| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mthmval | Structured version Visualization version GIF version | ||
| Description: A theorem is a pre-statement, whose reduct is also the reduct of a provable pre-statement. Unlike the difference between pre-statement and statement, this application of the reduct is not necessarily trivial: there are theorems that are not themselves provable but are provable once enough "dummy variables" are introduced. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mthmval.r | ⊢ 𝑅 = (mStRed‘𝑇) |
| mthmval.j | ⊢ 𝐽 = (mPPSt‘𝑇) |
| mthmval.u | ⊢ 𝑈 = (mThm‘𝑇) |
| Ref | Expression |
|---|---|
| mthmval | ⊢ 𝑈 = (◡𝑅 “ (𝑅 “ 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mthmval.u | . 2 ⊢ 𝑈 = (mThm‘𝑇) | |
| 2 | fveq2 6886 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (mStRed‘𝑡) = (mStRed‘𝑇)) | |
| 3 | mthmval.r | . . . . . . 7 ⊢ 𝑅 = (mStRed‘𝑇) | |
| 4 | 2, 3 | eqtr4di 2787 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (mStRed‘𝑡) = 𝑅) |
| 5 | 4 | cnveqd 5866 | . . . . 5 ⊢ (𝑡 = 𝑇 → ◡(mStRed‘𝑡) = ◡𝑅) |
| 6 | fveq2 6886 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (mPPSt‘𝑡) = (mPPSt‘𝑇)) | |
| 7 | mthmval.j | . . . . . . 7 ⊢ 𝐽 = (mPPSt‘𝑇) | |
| 8 | 6, 7 | eqtr4di 2787 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (mPPSt‘𝑡) = 𝐽) |
| 9 | 4, 8 | imaeq12d 6059 | . . . . 5 ⊢ (𝑡 = 𝑇 → ((mStRed‘𝑡) “ (mPPSt‘𝑡)) = (𝑅 “ 𝐽)) |
| 10 | 5, 9 | imaeq12d 6059 | . . . 4 ⊢ (𝑡 = 𝑇 → (◡(mStRed‘𝑡) “ ((mStRed‘𝑡) “ (mPPSt‘𝑡))) = (◡𝑅 “ (𝑅 “ 𝐽))) |
| 11 | df-mthm 35463 | . . . 4 ⊢ mThm = (𝑡 ∈ V ↦ (◡(mStRed‘𝑡) “ ((mStRed‘𝑡) “ (mPPSt‘𝑡)))) | |
| 12 | fvex 6899 | . . . . . 6 ⊢ (mStRed‘𝑡) ∈ V | |
| 13 | 12 | cnvex 7929 | . . . . 5 ⊢ ◡(mStRed‘𝑡) ∈ V |
| 14 | imaexg 7917 | . . . . 5 ⊢ (◡(mStRed‘𝑡) ∈ V → (◡(mStRed‘𝑡) “ ((mStRed‘𝑡) “ (mPPSt‘𝑡))) ∈ V) | |
| 15 | 13, 14 | ax-mp 5 | . . . 4 ⊢ (◡(mStRed‘𝑡) “ ((mStRed‘𝑡) “ (mPPSt‘𝑡))) ∈ V |
| 16 | 10, 11, 15 | fvmpt3i 7001 | . . 3 ⊢ (𝑇 ∈ V → (mThm‘𝑇) = (◡𝑅 “ (𝑅 “ 𝐽))) |
| 17 | 0ima 6076 | . . . . 5 ⊢ (∅ “ (𝑅 “ 𝐽)) = ∅ | |
| 18 | 17 | eqcomi 2743 | . . . 4 ⊢ ∅ = (∅ “ (𝑅 “ 𝐽)) |
| 19 | fvprc 6878 | . . . 4 ⊢ (¬ 𝑇 ∈ V → (mThm‘𝑇) = ∅) | |
| 20 | fvprc 6878 | . . . . . . . 8 ⊢ (¬ 𝑇 ∈ V → (mStRed‘𝑇) = ∅) | |
| 21 | 3, 20 | eqtrid 2781 | . . . . . . 7 ⊢ (¬ 𝑇 ∈ V → 𝑅 = ∅) |
| 22 | 21 | cnveqd 5866 | . . . . . 6 ⊢ (¬ 𝑇 ∈ V → ◡𝑅 = ◡∅) |
| 23 | cnv0 6140 | . . . . . 6 ⊢ ◡∅ = ∅ | |
| 24 | 22, 23 | eqtrdi 2785 | . . . . 5 ⊢ (¬ 𝑇 ∈ V → ◡𝑅 = ∅) |
| 25 | 24 | imaeq1d 6057 | . . . 4 ⊢ (¬ 𝑇 ∈ V → (◡𝑅 “ (𝑅 “ 𝐽)) = (∅ “ (𝑅 “ 𝐽))) |
| 26 | 18, 19, 25 | 3eqtr4a 2795 | . . 3 ⊢ (¬ 𝑇 ∈ V → (mThm‘𝑇) = (◡𝑅 “ (𝑅 “ 𝐽))) |
| 27 | 16, 26 | pm2.61i 182 | . 2 ⊢ (mThm‘𝑇) = (◡𝑅 “ (𝑅 “ 𝐽)) |
| 28 | 1, 27 | eqtri 2757 | 1 ⊢ 𝑈 = (◡𝑅 “ (𝑅 “ 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ∅c0 4313 ◡ccnv 5664 “ cima 5668 ‘cfv 6541 mStRedcmsr 35438 mPPStcmpps 35442 mThmcmthm 35443 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fv 6549 df-mthm 35463 |
| This theorem is referenced by: elmthm 35540 mthmsta 35542 mthmblem 35544 |
| Copyright terms: Public domain | W3C validator |