![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > adddii | Structured version Visualization version GIF version |
Description: Distributive law (left-distributivity). (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
axi.2 | ⊢ 𝐵 ∈ ℂ |
axi.3 | ⊢ 𝐶 ∈ ℂ |
Ref | Expression |
---|---|
adddii | ⊢ (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | axi.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
4 | adddi 11273 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) | |
5 | 1, 2, 3, 4 | mp3an 1461 | 1 ⊢ (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 (class class class)co 7448 ℂcc 11182 + caddc 11187 · cmul 11189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-distr 11251 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: addrid 11470 3t3e9 12460 numltc 12784 numsucc 12798 numma 12802 decmul10add 12827 4t3lem 12855 9t11e99 12888 decbin2 12899 binom2i 14261 3dec 14315 faclbnd4lem1 14342 3dvds2dec 16381 mod2xnegi 17118 decsplit 17130 log2ublem1 27007 log2ublem2 27008 bposlem8 27353 ax5seglem7 28968 ip0i 30857 ip1ilem 30858 ipasslem10 30871 normlem0 31141 polid2i 31189 lnopunilem1 32042 dfdec100 32834 dpmul10 32859 dpmul 32877 dpmul4 32878 sn-1ne2 42254 sqmid3api 42272 ipiiie0 42413 sn-0tie0 42415 fourierswlem 46151 3exp4mod41 47490 2t6m3t4e0 48073 |
Copyright terms: Public domain | W3C validator |