![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2t6m3t4e0 | Structured version Visualization version GIF version |
Description: 2 times 6 minus 3 times 4 equals 0. (Contributed by AV, 24-May-2019.) |
Ref | Expression |
---|---|
2t6m3t4e0 | ⊢ ((2 · 6) − (3 · 4)) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6cn 12336 | . . . 4 ⊢ 6 ∈ ℂ | |
2 | 1 | 2timesi 12383 | . . 3 ⊢ (2 · 6) = (6 + 6) |
3 | 2p2e4 12380 | . . . . . 6 ⊢ (2 + 2) = 4 | |
4 | 3 | eqcomi 2734 | . . . . 5 ⊢ 4 = (2 + 2) |
5 | 4 | oveq2i 7430 | . . . 4 ⊢ (3 · 4) = (3 · (2 + 2)) |
6 | 3cn 12326 | . . . . 5 ⊢ 3 ∈ ℂ | |
7 | 2cn 12320 | . . . . 5 ⊢ 2 ∈ ℂ | |
8 | 6, 7, 7 | adddii 11258 | . . . 4 ⊢ (3 · (2 + 2)) = ((3 · 2) + (3 · 2)) |
9 | 3t2e6 12411 | . . . . 5 ⊢ (3 · 2) = 6 | |
10 | 9, 9 | oveq12i 7431 | . . . 4 ⊢ ((3 · 2) + (3 · 2)) = (6 + 6) |
11 | 5, 8, 10 | 3eqtri 2757 | . . 3 ⊢ (3 · 4) = (6 + 6) |
12 | 2, 11 | oveq12i 7431 | . 2 ⊢ ((2 · 6) − (3 · 4)) = ((6 + 6) − (6 + 6)) |
13 | 1, 1 | addcli 11252 | . . 3 ⊢ (6 + 6) ∈ ℂ |
14 | 13 | subidi 11563 | . 2 ⊢ ((6 + 6) − (6 + 6)) = 0 |
15 | 12, 14 | eqtri 2753 | 1 ⊢ ((2 · 6) − (3 · 4)) = 0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 (class class class)co 7419 0cc0 11140 + caddc 11143 · cmul 11145 − cmin 11476 2c2 12300 3c3 12301 4c4 12302 6c6 12304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11282 df-mnf 11283 df-ltxr 11285 df-sub 11478 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 |
This theorem is referenced by: zlmodzxzequa 47750 zlmodzxzequap 47753 |
Copyright terms: Public domain | W3C validator |