MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnghm Structured version   Visualization version   GIF version

Theorem isnghm 23897
Description: A normed group homomorphism is a group homomorphism with bounded norm. (Contributed by Mario Carneiro, 18-Oct-2015.)
Hypothesis
Ref Expression
nmofval.1 𝑁 = (𝑆 normOp 𝑇)
Assertion
Ref Expression
isnghm (𝐹 ∈ (𝑆 NGHom 𝑇) ↔ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁𝐹) ∈ ℝ)))

Proof of Theorem isnghm
StepHypRef Expression
1 nmofval.1 . . . 4 𝑁 = (𝑆 normOp 𝑇)
21nghmfval 23896 . . 3 (𝑆 NGHom 𝑇) = (𝑁 “ ℝ)
32eleq2i 2830 . 2 (𝐹 ∈ (𝑆 NGHom 𝑇) ↔ 𝐹 ∈ (𝑁 “ ℝ))
4 n0i 4267 . . . 4 (𝐹 ∈ (𝑁 “ ℝ) → ¬ (𝑁 “ ℝ) = ∅)
5 nmoffn 23885 . . . . . . . . . . 11 normOp Fn (NrmGrp × NrmGrp)
65fndmi 6529 . . . . . . . . . 10 dom normOp = (NrmGrp × NrmGrp)
76ndmov 7446 . . . . . . . . 9 (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑆 normOp 𝑇) = ∅)
81, 7eqtrid 2790 . . . . . . . 8 (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁 = ∅)
98cnveqd 5777 . . . . . . 7 (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁 = ∅)
10 cnv0 6037 . . . . . . 7 ∅ = ∅
119, 10eqtrdi 2794 . . . . . 6 (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁 = ∅)
1211imaeq1d 5961 . . . . 5 (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁 “ ℝ) = (∅ “ ℝ))
13 0ima 5979 . . . . 5 (∅ “ ℝ) = ∅
1412, 13eqtrdi 2794 . . . 4 (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁 “ ℝ) = ∅)
154, 14nsyl2 141 . . 3 (𝐹 ∈ (𝑁 “ ℝ) → (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp))
161nmof 23893 . . . 4 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁:(𝑆 GrpHom 𝑇)⟶ℝ*)
17 ffn 6592 . . . 4 (𝑁:(𝑆 GrpHom 𝑇)⟶ℝ*𝑁 Fn (𝑆 GrpHom 𝑇))
18 elpreima 6927 . . . 4 (𝑁 Fn (𝑆 GrpHom 𝑇) → (𝐹 ∈ (𝑁 “ ℝ) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁𝐹) ∈ ℝ)))
1916, 17, 183syl 18 . . 3 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝐹 ∈ (𝑁 “ ℝ) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁𝐹) ∈ ℝ)))
2015, 19biadanii 819 . 2 (𝐹 ∈ (𝑁 “ ℝ) ↔ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁𝐹) ∈ ℝ)))
213, 20bitri 274 1 (𝐹 ∈ (𝑆 NGHom 𝑇) ↔ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁𝐹) ∈ ℝ)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396   = wceq 1539  wcel 2106  c0 4256   × cxp 5582  ccnv 5583  cima 5587   Fn wfn 6421  wf 6422  cfv 6426  (class class class)co 7267  cr 10880  *cxr 11018   GrpHom cghm 18841  NrmGrpcngp 23743   normOp cnmo 23879   NGHom cnghm 23880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578  ax-cnex 10937  ax-resscn 10938  ax-1cn 10939  ax-icn 10940  ax-addcl 10941  ax-addrcl 10942  ax-mulcl 10943  ax-mulrcl 10944  ax-mulcom 10945  ax-addass 10946  ax-mulass 10947  ax-distr 10948  ax-i2m1 10949  ax-1ne0 10950  ax-1rid 10951  ax-rnegex 10952  ax-rrecex 10953  ax-cnre 10954  ax-pre-lttri 10955  ax-pre-lttrn 10956  ax-pre-ltadd 10957  ax-pre-mulgt0 10958  ax-pre-sup 10959
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5074  df-opab 5136  df-mpt 5157  df-id 5484  df-po 5498  df-so 5499  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-riota 7224  df-ov 7270  df-oprab 7271  df-mpo 7272  df-1st 7820  df-2nd 7821  df-er 8485  df-en 8721  df-dom 8722  df-sdom 8723  df-sup 9188  df-inf 9189  df-pnf 11021  df-mnf 11022  df-xr 11023  df-ltxr 11024  df-le 11025  df-sub 11217  df-neg 11218  df-ico 13095  df-nmo 23882  df-nghm 23883
This theorem is referenced by:  isnghm2  23898  nghmcl  23901  nmoi  23902  nghmrcl1  23906  nghmrcl2  23907  nghmghm  23908  isnmhm2  23926
  Copyright terms: Public domain W3C validator