| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > adddii | Structured version Visualization version GIF version | ||
| Description: Distributive law (left-distributivity). (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| axi.2 | ⊢ 𝐵 ∈ ℂ |
| axi.3 | ⊢ 𝐶 ∈ ℂ |
| Ref | Expression |
|---|---|
| adddii | ⊢ (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | axi.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
| 4 | adddi 11164 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) | |
| 5 | 1, 2, 3, 4 | mp3an 1463 | 1 ⊢ (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7390 ℂcc 11073 + caddc 11078 · cmul 11080 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-distr 11142 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: addrid 11361 3t3e9 12355 numltc 12682 numsucc 12696 numma 12700 decmul10add 12725 4t3lem 12753 9t11e99 12786 decbin2 12797 binom2i 14184 3dec 14238 faclbnd4lem1 14265 3dvds2dec 16310 mod2xnegi 17049 decsplit 17060 log2ublem1 26863 log2ublem2 26864 bposlem8 27209 ax5seglem7 28869 ip0i 30761 ip1ilem 30762 ipasslem10 30775 normlem0 31045 polid2i 31093 lnopunilem1 31946 dfdec100 32762 dpmul10 32822 dpmul 32840 dpmul4 32841 cos9thpiminplylem5 33783 sn-1ne2 42260 sqmid3api 42278 ipiiie0 42433 sn-0tie0 42446 fourierswlem 46235 3exp4mod41 47621 2t6m3t4e0 48340 |
| Copyright terms: Public domain | W3C validator |