MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2idlridld Structured version   Visualization version   GIF version

Theorem 2idlridld 21172
Description: A two-sided ideal is a right ideal. (Contributed by Thierry Arnoux, 9-Mar-2025.)
Hypotheses
Ref Expression
2idllidld.1 (𝜑𝐼 ∈ (2Ideal‘𝑅))
2idlridld.o 𝑂 = (oppr𝑅)
Assertion
Ref Expression
2idlridld (𝜑𝐼 ∈ (LIdeal‘𝑂))

Proof of Theorem 2idlridld
StepHypRef Expression
1 2idllidld.1 . . 3 (𝜑𝐼 ∈ (2Ideal‘𝑅))
2 eqid 2730 . . . 4 (LIdeal‘𝑅) = (LIdeal‘𝑅)
3 2idlridld.o . . . 4 𝑂 = (oppr𝑅)
4 eqid 2730 . . . 4 (LIdeal‘𝑂) = (LIdeal‘𝑂)
5 eqid 2730 . . . 4 (2Ideal‘𝑅) = (2Ideal‘𝑅)
62, 3, 4, 52idlval 21168 . . 3 (2Ideal‘𝑅) = ((LIdeal‘𝑅) ∩ (LIdeal‘𝑂))
71, 6eleqtrdi 2839 . 2 (𝜑𝐼 ∈ ((LIdeal‘𝑅) ∩ (LIdeal‘𝑂)))
87elin2d 4171 1 (𝜑𝐼 ∈ (LIdeal‘𝑂))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cin 3916  cfv 6514  opprcoppr 20252  LIdealclidl 21123  2Idealc2idl 21166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-2idl 21167
This theorem is referenced by:  qsdrng  33475
  Copyright terms: Public domain W3C validator