Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mthmval Structured version   Visualization version   GIF version

Theorem mthmval 35539
Description: A theorem is a pre-statement, whose reduct is also the reduct of a provable pre-statement. Unlike the difference between pre-statement and statement, this application of the reduct is not necessarily trivial: there are theorems that are not themselves provable but are provable once enough "dummy variables" are introduced. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mthmval.r 𝑅 = (mStRed‘𝑇)
mthmval.j 𝐽 = (mPPSt‘𝑇)
mthmval.u 𝑈 = (mThm‘𝑇)
Assertion
Ref Expression
mthmval 𝑈 = (𝑅 “ (𝑅𝐽))

Proof of Theorem mthmval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 mthmval.u . 2 𝑈 = (mThm‘𝑇)
2 fveq2 6886 . . . . . . 7 (𝑡 = 𝑇 → (mStRed‘𝑡) = (mStRed‘𝑇))
3 mthmval.r . . . . . . 7 𝑅 = (mStRed‘𝑇)
42, 3eqtr4di 2787 . . . . . 6 (𝑡 = 𝑇 → (mStRed‘𝑡) = 𝑅)
54cnveqd 5866 . . . . 5 (𝑡 = 𝑇(mStRed‘𝑡) = 𝑅)
6 fveq2 6886 . . . . . . 7 (𝑡 = 𝑇 → (mPPSt‘𝑡) = (mPPSt‘𝑇))
7 mthmval.j . . . . . . 7 𝐽 = (mPPSt‘𝑇)
86, 7eqtr4di 2787 . . . . . 6 (𝑡 = 𝑇 → (mPPSt‘𝑡) = 𝐽)
94, 8imaeq12d 6059 . . . . 5 (𝑡 = 𝑇 → ((mStRed‘𝑡) “ (mPPSt‘𝑡)) = (𝑅𝐽))
105, 9imaeq12d 6059 . . . 4 (𝑡 = 𝑇 → ((mStRed‘𝑡) “ ((mStRed‘𝑡) “ (mPPSt‘𝑡))) = (𝑅 “ (𝑅𝐽)))
11 df-mthm 35463 . . . 4 mThm = (𝑡 ∈ V ↦ ((mStRed‘𝑡) “ ((mStRed‘𝑡) “ (mPPSt‘𝑡))))
12 fvex 6899 . . . . . 6 (mStRed‘𝑡) ∈ V
1312cnvex 7929 . . . . 5 (mStRed‘𝑡) ∈ V
14 imaexg 7917 . . . . 5 ((mStRed‘𝑡) ∈ V → ((mStRed‘𝑡) “ ((mStRed‘𝑡) “ (mPPSt‘𝑡))) ∈ V)
1513, 14ax-mp 5 . . . 4 ((mStRed‘𝑡) “ ((mStRed‘𝑡) “ (mPPSt‘𝑡))) ∈ V
1610, 11, 15fvmpt3i 7001 . . 3 (𝑇 ∈ V → (mThm‘𝑇) = (𝑅 “ (𝑅𝐽)))
17 0ima 6076 . . . . 5 (∅ “ (𝑅𝐽)) = ∅
1817eqcomi 2743 . . . 4 ∅ = (∅ “ (𝑅𝐽))
19 fvprc 6878 . . . 4 𝑇 ∈ V → (mThm‘𝑇) = ∅)
20 fvprc 6878 . . . . . . . 8 𝑇 ∈ V → (mStRed‘𝑇) = ∅)
213, 20eqtrid 2781 . . . . . . 7 𝑇 ∈ V → 𝑅 = ∅)
2221cnveqd 5866 . . . . . 6 𝑇 ∈ V → 𝑅 = ∅)
23 cnv0 6140 . . . . . 6 ∅ = ∅
2422, 23eqtrdi 2785 . . . . 5 𝑇 ∈ V → 𝑅 = ∅)
2524imaeq1d 6057 . . . 4 𝑇 ∈ V → (𝑅 “ (𝑅𝐽)) = (∅ “ (𝑅𝐽)))
2618, 19, 253eqtr4a 2795 . . 3 𝑇 ∈ V → (mThm‘𝑇) = (𝑅 “ (𝑅𝐽)))
2716, 26pm2.61i 182 . 2 (mThm‘𝑇) = (𝑅 “ (𝑅𝐽))
281, 27eqtri 2757 1 𝑈 = (𝑅 “ (𝑅𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2107  Vcvv 3463  c0 4313  ccnv 5664  cima 5668  cfv 6541  mStRedcmsr 35438  mPPStcmpps 35442  mThmcmthm 35443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fv 6549  df-mthm 35463
This theorem is referenced by:  elmthm  35540  mthmsta  35542  mthmblem  35544
  Copyright terms: Public domain W3C validator