MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  adddiri Structured version   Visualization version   GIF version

Theorem adddiri 11125
Description: Distributive law (right-distributivity). (Contributed by NM, 16-Feb-1995.)
Hypotheses
Ref Expression
axi.1 𝐴 ∈ ℂ
axi.2 𝐵 ∈ ℂ
axi.3 𝐶 ∈ ℂ
Assertion
Ref Expression
adddiri ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶))

Proof of Theorem adddiri
StepHypRef Expression
1 axi.1 . 2 𝐴 ∈ ℂ
2 axi.2 . 2 𝐵 ∈ ℂ
3 axi.3 . 2 𝐶 ∈ ℂ
4 adddir 11103 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶)))
51, 2, 3, 4mp3an 1463 1 ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  (class class class)co 7346  cc 11004   + caddc 11009   · cmul 11011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-addcl 11066  ax-mulcom 11070  ax-distr 11073
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-iota 6437  df-fv 6489  df-ov 7349
This theorem is referenced by:  numma  12632  binom2i  14119  3dvdsdec  16243  3dvds2dec  16244  dec5nprm  16978  dec2nprm  16979  mod2xnegi  16983  karatsuba  16995  sincosq3sgn  26437  sincosq4sgn  26438  ang180lem2  26748  1cubrlem  26779  bposlem8  27230  2lgsoddprmlem3c  27351  2lgsoddprmlem3d  27352  normlem3  31090  dpmul100  32875  dpmul1000  32877  dpadd3  32890  dpmul4  32892  cos9thpiminplylem5  33797  problem2  35708  areaquad  43255  tgoldbachlt  47853
  Copyright terms: Public domain W3C validator