Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mthmval | Structured version Visualization version GIF version |
Description: A theorem is a pre-statement, whose reduct is also the reduct of a provable pre-statement. Unlike the difference between pre-statement and statement, this application of the reduct is not necessarily trivial: there are theorems that are not themselves provable but are provable once enough "dummy variables" are introduced. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mthmval.r | ⊢ 𝑅 = (mStRed‘𝑇) |
mthmval.j | ⊢ 𝐽 = (mPPSt‘𝑇) |
mthmval.u | ⊢ 𝑈 = (mThm‘𝑇) |
Ref | Expression |
---|---|
mthmval | ⊢ 𝑈 = (◡𝑅 “ (𝑅 “ 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mthmval.u | . 2 ⊢ 𝑈 = (mThm‘𝑇) | |
2 | fveq2 6664 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (mStRed‘𝑡) = (mStRed‘𝑇)) | |
3 | mthmval.r | . . . . . . 7 ⊢ 𝑅 = (mStRed‘𝑇) | |
4 | 2, 3 | eqtr4di 2812 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (mStRed‘𝑡) = 𝑅) |
5 | 4 | cnveqd 5722 | . . . . 5 ⊢ (𝑡 = 𝑇 → ◡(mStRed‘𝑡) = ◡𝑅) |
6 | fveq2 6664 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (mPPSt‘𝑡) = (mPPSt‘𝑇)) | |
7 | mthmval.j | . . . . . . 7 ⊢ 𝐽 = (mPPSt‘𝑇) | |
8 | 6, 7 | eqtr4di 2812 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (mPPSt‘𝑡) = 𝐽) |
9 | 4, 8 | imaeq12d 5908 | . . . . 5 ⊢ (𝑡 = 𝑇 → ((mStRed‘𝑡) “ (mPPSt‘𝑡)) = (𝑅 “ 𝐽)) |
10 | 5, 9 | imaeq12d 5908 | . . . 4 ⊢ (𝑡 = 𝑇 → (◡(mStRed‘𝑡) “ ((mStRed‘𝑡) “ (mPPSt‘𝑡))) = (◡𝑅 “ (𝑅 “ 𝐽))) |
11 | df-mthm 32991 | . . . 4 ⊢ mThm = (𝑡 ∈ V ↦ (◡(mStRed‘𝑡) “ ((mStRed‘𝑡) “ (mPPSt‘𝑡)))) | |
12 | fvex 6677 | . . . . . 6 ⊢ (mStRed‘𝑡) ∈ V | |
13 | 12 | cnvex 7642 | . . . . 5 ⊢ ◡(mStRed‘𝑡) ∈ V |
14 | imaexg 7632 | . . . . 5 ⊢ (◡(mStRed‘𝑡) ∈ V → (◡(mStRed‘𝑡) “ ((mStRed‘𝑡) “ (mPPSt‘𝑡))) ∈ V) | |
15 | 13, 14 | ax-mp 5 | . . . 4 ⊢ (◡(mStRed‘𝑡) “ ((mStRed‘𝑡) “ (mPPSt‘𝑡))) ∈ V |
16 | 10, 11, 15 | fvmpt3i 6770 | . . 3 ⊢ (𝑇 ∈ V → (mThm‘𝑇) = (◡𝑅 “ (𝑅 “ 𝐽))) |
17 | 0ima 5924 | . . . . 5 ⊢ (∅ “ (𝑅 “ 𝐽)) = ∅ | |
18 | 17 | eqcomi 2768 | . . . 4 ⊢ ∅ = (∅ “ (𝑅 “ 𝐽)) |
19 | fvprc 6656 | . . . 4 ⊢ (¬ 𝑇 ∈ V → (mThm‘𝑇) = ∅) | |
20 | fvprc 6656 | . . . . . . . 8 ⊢ (¬ 𝑇 ∈ V → (mStRed‘𝑇) = ∅) | |
21 | 3, 20 | syl5eq 2806 | . . . . . . 7 ⊢ (¬ 𝑇 ∈ V → 𝑅 = ∅) |
22 | 21 | cnveqd 5722 | . . . . . 6 ⊢ (¬ 𝑇 ∈ V → ◡𝑅 = ◡∅) |
23 | cnv0 5977 | . . . . . 6 ⊢ ◡∅ = ∅ | |
24 | 22, 23 | eqtrdi 2810 | . . . . 5 ⊢ (¬ 𝑇 ∈ V → ◡𝑅 = ∅) |
25 | 24 | imaeq1d 5906 | . . . 4 ⊢ (¬ 𝑇 ∈ V → (◡𝑅 “ (𝑅 “ 𝐽)) = (∅ “ (𝑅 “ 𝐽))) |
26 | 18, 19, 25 | 3eqtr4a 2820 | . . 3 ⊢ (¬ 𝑇 ∈ V → (mThm‘𝑇) = (◡𝑅 “ (𝑅 “ 𝐽))) |
27 | 16, 26 | pm2.61i 185 | . 2 ⊢ (mThm‘𝑇) = (◡𝑅 “ (𝑅 “ 𝐽)) |
28 | 1, 27 | eqtri 2782 | 1 ⊢ 𝑈 = (◡𝑅 “ (𝑅 “ 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2112 Vcvv 3410 ∅c0 4228 ◡ccnv 5528 “ cima 5532 ‘cfv 6341 mStRedcmsr 32966 mPPStcmpps 32970 mThmcmthm 32971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5174 ax-nul 5181 ax-pow 5239 ax-pr 5303 ax-un 7466 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-sbc 3700 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-nul 4229 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4803 df-br 5038 df-opab 5100 df-mpt 5118 df-id 5435 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-rn 5540 df-res 5541 df-ima 5542 df-iota 6300 df-fun 6343 df-fv 6349 df-mthm 32991 |
This theorem is referenced by: elmthm 33068 mthmsta 33070 mthmblem 33072 |
Copyright terms: Public domain | W3C validator |