MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nghmfval Structured version   Visualization version   GIF version

Theorem nghmfval 23620
Description: A normed group homomorphism is a group homomorphism with bounded norm. (Contributed by Mario Carneiro, 18-Oct-2015.)
Hypothesis
Ref Expression
nmofval.1 𝑁 = (𝑆 normOp 𝑇)
Assertion
Ref Expression
nghmfval (𝑆 NGHom 𝑇) = (𝑁 “ ℝ)

Proof of Theorem nghmfval
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq12 7222 . . . . . 6 ((𝑠 = 𝑆𝑡 = 𝑇) → (𝑠 normOp 𝑡) = (𝑆 normOp 𝑇))
2 nmofval.1 . . . . . 6 𝑁 = (𝑆 normOp 𝑇)
31, 2eqtr4di 2796 . . . . 5 ((𝑠 = 𝑆𝑡 = 𝑇) → (𝑠 normOp 𝑡) = 𝑁)
43cnveqd 5744 . . . 4 ((𝑠 = 𝑆𝑡 = 𝑇) → (𝑠 normOp 𝑡) = 𝑁)
54imaeq1d 5928 . . 3 ((𝑠 = 𝑆𝑡 = 𝑇) → ((𝑠 normOp 𝑡) “ ℝ) = (𝑁 “ ℝ))
6 df-nghm 23607 . . 3 NGHom = (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ ((𝑠 normOp 𝑡) “ ℝ))
72ovexi 7247 . . . . 5 𝑁 ∈ V
87cnvex 7703 . . . 4 𝑁 ∈ V
98imaex 7694 . . 3 (𝑁 “ ℝ) ∈ V
105, 6, 9ovmpoa 7364 . 2 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑆 NGHom 𝑇) = (𝑁 “ ℝ))
116mpondm0 7446 . . 3 (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑆 NGHom 𝑇) = ∅)
12 nmoffn 23609 . . . . . . . . . 10 normOp Fn (NrmGrp × NrmGrp)
1312fndmi 6482 . . . . . . . . 9 dom normOp = (NrmGrp × NrmGrp)
1413ndmov 7392 . . . . . . . 8 (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑆 normOp 𝑇) = ∅)
152, 14syl5eq 2790 . . . . . . 7 (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁 = ∅)
1615cnveqd 5744 . . . . . 6 (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁 = ∅)
17 cnv0 6004 . . . . . 6 ∅ = ∅
1816, 17eqtrdi 2794 . . . . 5 (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁 = ∅)
1918imaeq1d 5928 . . . 4 (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁 “ ℝ) = (∅ “ ℝ))
20 0ima 5946 . . . 4 (∅ “ ℝ) = ∅
2119, 20eqtrdi 2794 . . 3 (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁 “ ℝ) = ∅)
2211, 21eqtr4d 2780 . 2 (¬ (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑆 NGHom 𝑇) = (𝑁 “ ℝ))
2310, 22pm2.61i 185 1 (𝑆 NGHom 𝑇) = (𝑁 “ ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 399   = wceq 1543  wcel 2110  c0 4237   × cxp 5549  ccnv 5550  cima 5554  (class class class)co 7213  cr 10728  NrmGrpcngp 23475   normOp cnmo 23603   NGHom cnghm 23604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-po 5468  df-so 5469  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-1st 7761  df-2nd 7762  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-sup 9058  df-inf 9059  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-ico 12941  df-nmo 23606  df-nghm 23607
This theorem is referenced by:  isnghm  23621
  Copyright terms: Public domain W3C validator