![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isnghm | Structured version Visualization version GIF version |
Description: A normed group homomorphism is a group homomorphism with bounded norm. (Contributed by Mario Carneiro, 18-Oct-2015.) |
Ref | Expression |
---|---|
nmofval.1 | ⊢ 𝑁 = (𝑆 normOp 𝑇) |
Ref | Expression |
---|---|
isnghm | ⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) ↔ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁‘𝐹) ∈ ℝ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmofval.1 | . . . 4 ⊢ 𝑁 = (𝑆 normOp 𝑇) | |
2 | 1 | nghmfval 24764 | . . 3 ⊢ (𝑆 NGHom 𝑇) = (◡𝑁 “ ℝ) |
3 | 2 | eleq2i 2836 | . 2 ⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) ↔ 𝐹 ∈ (◡𝑁 “ ℝ)) |
4 | n0i 4363 | . . . 4 ⊢ (𝐹 ∈ (◡𝑁 “ ℝ) → ¬ (◡𝑁 “ ℝ) = ∅) | |
5 | nmoffn 24753 | . . . . . . . . . . 11 ⊢ normOp Fn (NrmGrp × NrmGrp) | |
6 | 5 | fndmi 6683 | . . . . . . . . . 10 ⊢ dom normOp = (NrmGrp × NrmGrp) |
7 | 6 | ndmov 7634 | . . . . . . . . 9 ⊢ (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑆 normOp 𝑇) = ∅) |
8 | 1, 7 | eqtrid 2792 | . . . . . . . 8 ⊢ (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁 = ∅) |
9 | 8 | cnveqd 5900 | . . . . . . 7 ⊢ (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → ◡𝑁 = ◡∅) |
10 | cnv0 6172 | . . . . . . 7 ⊢ ◡∅ = ∅ | |
11 | 9, 10 | eqtrdi 2796 | . . . . . 6 ⊢ (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → ◡𝑁 = ∅) |
12 | 11 | imaeq1d 6088 | . . . . 5 ⊢ (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (◡𝑁 “ ℝ) = (∅ “ ℝ)) |
13 | 0ima 6107 | . . . . 5 ⊢ (∅ “ ℝ) = ∅ | |
14 | 12, 13 | eqtrdi 2796 | . . . 4 ⊢ (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (◡𝑁 “ ℝ) = ∅) |
15 | 4, 14 | nsyl2 141 | . . 3 ⊢ (𝐹 ∈ (◡𝑁 “ ℝ) → (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp)) |
16 | 1 | nmof 24761 | . . . 4 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁:(𝑆 GrpHom 𝑇)⟶ℝ*) |
17 | ffn 6747 | . . . 4 ⊢ (𝑁:(𝑆 GrpHom 𝑇)⟶ℝ* → 𝑁 Fn (𝑆 GrpHom 𝑇)) | |
18 | elpreima 7091 | . . . 4 ⊢ (𝑁 Fn (𝑆 GrpHom 𝑇) → (𝐹 ∈ (◡𝑁 “ ℝ) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁‘𝐹) ∈ ℝ))) | |
19 | 16, 17, 18 | 3syl 18 | . . 3 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝐹 ∈ (◡𝑁 “ ℝ) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁‘𝐹) ∈ ℝ))) |
20 | 15, 19 | biadanii 821 | . 2 ⊢ (𝐹 ∈ (◡𝑁 “ ℝ) ↔ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁‘𝐹) ∈ ℝ))) |
21 | 3, 20 | bitri 275 | 1 ⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) ↔ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁‘𝐹) ∈ ℝ))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∅c0 4352 × cxp 5698 ◡ccnv 5699 “ cima 5703 Fn wfn 6568 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ℝcr 11183 ℝ*cxr 11323 GrpHom cghm 19252 NrmGrpcngp 24611 normOp cnmo 24747 NGHom cnghm 24748 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-ico 13413 df-nmo 24750 df-nghm 24751 |
This theorem is referenced by: isnghm2 24766 nghmcl 24769 nmoi 24770 nghmrcl1 24774 nghmrcl2 24775 nghmghm 24776 isnmhm2 24794 |
Copyright terms: Public domain | W3C validator |