![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isnghm | Structured version Visualization version GIF version |
Description: A normed group homomorphism is a group homomorphism with bounded norm. (Contributed by Mario Carneiro, 18-Oct-2015.) |
Ref | Expression |
---|---|
nmofval.1 | β’ π = (π normOp π) |
Ref | Expression |
---|---|
isnghm | β’ (πΉ β (π NGHom π) β ((π β NrmGrp β§ π β NrmGrp) β§ (πΉ β (π GrpHom π) β§ (πβπΉ) β β))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmofval.1 | . . . 4 β’ π = (π normOp π) | |
2 | 1 | nghmfval 24459 | . . 3 β’ (π NGHom π) = (β‘π β β) |
3 | 2 | eleq2i 2825 | . 2 β’ (πΉ β (π NGHom π) β πΉ β (β‘π β β)) |
4 | n0i 4333 | . . . 4 β’ (πΉ β (β‘π β β) β Β¬ (β‘π β β) = β ) | |
5 | nmoffn 24448 | . . . . . . . . . . 11 β’ normOp Fn (NrmGrp Γ NrmGrp) | |
6 | 5 | fndmi 6653 | . . . . . . . . . 10 β’ dom normOp = (NrmGrp Γ NrmGrp) |
7 | 6 | ndmov 7593 | . . . . . . . . 9 β’ (Β¬ (π β NrmGrp β§ π β NrmGrp) β (π normOp π) = β ) |
8 | 1, 7 | eqtrid 2784 | . . . . . . . 8 β’ (Β¬ (π β NrmGrp β§ π β NrmGrp) β π = β ) |
9 | 8 | cnveqd 5875 | . . . . . . 7 β’ (Β¬ (π β NrmGrp β§ π β NrmGrp) β β‘π = β‘β ) |
10 | cnv0 6140 | . . . . . . 7 β’ β‘β = β | |
11 | 9, 10 | eqtrdi 2788 | . . . . . 6 β’ (Β¬ (π β NrmGrp β§ π β NrmGrp) β β‘π = β ) |
12 | 11 | imaeq1d 6058 | . . . . 5 β’ (Β¬ (π β NrmGrp β§ π β NrmGrp) β (β‘π β β) = (β β β)) |
13 | 0ima 6077 | . . . . 5 β’ (β β β) = β | |
14 | 12, 13 | eqtrdi 2788 | . . . 4 β’ (Β¬ (π β NrmGrp β§ π β NrmGrp) β (β‘π β β) = β ) |
15 | 4, 14 | nsyl2 141 | . . 3 β’ (πΉ β (β‘π β β) β (π β NrmGrp β§ π β NrmGrp)) |
16 | 1 | nmof 24456 | . . . 4 β’ ((π β NrmGrp β§ π β NrmGrp) β π:(π GrpHom π)βΆβ*) |
17 | ffn 6717 | . . . 4 β’ (π:(π GrpHom π)βΆβ* β π Fn (π GrpHom π)) | |
18 | elpreima 7059 | . . . 4 β’ (π Fn (π GrpHom π) β (πΉ β (β‘π β β) β (πΉ β (π GrpHom π) β§ (πβπΉ) β β))) | |
19 | 16, 17, 18 | 3syl 18 | . . 3 β’ ((π β NrmGrp β§ π β NrmGrp) β (πΉ β (β‘π β β) β (πΉ β (π GrpHom π) β§ (πβπΉ) β β))) |
20 | 15, 19 | biadanii 820 | . 2 β’ (πΉ β (β‘π β β) β ((π β NrmGrp β§ π β NrmGrp) β§ (πΉ β (π GrpHom π) β§ (πβπΉ) β β))) |
21 | 3, 20 | bitri 274 | 1 β’ (πΉ β (π NGHom π) β ((π β NrmGrp β§ π β NrmGrp) β§ (πΉ β (π GrpHom π) β§ (πβπΉ) β β))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 β c0 4322 Γ cxp 5674 β‘ccnv 5675 β cima 5679 Fn wfn 6538 βΆwf 6539 βcfv 6543 (class class class)co 7411 βcr 11111 β*cxr 11251 GrpHom cghm 19127 NrmGrpcngp 24306 normOp cnmo 24442 NGHom cnghm 24443 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-sup 9439 df-inf 9440 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-ico 13334 df-nmo 24445 df-nghm 24446 |
This theorem is referenced by: isnghm2 24461 nghmcl 24464 nmoi 24465 nghmrcl1 24469 nghmrcl2 24470 nghmghm 24471 isnmhm2 24489 |
Copyright terms: Public domain | W3C validator |