Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mthmval Structured version   Visualization version   GIF version

Theorem mthmval 35640
Description: A theorem is a pre-statement, whose reduct is also the reduct of a provable pre-statement. Unlike the difference between pre-statement and statement, this application of the reduct is not necessarily trivial: there are theorems that are not themselves provable but are provable once enough "dummy variables" are introduced. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mthmval.r 𝑅 = (mStRed‘𝑇)
mthmval.j 𝐽 = (mPPSt‘𝑇)
mthmval.u 𝑈 = (mThm‘𝑇)
Assertion
Ref Expression
mthmval 𝑈 = (𝑅 “ (𝑅𝐽))

Proof of Theorem mthmval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 mthmval.u . 2 𝑈 = (mThm‘𝑇)
2 fveq2 6828 . . . . . . 7 (𝑡 = 𝑇 → (mStRed‘𝑡) = (mStRed‘𝑇))
3 mthmval.r . . . . . . 7 𝑅 = (mStRed‘𝑇)
42, 3eqtr4di 2786 . . . . . 6 (𝑡 = 𝑇 → (mStRed‘𝑡) = 𝑅)
54cnveqd 5819 . . . . 5 (𝑡 = 𝑇(mStRed‘𝑡) = 𝑅)
6 fveq2 6828 . . . . . . 7 (𝑡 = 𝑇 → (mPPSt‘𝑡) = (mPPSt‘𝑇))
7 mthmval.j . . . . . . 7 𝐽 = (mPPSt‘𝑇)
86, 7eqtr4di 2786 . . . . . 6 (𝑡 = 𝑇 → (mPPSt‘𝑡) = 𝐽)
94, 8imaeq12d 6014 . . . . 5 (𝑡 = 𝑇 → ((mStRed‘𝑡) “ (mPPSt‘𝑡)) = (𝑅𝐽))
105, 9imaeq12d 6014 . . . 4 (𝑡 = 𝑇 → ((mStRed‘𝑡) “ ((mStRed‘𝑡) “ (mPPSt‘𝑡))) = (𝑅 “ (𝑅𝐽)))
11 df-mthm 35564 . . . 4 mThm = (𝑡 ∈ V ↦ ((mStRed‘𝑡) “ ((mStRed‘𝑡) “ (mPPSt‘𝑡))))
12 fvex 6841 . . . . . 6 (mStRed‘𝑡) ∈ V
1312cnvex 7861 . . . . 5 (mStRed‘𝑡) ∈ V
14 imaexg 7849 . . . . 5 ((mStRed‘𝑡) ∈ V → ((mStRed‘𝑡) “ ((mStRed‘𝑡) “ (mPPSt‘𝑡))) ∈ V)
1513, 14ax-mp 5 . . . 4 ((mStRed‘𝑡) “ ((mStRed‘𝑡) “ (mPPSt‘𝑡))) ∈ V
1610, 11, 15fvmpt3i 6940 . . 3 (𝑇 ∈ V → (mThm‘𝑇) = (𝑅 “ (𝑅𝐽)))
17 0ima 6031 . . . . 5 (∅ “ (𝑅𝐽)) = ∅
1817eqcomi 2742 . . . 4 ∅ = (∅ “ (𝑅𝐽))
19 fvprc 6820 . . . 4 𝑇 ∈ V → (mThm‘𝑇) = ∅)
20 fvprc 6820 . . . . . . . 8 𝑇 ∈ V → (mStRed‘𝑇) = ∅)
213, 20eqtrid 2780 . . . . . . 7 𝑇 ∈ V → 𝑅 = ∅)
2221cnveqd 5819 . . . . . 6 𝑇 ∈ V → 𝑅 = ∅)
23 cnv0 6091 . . . . . 6 ∅ = ∅
2422, 23eqtrdi 2784 . . . . 5 𝑇 ∈ V → 𝑅 = ∅)
2524imaeq1d 6012 . . . 4 𝑇 ∈ V → (𝑅 “ (𝑅𝐽)) = (∅ “ (𝑅𝐽)))
2618, 19, 253eqtr4a 2794 . . 3 𝑇 ∈ V → (mThm‘𝑇) = (𝑅 “ (𝑅𝐽)))
2716, 26pm2.61i 182 . 2 (mThm‘𝑇) = (𝑅 “ (𝑅𝐽))
281, 27eqtri 2756 1 𝑈 = (𝑅 “ (𝑅𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2113  Vcvv 3437  c0 4282  ccnv 5618  cima 5622  cfv 6486  mStRedcmsr 35539  mPPStcmpps 35543  mThmcmthm 35544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fv 6494  df-mthm 35564
This theorem is referenced by:  elmthm  35641  mthmsta  35643  mthmblem  35645
  Copyright terms: Public domain W3C validator