MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnghm Structured version   Visualization version   GIF version

Theorem isnghm 22806
Description: A normed group homomorphism is a group homomorphism with bounded norm. (Contributed by Mario Carneiro, 18-Oct-2015.)
Hypothesis
Ref Expression
nmofval.1 𝑁 = (𝑆 normOp 𝑇)
Assertion
Ref Expression
isnghm (𝐹 ∈ (𝑆 NGHom 𝑇) ↔ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁𝐹) ∈ ℝ)))

Proof of Theorem isnghm
StepHypRef Expression
1 nmofval.1 . . . 4 𝑁 = (𝑆 normOp 𝑇)
21nghmfval 22805 . . 3 (𝑆 NGHom 𝑇) = (𝑁 “ ℝ)
32eleq2i 2836 . 2 (𝐹 ∈ (𝑆 NGHom 𝑇) ↔ 𝐹 ∈ (𝑁 “ ℝ))
4 n0i 4084 . . . 4 (𝐹 ∈ (𝑁 “ ℝ) → ¬ (𝑁 “ ℝ) = ∅)
5 nmoffn 22794 . . . . . . . . . . 11 normOp Fn (NrmGrp × NrmGrp)
6 fndm 6168 . . . . . . . . . . 11 ( normOp Fn (NrmGrp × NrmGrp) → dom normOp = (NrmGrp × NrmGrp))
75, 6ax-mp 5 . . . . . . . . . 10 dom normOp = (NrmGrp × NrmGrp)
87ndmov 7016 . . . . . . . . 9 (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑆 normOp 𝑇) = ∅)
91, 8syl5eq 2811 . . . . . . . 8 (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁 = ∅)
109cnveqd 5466 . . . . . . 7 (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁 = ∅)
11 cnv0 5718 . . . . . . 7 ∅ = ∅
1210, 11syl6eq 2815 . . . . . 6 (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁 = ∅)
1312imaeq1d 5647 . . . . 5 (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁 “ ℝ) = (∅ “ ℝ))
14 0ima 5664 . . . . 5 (∅ “ ℝ) = ∅
1513, 14syl6eq 2815 . . . 4 (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁 “ ℝ) = ∅)
164, 15nsyl2 144 . . 3 (𝐹 ∈ (𝑁 “ ℝ) → (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp))
171nmof 22802 . . . 4 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁:(𝑆 GrpHom 𝑇)⟶ℝ*)
18 ffn 6223 . . . 4 (𝑁:(𝑆 GrpHom 𝑇)⟶ℝ*𝑁 Fn (𝑆 GrpHom 𝑇))
19 elpreima 6527 . . . 4 (𝑁 Fn (𝑆 GrpHom 𝑇) → (𝐹 ∈ (𝑁 “ ℝ) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁𝐹) ∈ ℝ)))
2017, 18, 193syl 18 . . 3 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝐹 ∈ (𝑁 “ ℝ) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁𝐹) ∈ ℝ)))
2116, 20biadan2 853 . 2 (𝐹 ∈ (𝑁 “ ℝ) ↔ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁𝐹) ∈ ℝ)))
223, 21bitri 266 1 (𝐹 ∈ (𝑆 NGHom 𝑇) ↔ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁𝐹) ∈ ℝ)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 197  wa 384   = wceq 1652  wcel 2155  c0 4079   × cxp 5275  ccnv 5276  dom cdm 5277  cima 5280   Fn wfn 6063  wf 6064  cfv 6068  (class class class)co 6842  cr 10188  *cxr 10327   GrpHom cghm 17923  NrmGrpcngp 22661   normOp cnmo 22788   NGHom cnghm 22789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-po 5198  df-so 5199  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-1st 7366  df-2nd 7367  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-sup 8555  df-inf 8556  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-ico 12383  df-nmo 22791  df-nghm 22792
This theorem is referenced by:  isnghm2  22807  nghmcl  22810  nmoi  22811  nghmrcl1  22815  nghmrcl2  22816  nghmghm  22817  isnmhm2  22835
  Copyright terms: Public domain W3C validator