| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > adddii | Structured version Visualization version GIF version | ||
| Description: Distributive law (left-distributivity). (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| axi.2 | ⊢ 𝐵 ∈ ℂ |
| axi.3 | ⊢ 𝐶 ∈ ℂ |
| Ref | Expression |
|---|---|
| adddii | ⊢ (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | axi.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
| 4 | adddi 11117 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) | |
| 5 | 1, 2, 3, 4 | mp3an 1463 | 1 ⊢ (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7353 ℂcc 11026 + caddc 11031 · cmul 11033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-distr 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: addrid 11314 3t3e9 12308 numltc 12635 numsucc 12649 numma 12653 decmul10add 12678 4t3lem 12706 9t11e99 12739 decbin2 12750 binom2i 14137 3dec 14191 faclbnd4lem1 14218 3dvds2dec 16262 mod2xnegi 17001 decsplit 17012 log2ublem1 26872 log2ublem2 26873 bposlem8 27218 ax5seglem7 28898 ip0i 30787 ip1ilem 30788 ipasslem10 30801 normlem0 31071 polid2i 31119 lnopunilem1 31972 dfdec100 32788 dpmul10 32848 dpmul 32866 dpmul4 32867 cos9thpiminplylem5 33752 sn-1ne2 42238 sqmid3api 42256 ipiiie0 42411 sn-0tie0 42424 fourierswlem 46212 3exp4mod41 47601 2t6m3t4e0 48333 |
| Copyright terms: Public domain | W3C validator |