| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2t6m3t4e0 | Structured version Visualization version GIF version | ||
| Description: 2 times 6 minus 3 times 4 equals 0. (Contributed by AV, 24-May-2019.) |
| Ref | Expression |
|---|---|
| 2t6m3t4e0 | ⊢ ((2 · 6) − (3 · 4)) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6cn 12323 | . . . 4 ⊢ 6 ∈ ℂ | |
| 2 | 1 | 2timesi 12370 | . . 3 ⊢ (2 · 6) = (6 + 6) |
| 3 | 2p2e4 12367 | . . . . . 6 ⊢ (2 + 2) = 4 | |
| 4 | 3 | eqcomi 2743 | . . . . 5 ⊢ 4 = (2 + 2) |
| 5 | 4 | oveq2i 7410 | . . . 4 ⊢ (3 · 4) = (3 · (2 + 2)) |
| 6 | 3cn 12313 | . . . . 5 ⊢ 3 ∈ ℂ | |
| 7 | 2cn 12307 | . . . . 5 ⊢ 2 ∈ ℂ | |
| 8 | 6, 7, 7 | adddii 11239 | . . . 4 ⊢ (3 · (2 + 2)) = ((3 · 2) + (3 · 2)) |
| 9 | 3t2e6 12398 | . . . . 5 ⊢ (3 · 2) = 6 | |
| 10 | 9, 9 | oveq12i 7411 | . . . 4 ⊢ ((3 · 2) + (3 · 2)) = (6 + 6) |
| 11 | 5, 8, 10 | 3eqtri 2761 | . . 3 ⊢ (3 · 4) = (6 + 6) |
| 12 | 2, 11 | oveq12i 7411 | . 2 ⊢ ((2 · 6) − (3 · 4)) = ((6 + 6) − (6 + 6)) |
| 13 | 1, 1 | addcli 11233 | . . 3 ⊢ (6 + 6) ∈ ℂ |
| 14 | 13 | subidi 11546 | . 2 ⊢ ((6 + 6) − (6 + 6)) = 0 |
| 15 | 12, 14 | eqtri 2757 | 1 ⊢ ((2 · 6) − (3 · 4)) = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 (class class class)co 7399 0cc0 11121 + caddc 11124 · cmul 11126 − cmin 11458 2c2 12287 3c3 12288 4c4 12289 6c6 12291 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-opab 5179 df-mpt 5199 df-id 5545 df-po 5558 df-so 5559 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-er 8713 df-en 8954 df-dom 8955 df-sdom 8956 df-pnf 11263 df-mnf 11264 df-ltxr 11266 df-sub 11460 df-2 12295 df-3 12296 df-4 12297 df-5 12298 df-6 12299 |
| This theorem is referenced by: zlmodzxzequa 48358 zlmodzxzequap 48361 |
| Copyright terms: Public domain | W3C validator |