| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2idlridld | Structured version Visualization version GIF version | ||
| Description: A two-sided ideal is a right ideal. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
| Ref | Expression |
|---|---|
| 2idllidld.1 | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
| 2idlridld.o | ⊢ 𝑂 = (oppr‘𝑅) |
| Ref | Expression |
|---|---|
| 2idlridld | ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2idllidld.1 | . . 3 ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | |
| 2 | eqid 2736 | . . . 4 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
| 3 | 2idlridld.o | . . . 4 ⊢ 𝑂 = (oppr‘𝑅) | |
| 4 | eqid 2736 | . . . 4 ⊢ (LIdeal‘𝑂) = (LIdeal‘𝑂) | |
| 5 | eqid 2736 | . . . 4 ⊢ (2Ideal‘𝑅) = (2Ideal‘𝑅) | |
| 6 | 2, 3, 4, 5 | 2idlval 21217 | . . 3 ⊢ (2Ideal‘𝑅) = ((LIdeal‘𝑅) ∩ (LIdeal‘𝑂)) |
| 7 | 1, 6 | eleqtrdi 2845 | . 2 ⊢ (𝜑 → 𝐼 ∈ ((LIdeal‘𝑅) ∩ (LIdeal‘𝑂))) |
| 8 | 7 | elin2d 4185 | 1 ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑂)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∩ cin 3930 ‘cfv 6536 opprcoppr 20301 LIdealclidl 21172 2Idealc2idl 21215 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-2idl 21216 |
| This theorem is referenced by: qsdrng 33517 |
| Copyright terms: Public domain | W3C validator |