MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2idllidld Structured version   Visualization version   GIF version

Theorem 2idllidld 21140
Description: A two-sided ideal is a left ideal. (Contributed by Thierry Arnoux, 9-Mar-2025.)
Hypothesis
Ref Expression
2idllidld.1 (𝜑𝐼 ∈ (2Ideal‘𝑅))
Assertion
Ref Expression
2idllidld (𝜑𝐼 ∈ (LIdeal‘𝑅))

Proof of Theorem 2idllidld
StepHypRef Expression
1 2idllidld.1 . . 3 (𝜑𝐼 ∈ (2Ideal‘𝑅))
2 eqid 2729 . . . 4 (LIdeal‘𝑅) = (LIdeal‘𝑅)
3 eqid 2729 . . . 4 (oppr𝑅) = (oppr𝑅)
4 eqid 2729 . . . 4 (LIdeal‘(oppr𝑅)) = (LIdeal‘(oppr𝑅))
5 eqid 2729 . . . 4 (2Ideal‘𝑅) = (2Ideal‘𝑅)
62, 3, 4, 52idlval 21137 . . 3 (2Ideal‘𝑅) = ((LIdeal‘𝑅) ∩ (LIdeal‘(oppr𝑅)))
71, 6eleqtrdi 2838 . 2 (𝜑𝐼 ∈ ((LIdeal‘𝑅) ∩ (LIdeal‘(oppr𝑅))))
87elin1d 4163 1 (𝜑𝐼 ∈ (LIdeal‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  cin 3910  cfv 6499  opprcoppr 20221  LIdealclidl 21092  2Idealc2idl 21135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fv 6507  df-2idl 21136
This theorem is referenced by:  df2idl2  21143  2idlss  21148  qusmul2idl  21165  rng2idl1cntr  21191  qsnzr  33399  opprqusmulr  33435  opprqus1r  33436  opprqusdrng  33437  qsdrnglem2  33440  qsdrng  33441
  Copyright terms: Public domain W3C validator