Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > adddii | Structured version Visualization version GIF version |
Description: Distributive law (left-distributivity). (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
axi.2 | ⊢ 𝐵 ∈ ℂ |
axi.3 | ⊢ 𝐶 ∈ ℂ |
Ref | Expression |
---|---|
adddii | ⊢ (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | axi.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
4 | adddi 10960 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) | |
5 | 1, 2, 3, 4 | mp3an 1460 | 1 ⊢ (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 (class class class)co 7275 ℂcc 10869 + caddc 10874 · cmul 10876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-distr 10938 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: addid1 11155 3t3e9 12140 numltc 12463 numsucc 12477 numma 12481 decmul10add 12506 4t3lem 12534 9t11e99 12567 decbin2 12578 binom2i 13928 3dec 13980 faclbnd4lem1 14007 3dvds2dec 16042 mod2xnegi 16772 decsplit 16784 log2ublem1 26096 log2ublem2 26097 bposlem8 26439 ax5seglem7 27303 ip0i 29187 ip1ilem 29188 ipasslem10 29201 normlem0 29471 polid2i 29519 lnopunilem1 30372 dfdec100 31144 dpmul10 31169 dpmul 31187 dpmul4 31188 sn-1ne2 40295 sqmid3api 40311 ipiiie0 40419 sn-0tie0 40421 fourierswlem 43771 3exp4mod41 45068 2t6m3t4e0 45684 |
Copyright terms: Public domain | W3C validator |