![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > adddii | Structured version Visualization version GIF version |
Description: Distributive law (left-distributivity). (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
axi.2 | ⊢ 𝐵 ∈ ℂ |
axi.3 | ⊢ 𝐶 ∈ ℂ |
Ref | Expression |
---|---|
adddii | ⊢ (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | axi.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
4 | adddi 11241 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) | |
5 | 1, 2, 3, 4 | mp3an 1460 | 1 ⊢ (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 ∈ wcel 2105 (class class class)co 7430 ℂcc 11150 + caddc 11155 · cmul 11157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-distr 11219 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: addrid 11438 3t3e9 12430 numltc 12756 numsucc 12770 numma 12774 decmul10add 12799 4t3lem 12827 9t11e99 12860 decbin2 12871 binom2i 14247 3dec 14301 faclbnd4lem1 14328 3dvds2dec 16366 mod2xnegi 17104 decsplit 17116 log2ublem1 27003 log2ublem2 27004 bposlem8 27349 ax5seglem7 28964 ip0i 30853 ip1ilem 30854 ipasslem10 30867 normlem0 31137 polid2i 31185 lnopunilem1 32038 dfdec100 32836 dpmul10 32861 dpmul 32879 dpmul4 32880 sn-1ne2 42278 sqmid3api 42296 ipiiie0 42443 sn-0tie0 42445 fourierswlem 46185 3exp4mod41 47540 2t6m3t4e0 48192 |
Copyright terms: Public domain | W3C validator |