Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mthmval Structured version   Visualization version   GIF version

Theorem mthmval 35602
Description: A theorem is a pre-statement, whose reduct is also the reduct of a provable pre-statement. Unlike the difference between pre-statement and statement, this application of the reduct is not necessarily trivial: there are theorems that are not themselves provable but are provable once enough "dummy variables" are introduced. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mthmval.r 𝑅 = (mStRed‘𝑇)
mthmval.j 𝐽 = (mPPSt‘𝑇)
mthmval.u 𝑈 = (mThm‘𝑇)
Assertion
Ref Expression
mthmval 𝑈 = (𝑅 “ (𝑅𝐽))

Proof of Theorem mthmval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 mthmval.u . 2 𝑈 = (mThm‘𝑇)
2 fveq2 6881 . . . . . . 7 (𝑡 = 𝑇 → (mStRed‘𝑡) = (mStRed‘𝑇))
3 mthmval.r . . . . . . 7 𝑅 = (mStRed‘𝑇)
42, 3eqtr4di 2789 . . . . . 6 (𝑡 = 𝑇 → (mStRed‘𝑡) = 𝑅)
54cnveqd 5860 . . . . 5 (𝑡 = 𝑇(mStRed‘𝑡) = 𝑅)
6 fveq2 6881 . . . . . . 7 (𝑡 = 𝑇 → (mPPSt‘𝑡) = (mPPSt‘𝑇))
7 mthmval.j . . . . . . 7 𝐽 = (mPPSt‘𝑇)
86, 7eqtr4di 2789 . . . . . 6 (𝑡 = 𝑇 → (mPPSt‘𝑡) = 𝐽)
94, 8imaeq12d 6053 . . . . 5 (𝑡 = 𝑇 → ((mStRed‘𝑡) “ (mPPSt‘𝑡)) = (𝑅𝐽))
105, 9imaeq12d 6053 . . . 4 (𝑡 = 𝑇 → ((mStRed‘𝑡) “ ((mStRed‘𝑡) “ (mPPSt‘𝑡))) = (𝑅 “ (𝑅𝐽)))
11 df-mthm 35526 . . . 4 mThm = (𝑡 ∈ V ↦ ((mStRed‘𝑡) “ ((mStRed‘𝑡) “ (mPPSt‘𝑡))))
12 fvex 6894 . . . . . 6 (mStRed‘𝑡) ∈ V
1312cnvex 7926 . . . . 5 (mStRed‘𝑡) ∈ V
14 imaexg 7914 . . . . 5 ((mStRed‘𝑡) ∈ V → ((mStRed‘𝑡) “ ((mStRed‘𝑡) “ (mPPSt‘𝑡))) ∈ V)
1513, 14ax-mp 5 . . . 4 ((mStRed‘𝑡) “ ((mStRed‘𝑡) “ (mPPSt‘𝑡))) ∈ V
1610, 11, 15fvmpt3i 6996 . . 3 (𝑇 ∈ V → (mThm‘𝑇) = (𝑅 “ (𝑅𝐽)))
17 0ima 6070 . . . . 5 (∅ “ (𝑅𝐽)) = ∅
1817eqcomi 2745 . . . 4 ∅ = (∅ “ (𝑅𝐽))
19 fvprc 6873 . . . 4 𝑇 ∈ V → (mThm‘𝑇) = ∅)
20 fvprc 6873 . . . . . . . 8 𝑇 ∈ V → (mStRed‘𝑇) = ∅)
213, 20eqtrid 2783 . . . . . . 7 𝑇 ∈ V → 𝑅 = ∅)
2221cnveqd 5860 . . . . . 6 𝑇 ∈ V → 𝑅 = ∅)
23 cnv0 6134 . . . . . 6 ∅ = ∅
2422, 23eqtrdi 2787 . . . . 5 𝑇 ∈ V → 𝑅 = ∅)
2524imaeq1d 6051 . . . 4 𝑇 ∈ V → (𝑅 “ (𝑅𝐽)) = (∅ “ (𝑅𝐽)))
2618, 19, 253eqtr4a 2797 . . 3 𝑇 ∈ V → (mThm‘𝑇) = (𝑅 “ (𝑅𝐽)))
2716, 26pm2.61i 182 . 2 (mThm‘𝑇) = (𝑅 “ (𝑅𝐽))
281, 27eqtri 2759 1 𝑈 = (𝑅 “ (𝑅𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  Vcvv 3464  c0 4313  ccnv 5658  cima 5662  cfv 6536  mStRedcmsr 35501  mPPStcmpps 35505  mThmcmthm 35506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fv 6544  df-mthm 35526
This theorem is referenced by:  elmthm  35603  mthmsta  35605  mthmblem  35607
  Copyright terms: Public domain W3C validator