![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2idllidld | Structured version Visualization version GIF version |
Description: A two-sided ideal is a left ideal. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
Ref | Expression |
---|---|
2idllidld.1 | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
Ref | Expression |
---|---|
2idllidld | ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2idllidld.1 | . . 3 ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | |
2 | eqid 2740 | . . . 4 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
3 | eqid 2740 | . . . 4 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
4 | eqid 2740 | . . . 4 ⊢ (LIdeal‘(oppr‘𝑅)) = (LIdeal‘(oppr‘𝑅)) | |
5 | eqid 2740 | . . . 4 ⊢ (2Ideal‘𝑅) = (2Ideal‘𝑅) | |
6 | 2, 3, 4, 5 | 2idlval 21284 | . . 3 ⊢ (2Ideal‘𝑅) = ((LIdeal‘𝑅) ∩ (LIdeal‘(oppr‘𝑅))) |
7 | 1, 6 | eleqtrdi 2854 | . 2 ⊢ (𝜑 → 𝐼 ∈ ((LIdeal‘𝑅) ∩ (LIdeal‘(oppr‘𝑅)))) |
8 | 7 | elin1d 4227 | 1 ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∩ cin 3975 ‘cfv 6573 opprcoppr 20359 LIdealclidl 21239 2Idealc2idl 21282 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-2idl 21283 |
This theorem is referenced by: df2idl2 21290 2idlss 21295 qusmul2idl 21312 rng2idl1cntr 21338 qsnzr 33448 opprqusmulr 33484 opprqus1r 33485 opprqusdrng 33486 qsdrnglem2 33489 qsdrng 33490 |
Copyright terms: Public domain | W3C validator |