| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isnghm | Structured version Visualization version GIF version | ||
| Description: A normed group homomorphism is a group homomorphism with bounded norm. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| Ref | Expression |
|---|---|
| nmofval.1 | ⊢ 𝑁 = (𝑆 normOp 𝑇) |
| Ref | Expression |
|---|---|
| isnghm | ⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) ↔ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁‘𝐹) ∈ ℝ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmofval.1 | . . . 4 ⊢ 𝑁 = (𝑆 normOp 𝑇) | |
| 2 | 1 | nghmfval 24659 | . . 3 ⊢ (𝑆 NGHom 𝑇) = (◡𝑁 “ ℝ) |
| 3 | 2 | eleq2i 2826 | . 2 ⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) ↔ 𝐹 ∈ (◡𝑁 “ ℝ)) |
| 4 | n0i 4315 | . . . 4 ⊢ (𝐹 ∈ (◡𝑁 “ ℝ) → ¬ (◡𝑁 “ ℝ) = ∅) | |
| 5 | nmoffn 24648 | . . . . . . . . . . 11 ⊢ normOp Fn (NrmGrp × NrmGrp) | |
| 6 | 5 | fndmi 6641 | . . . . . . . . . 10 ⊢ dom normOp = (NrmGrp × NrmGrp) |
| 7 | 6 | ndmov 7589 | . . . . . . . . 9 ⊢ (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑆 normOp 𝑇) = ∅) |
| 8 | 1, 7 | eqtrid 2782 | . . . . . . . 8 ⊢ (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁 = ∅) |
| 9 | 8 | cnveqd 5855 | . . . . . . 7 ⊢ (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → ◡𝑁 = ◡∅) |
| 10 | cnv0 6129 | . . . . . . 7 ⊢ ◡∅ = ∅ | |
| 11 | 9, 10 | eqtrdi 2786 | . . . . . 6 ⊢ (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → ◡𝑁 = ∅) |
| 12 | 11 | imaeq1d 6046 | . . . . 5 ⊢ (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (◡𝑁 “ ℝ) = (∅ “ ℝ)) |
| 13 | 0ima 6065 | . . . . 5 ⊢ (∅ “ ℝ) = ∅ | |
| 14 | 12, 13 | eqtrdi 2786 | . . . 4 ⊢ (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (◡𝑁 “ ℝ) = ∅) |
| 15 | 4, 14 | nsyl2 141 | . . 3 ⊢ (𝐹 ∈ (◡𝑁 “ ℝ) → (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp)) |
| 16 | 1 | nmof 24656 | . . . 4 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁:(𝑆 GrpHom 𝑇)⟶ℝ*) |
| 17 | ffn 6705 | . . . 4 ⊢ (𝑁:(𝑆 GrpHom 𝑇)⟶ℝ* → 𝑁 Fn (𝑆 GrpHom 𝑇)) | |
| 18 | elpreima 7047 | . . . 4 ⊢ (𝑁 Fn (𝑆 GrpHom 𝑇) → (𝐹 ∈ (◡𝑁 “ ℝ) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁‘𝐹) ∈ ℝ))) | |
| 19 | 16, 17, 18 | 3syl 18 | . . 3 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝐹 ∈ (◡𝑁 “ ℝ) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁‘𝐹) ∈ ℝ))) |
| 20 | 15, 19 | biadanii 821 | . 2 ⊢ (𝐹 ∈ (◡𝑁 “ ℝ) ↔ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁‘𝐹) ∈ ℝ))) |
| 21 | 3, 20 | bitri 275 | 1 ⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) ↔ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁‘𝐹) ∈ ℝ))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∅c0 4308 × cxp 5652 ◡ccnv 5653 “ cima 5657 Fn wfn 6525 ⟶wf 6526 ‘cfv 6530 (class class class)co 7403 ℝcr 11126 ℝ*cxr 11266 GrpHom cghm 19193 NrmGrpcngp 24514 normOp cnmo 24642 NGHom cnghm 24643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-1st 7986 df-2nd 7987 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-sup 9452 df-inf 9453 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-ico 13366 df-nmo 24645 df-nghm 24646 |
| This theorem is referenced by: isnghm2 24661 nghmcl 24664 nmoi 24665 nghmrcl1 24669 nghmrcl2 24670 nghmghm 24671 isnmhm2 24689 |
| Copyright terms: Public domain | W3C validator |