| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > adddii | Structured version Visualization version GIF version | ||
| Description: Distributive law (left-distributivity). (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| axi.2 | ⊢ 𝐵 ∈ ℂ |
| axi.3 | ⊢ 𝐶 ∈ ℂ |
| Ref | Expression |
|---|---|
| adddii | ⊢ (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | axi.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
| 4 | adddi 11095 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) | |
| 5 | 1, 2, 3, 4 | mp3an 1463 | 1 ⊢ (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 (class class class)co 7346 ℂcc 11004 + caddc 11009 · cmul 11011 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-distr 11073 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: addrid 11293 3t3e9 12287 numltc 12614 numsucc 12628 numma 12632 decmul10add 12657 4t3lem 12685 9t11e99 12718 decbin2 12729 binom2i 14119 3dec 14173 faclbnd4lem1 14200 3dvds2dec 16244 mod2xnegi 16983 decsplit 16994 log2ublem1 26884 log2ublem2 26885 bposlem8 27230 ax5seglem7 28914 ip0i 30803 ip1ilem 30804 ipasslem10 30817 normlem0 31087 polid2i 31135 lnopunilem1 31988 dfdec100 32811 dpmul10 32873 dpmul 32891 dpmul4 32892 cos9thpiminplylem5 33797 sn-1ne2 42304 sqmid3api 42322 ipiiie0 42477 sn-0tie0 42490 fourierswlem 46274 3exp4mod41 47653 2t6m3t4e0 48385 |
| Copyright terms: Public domain | W3C validator |