| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > adddii | Structured version Visualization version GIF version | ||
| Description: Distributive law (left-distributivity). (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| axi.2 | ⊢ 𝐵 ∈ ℂ |
| axi.3 | ⊢ 𝐶 ∈ ℂ |
| Ref | Expression |
|---|---|
| adddii | ⊢ (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | axi.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
| 4 | adddi 11218 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) | |
| 5 | 1, 2, 3, 4 | mp3an 1463 | 1 ⊢ (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 (class class class)co 7405 ℂcc 11127 + caddc 11132 · cmul 11134 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-distr 11196 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: addrid 11415 3t3e9 12407 numltc 12734 numsucc 12748 numma 12752 decmul10add 12777 4t3lem 12805 9t11e99 12838 decbin2 12849 binom2i 14230 3dec 14284 faclbnd4lem1 14311 3dvds2dec 16352 mod2xnegi 17091 decsplit 17102 log2ublem1 26908 log2ublem2 26909 bposlem8 27254 ax5seglem7 28914 ip0i 30806 ip1ilem 30807 ipasslem10 30820 normlem0 31090 polid2i 31138 lnopunilem1 31991 dfdec100 32809 dpmul10 32869 dpmul 32887 dpmul4 32888 cos9thpiminplylem5 33820 sn-1ne2 42315 sqmid3api 42333 ipiiie0 42480 sn-0tie0 42482 fourierswlem 46259 3exp4mod41 47630 2t6m3t4e0 48323 |
| Copyright terms: Public domain | W3C validator |