MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  adddiri Structured version   Visualization version   GIF version

Theorem adddiri 11231
Description: Distributive law (right-distributivity). (Contributed by NM, 16-Feb-1995.)
Hypotheses
Ref Expression
axi.1 ๐ด โˆˆ โ„‚
axi.2 ๐ต โˆˆ โ„‚
axi.3 ๐ถ โˆˆ โ„‚
Assertion
Ref Expression
adddiri ((๐ด + ๐ต) ยท ๐ถ) = ((๐ด ยท ๐ถ) + (๐ต ยท ๐ถ))

Proof of Theorem adddiri
StepHypRef Expression
1 axi.1 . 2 ๐ด โˆˆ โ„‚
2 axi.2 . 2 ๐ต โˆˆ โ„‚
3 axi.3 . 2 ๐ถ โˆˆ โ„‚
4 adddir 11209 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ ((๐ด + ๐ต) ยท ๐ถ) = ((๐ด ยท ๐ถ) + (๐ต ยท ๐ถ)))
51, 2, 3, 4mp3an 1459 1 ((๐ด + ๐ต) ยท ๐ถ) = ((๐ด ยท ๐ถ) + (๐ต ยท ๐ถ))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539   โˆˆ wcel 2104  (class class class)co 7411  โ„‚cc 11110   + caddc 11115   ยท cmul 11117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701  ax-addcl 11172  ax-mulcom 11176  ax-distr 11179
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-iota 6494  df-fv 6550  df-ov 7414
This theorem is referenced by:  numma  12725  binom2i  14180  3dvdsdec  16279  3dvds2dec  16280  dec5nprm  17003  dec2nprm  17004  mod2xnegi  17008  karatsuba  17021  sincosq3sgn  26246  sincosq4sgn  26247  ang180lem2  26551  1cubrlem  26582  bposlem8  27030  2lgsoddprmlem3c  27151  2lgsoddprmlem3d  27152  normlem3  30632  dpmul100  32330  dpmul1000  32332  dpadd3  32345  dpmul4  32347  problem2  34949  areaquad  42267  tgoldbachlt  46782
  Copyright terms: Public domain W3C validator