| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > adddii | Structured version Visualization version GIF version | ||
| Description: Distributive law (left-distributivity). (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| axi.2 | ⊢ 𝐵 ∈ ℂ |
| axi.3 | ⊢ 𝐶 ∈ ℂ |
| Ref | Expression |
|---|---|
| adddii | ⊢ (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | axi.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
| 4 | adddi 11102 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) | |
| 5 | 1, 2, 3, 4 | mp3an 1463 | 1 ⊢ (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 (class class class)co 7352 ℂcc 11011 + caddc 11016 · cmul 11018 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-distr 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: addrid 11300 3t3e9 12294 numltc 12620 numsucc 12634 numma 12638 decmul10add 12663 4t3lem 12691 9t11e99 12724 decbin2 12735 binom2i 14121 3dec 14175 faclbnd4lem1 14202 3dvds2dec 16246 mod2xnegi 16985 decsplit 16996 log2ublem1 26884 log2ublem2 26885 bposlem8 27230 ax5seglem7 28915 ip0i 30807 ip1ilem 30808 ipasslem10 30821 normlem0 31091 polid2i 31139 lnopunilem1 31992 dfdec100 32818 dpmul10 32882 dpmul 32900 dpmul4 32901 cos9thpiminplylem5 33820 sn-1ne2 42384 sqmid3api 42402 ipiiie0 42557 sn-0tie0 42570 fourierswlem 46353 3exp4mod41 47741 2t6m3t4e0 48473 |
| Copyright terms: Public domain | W3C validator |