| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2idllidld | Structured version Visualization version GIF version | ||
| Description: A two-sided ideal is a left ideal. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
| Ref | Expression |
|---|---|
| 2idllidld.1 | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
| Ref | Expression |
|---|---|
| 2idllidld | ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2idllidld.1 | . . 3 ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | |
| 2 | eqid 2731 | . . . 4 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
| 3 | eqid 2731 | . . . 4 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
| 4 | eqid 2731 | . . . 4 ⊢ (LIdeal‘(oppr‘𝑅)) = (LIdeal‘(oppr‘𝑅)) | |
| 5 | eqid 2731 | . . . 4 ⊢ (2Ideal‘𝑅) = (2Ideal‘𝑅) | |
| 6 | 2, 3, 4, 5 | 2idlval 21183 | . . 3 ⊢ (2Ideal‘𝑅) = ((LIdeal‘𝑅) ∩ (LIdeal‘(oppr‘𝑅))) |
| 7 | 1, 6 | eleqtrdi 2841 | . 2 ⊢ (𝜑 → 𝐼 ∈ ((LIdeal‘𝑅) ∩ (LIdeal‘(oppr‘𝑅)))) |
| 8 | 7 | elin1d 4149 | 1 ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ∩ cin 3896 ‘cfv 6476 opprcoppr 20249 LIdealclidl 21138 2Idealc2idl 21181 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-iota 6432 df-fun 6478 df-fv 6484 df-2idl 21182 |
| This theorem is referenced by: df2idl2 21189 2idlss 21194 qusmul2idl 21211 rng2idl1cntr 21237 qsnzr 33412 opprqusmulr 33448 opprqus1r 33449 opprqusdrng 33450 qsdrnglem2 33453 qsdrng 33454 |
| Copyright terms: Public domain | W3C validator |