MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  adddii Structured version   Visualization version   GIF version

Theorem adddii 11186
Description: Distributive law (left-distributivity). (Contributed by NM, 23-Nov-1994.)
Hypotheses
Ref Expression
axi.1 𝐴 ∈ ℂ
axi.2 𝐵 ∈ ℂ
axi.3 𝐶 ∈ ℂ
Assertion
Ref Expression
adddii (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))

Proof of Theorem adddii
StepHypRef Expression
1 axi.1 . 2 𝐴 ∈ ℂ
2 axi.2 . 2 𝐵 ∈ ℂ
3 axi.3 . 2 𝐶 ∈ ℂ
4 adddi 11157 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
51, 2, 3, 4mp3an 1463 1 (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  (class class class)co 7387  cc 11066   + caddc 11071   · cmul 11073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-distr 11135
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  addrid  11354  3t3e9  12348  numltc  12675  numsucc  12689  numma  12693  decmul10add  12718  4t3lem  12746  9t11e99  12779  decbin2  12790  binom2i  14177  3dec  14231  faclbnd4lem1  14258  3dvds2dec  16303  mod2xnegi  17042  decsplit  17053  log2ublem1  26856  log2ublem2  26857  bposlem8  27202  ax5seglem7  28862  ip0i  30754  ip1ilem  30755  ipasslem10  30768  normlem0  31038  polid2i  31086  lnopunilem1  31939  dfdec100  32755  dpmul10  32815  dpmul  32833  dpmul4  32834  cos9thpiminplylem5  33776  sn-1ne2  42253  sqmid3api  42271  ipiiie0  42426  sn-0tie0  42439  fourierswlem  46228  3exp4mod41  47617  2t6m3t4e0  48336
  Copyright terms: Public domain W3C validator