MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2idllidld Structured version   Visualization version   GIF version

Theorem 2idllidld 21186
Description: A two-sided ideal is a left ideal. (Contributed by Thierry Arnoux, 9-Mar-2025.)
Hypothesis
Ref Expression
2idllidld.1 (𝜑𝐼 ∈ (2Ideal‘𝑅))
Assertion
Ref Expression
2idllidld (𝜑𝐼 ∈ (LIdeal‘𝑅))

Proof of Theorem 2idllidld
StepHypRef Expression
1 2idllidld.1 . . 3 (𝜑𝐼 ∈ (2Ideal‘𝑅))
2 eqid 2731 . . . 4 (LIdeal‘𝑅) = (LIdeal‘𝑅)
3 eqid 2731 . . . 4 (oppr𝑅) = (oppr𝑅)
4 eqid 2731 . . . 4 (LIdeal‘(oppr𝑅)) = (LIdeal‘(oppr𝑅))
5 eqid 2731 . . . 4 (2Ideal‘𝑅) = (2Ideal‘𝑅)
62, 3, 4, 52idlval 21183 . . 3 (2Ideal‘𝑅) = ((LIdeal‘𝑅) ∩ (LIdeal‘(oppr𝑅)))
71, 6eleqtrdi 2841 . 2 (𝜑𝐼 ∈ ((LIdeal‘𝑅) ∩ (LIdeal‘(oppr𝑅))))
87elin1d 4149 1 (𝜑𝐼 ∈ (LIdeal‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  cin 3896  cfv 6476  opprcoppr 20249  LIdealclidl 21138  2Idealc2idl 21181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-iota 6432  df-fun 6478  df-fv 6484  df-2idl 21182
This theorem is referenced by:  df2idl2  21189  2idlss  21194  qusmul2idl  21211  rng2idl1cntr  21237  qsnzr  33412  opprqusmulr  33448  opprqus1r  33449  opprqusdrng  33450  qsdrnglem2  33453  qsdrng  33454
  Copyright terms: Public domain W3C validator