Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > adddiri | Structured version Visualization version GIF version |
Description: Distributive law (right-distributivity). (Contributed by NM, 16-Feb-1995.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
axi.2 | ⊢ 𝐵 ∈ ℂ |
axi.3 | ⊢ 𝐶 ∈ ℂ |
Ref | Expression |
---|---|
adddiri | ⊢ ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | axi.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
4 | adddir 11067 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶))) | |
5 | 1, 2, 3, 4 | mp3an 1460 | 1 ⊢ ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 (class class class)co 7337 ℂcc 10970 + caddc 10975 · cmul 10977 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-addcl 11032 ax-mulcom 11036 ax-distr 11039 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-iota 6431 df-fv 6487 df-ov 7340 |
This theorem is referenced by: numma 12582 binom2i 14029 3dvdsdec 16140 3dvds2dec 16141 dec5nprm 16864 dec2nprm 16865 mod2xnegi 16869 karatsuba 16882 sincosq3sgn 25763 sincosq4sgn 25764 ang180lem2 26066 1cubrlem 26097 bposlem8 26545 2lgsoddprmlem3c 26666 2lgsoddprmlem3d 26667 normlem3 29762 dpmul100 31458 dpmul1000 31460 dpadd3 31473 dpmul4 31475 problem2 33923 areaquad 41318 tgoldbachlt 45627 |
Copyright terms: Public domain | W3C validator |