| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nghmfval | Structured version Visualization version GIF version | ||
| Description: A normed group homomorphism is a group homomorphism with bounded norm. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| Ref | Expression |
|---|---|
| nmofval.1 | ⊢ 𝑁 = (𝑆 normOp 𝑇) |
| Ref | Expression |
|---|---|
| nghmfval | ⊢ (𝑆 NGHom 𝑇) = (◡𝑁 “ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq12 7412 | . . . . . 6 ⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (𝑠 normOp 𝑡) = (𝑆 normOp 𝑇)) | |
| 2 | nmofval.1 | . . . . . 6 ⊢ 𝑁 = (𝑆 normOp 𝑇) | |
| 3 | 1, 2 | eqtr4di 2788 | . . . . 5 ⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (𝑠 normOp 𝑡) = 𝑁) |
| 4 | 3 | cnveqd 5855 | . . . 4 ⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → ◡(𝑠 normOp 𝑡) = ◡𝑁) |
| 5 | 4 | imaeq1d 6046 | . . 3 ⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (◡(𝑠 normOp 𝑡) “ ℝ) = (◡𝑁 “ ℝ)) |
| 6 | df-nghm 24646 | . . 3 ⊢ NGHom = (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ (◡(𝑠 normOp 𝑡) “ ℝ)) | |
| 7 | 2 | ovexi 7437 | . . . . 5 ⊢ 𝑁 ∈ V |
| 8 | 7 | cnvex 7919 | . . . 4 ⊢ ◡𝑁 ∈ V |
| 9 | 8 | imaex 7908 | . . 3 ⊢ (◡𝑁 “ ℝ) ∈ V |
| 10 | 5, 6, 9 | ovmpoa 7560 | . 2 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑆 NGHom 𝑇) = (◡𝑁 “ ℝ)) |
| 11 | 6 | mpondm0 7645 | . . 3 ⊢ (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑆 NGHom 𝑇) = ∅) |
| 12 | nmoffn 24648 | . . . . . . . . . 10 ⊢ normOp Fn (NrmGrp × NrmGrp) | |
| 13 | 12 | fndmi 6641 | . . . . . . . . 9 ⊢ dom normOp = (NrmGrp × NrmGrp) |
| 14 | 13 | ndmov 7589 | . . . . . . . 8 ⊢ (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑆 normOp 𝑇) = ∅) |
| 15 | 2, 14 | eqtrid 2782 | . . . . . . 7 ⊢ (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁 = ∅) |
| 16 | 15 | cnveqd 5855 | . . . . . 6 ⊢ (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → ◡𝑁 = ◡∅) |
| 17 | cnv0 6129 | . . . . . 6 ⊢ ◡∅ = ∅ | |
| 18 | 16, 17 | eqtrdi 2786 | . . . . 5 ⊢ (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → ◡𝑁 = ∅) |
| 19 | 18 | imaeq1d 6046 | . . . 4 ⊢ (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (◡𝑁 “ ℝ) = (∅ “ ℝ)) |
| 20 | 0ima 6065 | . . . 4 ⊢ (∅ “ ℝ) = ∅ | |
| 21 | 19, 20 | eqtrdi 2786 | . . 3 ⊢ (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (◡𝑁 “ ℝ) = ∅) |
| 22 | 11, 21 | eqtr4d 2773 | . 2 ⊢ (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑆 NGHom 𝑇) = (◡𝑁 “ ℝ)) |
| 23 | 10, 22 | pm2.61i 182 | 1 ⊢ (𝑆 NGHom 𝑇) = (◡𝑁 “ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∅c0 4308 × cxp 5652 ◡ccnv 5653 “ cima 5657 (class class class)co 7403 ℝcr 11126 NrmGrpcngp 24514 normOp cnmo 24642 NGHom cnghm 24643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-1st 7986 df-2nd 7987 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-sup 9452 df-inf 9453 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-ico 13366 df-nmo 24645 df-nghm 24646 |
| This theorem is referenced by: isnghm 24660 |
| Copyright terms: Public domain | W3C validator |