Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nghmfval | Structured version Visualization version GIF version |
Description: A normed group homomorphism is a group homomorphism with bounded norm. (Contributed by Mario Carneiro, 18-Oct-2015.) |
Ref | Expression |
---|---|
nmofval.1 | ⊢ 𝑁 = (𝑆 normOp 𝑇) |
Ref | Expression |
---|---|
nghmfval | ⊢ (𝑆 NGHom 𝑇) = (◡𝑁 “ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq12 7284 | . . . . . 6 ⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (𝑠 normOp 𝑡) = (𝑆 normOp 𝑇)) | |
2 | nmofval.1 | . . . . . 6 ⊢ 𝑁 = (𝑆 normOp 𝑇) | |
3 | 1, 2 | eqtr4di 2796 | . . . . 5 ⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (𝑠 normOp 𝑡) = 𝑁) |
4 | 3 | cnveqd 5784 | . . . 4 ⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → ◡(𝑠 normOp 𝑡) = ◡𝑁) |
5 | 4 | imaeq1d 5968 | . . 3 ⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (◡(𝑠 normOp 𝑡) “ ℝ) = (◡𝑁 “ ℝ)) |
6 | df-nghm 23873 | . . 3 ⊢ NGHom = (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ (◡(𝑠 normOp 𝑡) “ ℝ)) | |
7 | 2 | ovexi 7309 | . . . . 5 ⊢ 𝑁 ∈ V |
8 | 7 | cnvex 7772 | . . . 4 ⊢ ◡𝑁 ∈ V |
9 | 8 | imaex 7763 | . . 3 ⊢ (◡𝑁 “ ℝ) ∈ V |
10 | 5, 6, 9 | ovmpoa 7428 | . 2 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑆 NGHom 𝑇) = (◡𝑁 “ ℝ)) |
11 | 6 | mpondm0 7510 | . . 3 ⊢ (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑆 NGHom 𝑇) = ∅) |
12 | nmoffn 23875 | . . . . . . . . . 10 ⊢ normOp Fn (NrmGrp × NrmGrp) | |
13 | 12 | fndmi 6537 | . . . . . . . . 9 ⊢ dom normOp = (NrmGrp × NrmGrp) |
14 | 13 | ndmov 7456 | . . . . . . . 8 ⊢ (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑆 normOp 𝑇) = ∅) |
15 | 2, 14 | eqtrid 2790 | . . . . . . 7 ⊢ (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁 = ∅) |
16 | 15 | cnveqd 5784 | . . . . . 6 ⊢ (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → ◡𝑁 = ◡∅) |
17 | cnv0 6044 | . . . . . 6 ⊢ ◡∅ = ∅ | |
18 | 16, 17 | eqtrdi 2794 | . . . . 5 ⊢ (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → ◡𝑁 = ∅) |
19 | 18 | imaeq1d 5968 | . . . 4 ⊢ (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (◡𝑁 “ ℝ) = (∅ “ ℝ)) |
20 | 0ima 5986 | . . . 4 ⊢ (∅ “ ℝ) = ∅ | |
21 | 19, 20 | eqtrdi 2794 | . . 3 ⊢ (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (◡𝑁 “ ℝ) = ∅) |
22 | 11, 21 | eqtr4d 2781 | . 2 ⊢ (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑆 NGHom 𝑇) = (◡𝑁 “ ℝ)) |
23 | 10, 22 | pm2.61i 182 | 1 ⊢ (𝑆 NGHom 𝑇) = (◡𝑁 “ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∅c0 4256 × cxp 5587 ◡ccnv 5588 “ cima 5592 (class class class)co 7275 ℝcr 10870 NrmGrpcngp 23733 normOp cnmo 23869 NGHom cnghm 23870 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-ico 13085 df-nmo 23872 df-nghm 23873 |
This theorem is referenced by: isnghm 23887 |
Copyright terms: Public domain | W3C validator |