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-1st 7929 df-2nd 7930 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-sup 9335 df-inf 9336 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-ico 13255 df-nmo 24626 df-nghm 24627 |
| This theorem is referenced by: isnghm2 24642 nghmcl 24645 nmoi 24646 nghmrcl1 24650 nghmrcl2 24651 nghmghm 24652 isnmhm2 24670 |
| Copyright terms: Public domain | W3C validator |