MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nghmfval Structured version   Visualization version   GIF version

Theorem nghmfval 24610
Description: A normed group homomorphism is a group homomorphism with bounded norm. (Contributed by Mario Carneiro, 18-Oct-2015.)
Hypothesis
Ref Expression
nmofval.1 𝑁 = (𝑆 normOp 𝑇)
Assertion
Ref Expression
nghmfval (𝑆 NGHom 𝑇) = (𝑁 “ ℝ)

Proof of Theorem nghmfval
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq12 7396 . . . . . 6 ((𝑠 = 𝑆𝑡 = 𝑇) → (𝑠 normOp 𝑡) = (𝑆 normOp 𝑇))
2 nmofval.1 . . . . . 6 𝑁 = (𝑆 normOp 𝑇)
31, 2eqtr4di 2782 . . . . 5 ((𝑠 = 𝑆𝑡 = 𝑇) → (𝑠 normOp 𝑡) = 𝑁)
43cnveqd 5839 . . . 4 ((𝑠 = 𝑆𝑡 = 𝑇) → (𝑠 normOp 𝑡) = 𝑁)
54imaeq1d 6030 . . 3 ((𝑠 = 𝑆𝑡 = 𝑇) → ((𝑠 normOp 𝑡) “ ℝ) = (𝑁 “ ℝ))
6 df-nghm 24597 . . 3 NGHom = (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ ((𝑠 normOp 𝑡) “ ℝ))
72ovexi 7421 . . . . 5 𝑁 ∈ V
87cnvex 7901 . . . 4 𝑁 ∈ V
98imaex 7890 . . 3 (𝑁 “ ℝ) ∈ V
105, 6, 9ovmpoa 7544 . 2 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑆 NGHom 𝑇) = (𝑁 “ ℝ))
116mpondm0 7629 . . 3 (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑆 NGHom 𝑇) = ∅)
12 nmoffn 24599 . . . . . . . . . 10 normOp Fn (NrmGrp × NrmGrp)
1312fndmi 6622 . . . . . . . . 9 dom normOp = (NrmGrp × NrmGrp)
1413ndmov 7573 . . . . . . . 8 (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑆 normOp 𝑇) = ∅)
152, 14eqtrid 2776 . . . . . . 7 (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁 = ∅)
1615cnveqd 5839 . . . . . 6 (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁 = ∅)
17 cnv0 6113 . . . . . 6 ∅ = ∅
1816, 17eqtrdi 2780 . . . . 5 (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁 = ∅)
1918imaeq1d 6030 . . . 4 (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁 “ ℝ) = (∅ “ ℝ))
20 0ima 6049 . . . 4 (∅ “ ℝ) = ∅
2119, 20eqtrdi 2780 . . 3 (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁 “ ℝ) = ∅)
2211, 21eqtr4d 2767 . 2 (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑆 NGHom 𝑇) = (𝑁 “ ℝ))
2310, 22pm2.61i 182 1 (𝑆 NGHom 𝑇) = (𝑁 “ ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wcel 2109  c0 4296   × cxp 5636  ccnv 5637  cima 5641  (class class class)co 7387  cr 11067  NrmGrpcngp 24465   normOp cnmo 24593   NGHom cnghm 24594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-ico 13312  df-nmo 24596  df-nghm 24597
This theorem is referenced by:  isnghm  24611
  Copyright terms: Public domain W3C validator