![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mthmval | Structured version Visualization version GIF version |
Description: A theorem is a pre-statement, whose reduct is also the reduct of a provable pre-statement. Unlike the difference between pre-statement and statement, this application of the reduct is not necessarily trivial: there are theorems that are not themselves provable but are provable once enough "dummy variables" are introduced. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mthmval.r | ⊢ 𝑅 = (mStRed‘𝑇) |
mthmval.j | ⊢ 𝐽 = (mPPSt‘𝑇) |
mthmval.u | ⊢ 𝑈 = (mThm‘𝑇) |
Ref | Expression |
---|---|
mthmval | ⊢ 𝑈 = (◡𝑅 “ (𝑅 “ 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mthmval.u | . 2 ⊢ 𝑈 = (mThm‘𝑇) | |
2 | fveq2 6920 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (mStRed‘𝑡) = (mStRed‘𝑇)) | |
3 | mthmval.r | . . . . . . 7 ⊢ 𝑅 = (mStRed‘𝑇) | |
4 | 2, 3 | eqtr4di 2798 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (mStRed‘𝑡) = 𝑅) |
5 | 4 | cnveqd 5900 | . . . . 5 ⊢ (𝑡 = 𝑇 → ◡(mStRed‘𝑡) = ◡𝑅) |
6 | fveq2 6920 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (mPPSt‘𝑡) = (mPPSt‘𝑇)) | |
7 | mthmval.j | . . . . . . 7 ⊢ 𝐽 = (mPPSt‘𝑇) | |
8 | 6, 7 | eqtr4di 2798 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (mPPSt‘𝑡) = 𝐽) |
9 | 4, 8 | imaeq12d 6090 | . . . . 5 ⊢ (𝑡 = 𝑇 → ((mStRed‘𝑡) “ (mPPSt‘𝑡)) = (𝑅 “ 𝐽)) |
10 | 5, 9 | imaeq12d 6090 | . . . 4 ⊢ (𝑡 = 𝑇 → (◡(mStRed‘𝑡) “ ((mStRed‘𝑡) “ (mPPSt‘𝑡))) = (◡𝑅 “ (𝑅 “ 𝐽))) |
11 | df-mthm 35467 | . . . 4 ⊢ mThm = (𝑡 ∈ V ↦ (◡(mStRed‘𝑡) “ ((mStRed‘𝑡) “ (mPPSt‘𝑡)))) | |
12 | fvex 6933 | . . . . . 6 ⊢ (mStRed‘𝑡) ∈ V | |
13 | 12 | cnvex 7965 | . . . . 5 ⊢ ◡(mStRed‘𝑡) ∈ V |
14 | imaexg 7953 | . . . . 5 ⊢ (◡(mStRed‘𝑡) ∈ V → (◡(mStRed‘𝑡) “ ((mStRed‘𝑡) “ (mPPSt‘𝑡))) ∈ V) | |
15 | 13, 14 | ax-mp 5 | . . . 4 ⊢ (◡(mStRed‘𝑡) “ ((mStRed‘𝑡) “ (mPPSt‘𝑡))) ∈ V |
16 | 10, 11, 15 | fvmpt3i 7034 | . . 3 ⊢ (𝑇 ∈ V → (mThm‘𝑇) = (◡𝑅 “ (𝑅 “ 𝐽))) |
17 | 0ima 6107 | . . . . 5 ⊢ (∅ “ (𝑅 “ 𝐽)) = ∅ | |
18 | 17 | eqcomi 2749 | . . . 4 ⊢ ∅ = (∅ “ (𝑅 “ 𝐽)) |
19 | fvprc 6912 | . . . 4 ⊢ (¬ 𝑇 ∈ V → (mThm‘𝑇) = ∅) | |
20 | fvprc 6912 | . . . . . . . 8 ⊢ (¬ 𝑇 ∈ V → (mStRed‘𝑇) = ∅) | |
21 | 3, 20 | eqtrid 2792 | . . . . . . 7 ⊢ (¬ 𝑇 ∈ V → 𝑅 = ∅) |
22 | 21 | cnveqd 5900 | . . . . . 6 ⊢ (¬ 𝑇 ∈ V → ◡𝑅 = ◡∅) |
23 | cnv0 6172 | . . . . . 6 ⊢ ◡∅ = ∅ | |
24 | 22, 23 | eqtrdi 2796 | . . . . 5 ⊢ (¬ 𝑇 ∈ V → ◡𝑅 = ∅) |
25 | 24 | imaeq1d 6088 | . . . 4 ⊢ (¬ 𝑇 ∈ V → (◡𝑅 “ (𝑅 “ 𝐽)) = (∅ “ (𝑅 “ 𝐽))) |
26 | 18, 19, 25 | 3eqtr4a 2806 | . . 3 ⊢ (¬ 𝑇 ∈ V → (mThm‘𝑇) = (◡𝑅 “ (𝑅 “ 𝐽))) |
27 | 16, 26 | pm2.61i 182 | . 2 ⊢ (mThm‘𝑇) = (◡𝑅 “ (𝑅 “ 𝐽)) |
28 | 1, 27 | eqtri 2768 | 1 ⊢ 𝑈 = (◡𝑅 “ (𝑅 “ 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 ◡ccnv 5699 “ cima 5703 ‘cfv 6573 mStRedcmsr 35442 mPPStcmpps 35446 mThmcmthm 35447 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fv 6581 df-mthm 35467 |
This theorem is referenced by: elmthm 35544 mthmsta 35546 mthmblem 35548 |
Copyright terms: Public domain | W3C validator |