Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mthmval Structured version   Visualization version   GIF version

Theorem mthmval 33537
Description: A theorem is a pre-statement, whose reduct is also the reduct of a provable pre-statement. Unlike the difference between pre-statement and statement, this application of the reduct is not necessarily trivial: there are theorems that are not themselves provable but are provable once enough "dummy variables" are introduced. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mthmval.r 𝑅 = (mStRed‘𝑇)
mthmval.j 𝐽 = (mPPSt‘𝑇)
mthmval.u 𝑈 = (mThm‘𝑇)
Assertion
Ref Expression
mthmval 𝑈 = (𝑅 “ (𝑅𝐽))

Proof of Theorem mthmval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 mthmval.u . 2 𝑈 = (mThm‘𝑇)
2 fveq2 6774 . . . . . . 7 (𝑡 = 𝑇 → (mStRed‘𝑡) = (mStRed‘𝑇))
3 mthmval.r . . . . . . 7 𝑅 = (mStRed‘𝑇)
42, 3eqtr4di 2796 . . . . . 6 (𝑡 = 𝑇 → (mStRed‘𝑡) = 𝑅)
54cnveqd 5784 . . . . 5 (𝑡 = 𝑇(mStRed‘𝑡) = 𝑅)
6 fveq2 6774 . . . . . . 7 (𝑡 = 𝑇 → (mPPSt‘𝑡) = (mPPSt‘𝑇))
7 mthmval.j . . . . . . 7 𝐽 = (mPPSt‘𝑇)
86, 7eqtr4di 2796 . . . . . 6 (𝑡 = 𝑇 → (mPPSt‘𝑡) = 𝐽)
94, 8imaeq12d 5970 . . . . 5 (𝑡 = 𝑇 → ((mStRed‘𝑡) “ (mPPSt‘𝑡)) = (𝑅𝐽))
105, 9imaeq12d 5970 . . . 4 (𝑡 = 𝑇 → ((mStRed‘𝑡) “ ((mStRed‘𝑡) “ (mPPSt‘𝑡))) = (𝑅 “ (𝑅𝐽)))
11 df-mthm 33461 . . . 4 mThm = (𝑡 ∈ V ↦ ((mStRed‘𝑡) “ ((mStRed‘𝑡) “ (mPPSt‘𝑡))))
12 fvex 6787 . . . . . 6 (mStRed‘𝑡) ∈ V
1312cnvex 7772 . . . . 5 (mStRed‘𝑡) ∈ V
14 imaexg 7762 . . . . 5 ((mStRed‘𝑡) ∈ V → ((mStRed‘𝑡) “ ((mStRed‘𝑡) “ (mPPSt‘𝑡))) ∈ V)
1513, 14ax-mp 5 . . . 4 ((mStRed‘𝑡) “ ((mStRed‘𝑡) “ (mPPSt‘𝑡))) ∈ V
1610, 11, 15fvmpt3i 6880 . . 3 (𝑇 ∈ V → (mThm‘𝑇) = (𝑅 “ (𝑅𝐽)))
17 0ima 5986 . . . . 5 (∅ “ (𝑅𝐽)) = ∅
1817eqcomi 2747 . . . 4 ∅ = (∅ “ (𝑅𝐽))
19 fvprc 6766 . . . 4 𝑇 ∈ V → (mThm‘𝑇) = ∅)
20 fvprc 6766 . . . . . . . 8 𝑇 ∈ V → (mStRed‘𝑇) = ∅)
213, 20eqtrid 2790 . . . . . . 7 𝑇 ∈ V → 𝑅 = ∅)
2221cnveqd 5784 . . . . . 6 𝑇 ∈ V → 𝑅 = ∅)
23 cnv0 6044 . . . . . 6 ∅ = ∅
2422, 23eqtrdi 2794 . . . . 5 𝑇 ∈ V → 𝑅 = ∅)
2524imaeq1d 5968 . . . 4 𝑇 ∈ V → (𝑅 “ (𝑅𝐽)) = (∅ “ (𝑅𝐽)))
2618, 19, 253eqtr4a 2804 . . 3 𝑇 ∈ V → (mThm‘𝑇) = (𝑅 “ (𝑅𝐽)))
2716, 26pm2.61i 182 . 2 (mThm‘𝑇) = (𝑅 “ (𝑅𝐽))
281, 27eqtri 2766 1 𝑈 = (𝑅 “ (𝑅𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2106  Vcvv 3432  c0 4256  ccnv 5588  cima 5592  cfv 6433  mStRedcmsr 33436  mPPStcmpps 33440  mThmcmthm 33441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fv 6441  df-mthm 33461
This theorem is referenced by:  elmthm  33538  mthmsta  33540  mthmblem  33542
  Copyright terms: Public domain W3C validator