MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  adddiri Structured version   Visualization version   GIF version

Theorem adddiri 11147
Description: Distributive law (right-distributivity). (Contributed by NM, 16-Feb-1995.)
Hypotheses
Ref Expression
axi.1 𝐴 ∈ ℂ
axi.2 𝐵 ∈ ℂ
axi.3 𝐶 ∈ ℂ
Assertion
Ref Expression
adddiri ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶))

Proof of Theorem adddiri
StepHypRef Expression
1 axi.1 . 2 𝐴 ∈ ℂ
2 axi.2 . 2 𝐵 ∈ ℂ
3 axi.3 . 2 𝐶 ∈ ℂ
4 adddir 11125 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶)))
51, 2, 3, 4mp3an 1463 1 ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  (class class class)co 7353  cc 11026   + caddc 11031   · cmul 11033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-addcl 11088  ax-mulcom 11092  ax-distr 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-iota 6442  df-fv 6494  df-ov 7356
This theorem is referenced by:  numma  12653  binom2i  14137  3dvdsdec  16261  3dvds2dec  16262  dec5nprm  16996  dec2nprm  16997  mod2xnegi  17001  karatsuba  17013  sincosq3sgn  26425  sincosq4sgn  26426  ang180lem2  26736  1cubrlem  26767  bposlem8  27218  2lgsoddprmlem3c  27339  2lgsoddprmlem3d  27340  normlem3  31074  dpmul100  32850  dpmul1000  32852  dpadd3  32865  dpmul4  32867  cos9thpiminplylem5  33752  problem2  35638  areaquad  43189  tgoldbachlt  47801
  Copyright terms: Public domain W3C validator