| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2idllidld | Structured version Visualization version GIF version | ||
| Description: A two-sided ideal is a left ideal. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
| Ref | Expression |
|---|---|
| 2idllidld.1 | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
| Ref | Expression |
|---|---|
| 2idllidld | ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2idllidld.1 | . . 3 ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | |
| 2 | eqid 2729 | . . . 4 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
| 3 | eqid 2729 | . . . 4 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
| 4 | eqid 2729 | . . . 4 ⊢ (LIdeal‘(oppr‘𝑅)) = (LIdeal‘(oppr‘𝑅)) | |
| 5 | eqid 2729 | . . . 4 ⊢ (2Ideal‘𝑅) = (2Ideal‘𝑅) | |
| 6 | 2, 3, 4, 5 | 2idlval 21161 | . . 3 ⊢ (2Ideal‘𝑅) = ((LIdeal‘𝑅) ∩ (LIdeal‘(oppr‘𝑅))) |
| 7 | 1, 6 | eleqtrdi 2838 | . 2 ⊢ (𝜑 → 𝐼 ∈ ((LIdeal‘𝑅) ∩ (LIdeal‘(oppr‘𝑅)))) |
| 8 | 7 | elin1d 4167 | 1 ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∩ cin 3913 ‘cfv 6511 opprcoppr 20245 LIdealclidl 21116 2Idealc2idl 21159 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-2idl 21160 |
| This theorem is referenced by: df2idl2 21167 2idlss 21172 qusmul2idl 21189 rng2idl1cntr 21215 qsnzr 33426 opprqusmulr 33462 opprqus1r 33463 opprqusdrng 33464 qsdrnglem2 33467 qsdrng 33468 |
| Copyright terms: Public domain | W3C validator |