Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2t6m3t4e0 | Structured version Visualization version GIF version |
Description: 2 times 6 minus 3 times 4 equals 0. (Contributed by AV, 24-May-2019.) |
Ref | Expression |
---|---|
2t6m3t4e0 | ⊢ ((2 · 6) − (3 · 4)) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6cn 12064 | . . . 4 ⊢ 6 ∈ ℂ | |
2 | 1 | 2timesi 12111 | . . 3 ⊢ (2 · 6) = (6 + 6) |
3 | 2p2e4 12108 | . . . . . 6 ⊢ (2 + 2) = 4 | |
4 | 3 | eqcomi 2749 | . . . . 5 ⊢ 4 = (2 + 2) |
5 | 4 | oveq2i 7282 | . . . 4 ⊢ (3 · 4) = (3 · (2 + 2)) |
6 | 3cn 12054 | . . . . 5 ⊢ 3 ∈ ℂ | |
7 | 2cn 12048 | . . . . 5 ⊢ 2 ∈ ℂ | |
8 | 6, 7, 7 | adddii 10988 | . . . 4 ⊢ (3 · (2 + 2)) = ((3 · 2) + (3 · 2)) |
9 | 3t2e6 12139 | . . . . 5 ⊢ (3 · 2) = 6 | |
10 | 9, 9 | oveq12i 7283 | . . . 4 ⊢ ((3 · 2) + (3 · 2)) = (6 + 6) |
11 | 5, 8, 10 | 3eqtri 2772 | . . 3 ⊢ (3 · 4) = (6 + 6) |
12 | 2, 11 | oveq12i 7283 | . 2 ⊢ ((2 · 6) − (3 · 4)) = ((6 + 6) − (6 + 6)) |
13 | 1, 1 | addcli 10982 | . . 3 ⊢ (6 + 6) ∈ ℂ |
14 | 13 | subidi 11292 | . 2 ⊢ ((6 + 6) − (6 + 6)) = 0 |
15 | 12, 14 | eqtri 2768 | 1 ⊢ ((2 · 6) − (3 · 4)) = 0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 (class class class)co 7271 0cc0 10872 + caddc 10875 · cmul 10877 − cmin 11205 2c2 12028 3c3 12029 4c4 12030 6c6 12032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-po 5504 df-so 5505 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-pnf 11012 df-mnf 11013 df-ltxr 11015 df-sub 11207 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 |
This theorem is referenced by: zlmodzxzequa 45806 zlmodzxzequap 45809 |
Copyright terms: Public domain | W3C validator |