MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2idlridld Structured version   Visualization version   GIF version

Theorem 2idlridld 21180
Description: A two-sided ideal is a right ideal. (Contributed by Thierry Arnoux, 9-Mar-2025.)
Hypotheses
Ref Expression
2idllidld.1 (𝜑𝐼 ∈ (2Ideal‘𝑅))
2idlridld.o 𝑂 = (oppr𝑅)
Assertion
Ref Expression
2idlridld (𝜑𝐼 ∈ (LIdeal‘𝑂))

Proof of Theorem 2idlridld
StepHypRef Expression
1 2idllidld.1 . . 3 (𝜑𝐼 ∈ (2Ideal‘𝑅))
2 eqid 2729 . . . 4 (LIdeal‘𝑅) = (LIdeal‘𝑅)
3 2idlridld.o . . . 4 𝑂 = (oppr𝑅)
4 eqid 2729 . . . 4 (LIdeal‘𝑂) = (LIdeal‘𝑂)
5 eqid 2729 . . . 4 (2Ideal‘𝑅) = (2Ideal‘𝑅)
62, 3, 4, 52idlval 21176 . . 3 (2Ideal‘𝑅) = ((LIdeal‘𝑅) ∩ (LIdeal‘𝑂))
71, 6eleqtrdi 2838 . 2 (𝜑𝐼 ∈ ((LIdeal‘𝑅) ∩ (LIdeal‘𝑂)))
87elin2d 4158 1 (𝜑𝐼 ∈ (LIdeal‘𝑂))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cin 3904  cfv 6486  opprcoppr 20239  LIdealclidl 21131  2Idealc2idl 21174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-2idl 21175
This theorem is referenced by:  qsdrng  33444
  Copyright terms: Public domain W3C validator