| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > adddii | Structured version Visualization version GIF version | ||
| Description: Distributive law (left-distributivity). (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| axi.2 | ⊢ 𝐵 ∈ ℂ |
| axi.3 | ⊢ 𝐶 ∈ ℂ |
| Ref | Expression |
|---|---|
| adddii | ⊢ (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | axi.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
| 4 | adddi 11157 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) | |
| 5 | 1, 2, 3, 4 | mp3an 1463 | 1 ⊢ (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 + caddc 11071 · cmul 11073 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-distr 11135 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: addrid 11354 3t3e9 12348 numltc 12675 numsucc 12689 numma 12693 decmul10add 12718 4t3lem 12746 9t11e99 12779 decbin2 12790 binom2i 14177 3dec 14231 faclbnd4lem1 14258 3dvds2dec 16303 mod2xnegi 17042 decsplit 17053 log2ublem1 26856 log2ublem2 26857 bposlem8 27202 ax5seglem7 28862 ip0i 30754 ip1ilem 30755 ipasslem10 30768 normlem0 31038 polid2i 31086 lnopunilem1 31939 dfdec100 32755 dpmul10 32815 dpmul 32833 dpmul4 32834 cos9thpiminplylem5 33776 sn-1ne2 42253 sqmid3api 42271 ipiiie0 42426 sn-0tie0 42439 fourierswlem 46228 3exp4mod41 47617 2t6m3t4e0 48336 |
| Copyright terms: Public domain | W3C validator |