Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > adddii | Structured version Visualization version GIF version |
Description: Distributive law (left-distributivity). (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
axi.2 | ⊢ 𝐵 ∈ ℂ |
axi.3 | ⊢ 𝐶 ∈ ℂ |
Ref | Expression |
---|---|
adddii | ⊢ (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | axi.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
4 | adddi 10961 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) | |
5 | 1, 2, 3, 4 | mp3an 1460 | 1 ⊢ (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2110 (class class class)co 7271 ℂcc 10870 + caddc 10875 · cmul 10877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-distr 10939 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: addid1 11155 3t3e9 12140 numltc 12462 numsucc 12476 numma 12480 decmul10add 12505 4t3lem 12533 9t11e99 12566 decbin2 12577 binom2i 13926 3dec 13978 faclbnd4lem1 14005 3dvds2dec 16040 mod2xnegi 16770 decsplit 16782 log2ublem1 26094 log2ublem2 26095 bposlem8 26437 ax5seglem7 27301 ip0i 29183 ip1ilem 29184 ipasslem10 29197 normlem0 29467 polid2i 29515 lnopunilem1 30368 dfdec100 31140 dpmul10 31165 dpmul 31183 dpmul4 31184 sn-1ne2 40292 sqmid3api 40308 ipiiie0 40416 sn-0tie0 40418 fourierswlem 43742 3exp4mod41 45037 2t6m3t4e0 45653 |
Copyright terms: Public domain | W3C validator |