![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2t6m3t4e0 | Structured version Visualization version GIF version |
Description: 2 times 6 minus 3 times 4 equals 0. (Contributed by AV, 24-May-2019.) |
Ref | Expression |
---|---|
2t6m3t4e0 | ⊢ ((2 · 6) − (3 · 4)) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6cn 12339 | . . . 4 ⊢ 6 ∈ ℂ | |
2 | 1 | 2timesi 12386 | . . 3 ⊢ (2 · 6) = (6 + 6) |
3 | 2p2e4 12383 | . . . . . 6 ⊢ (2 + 2) = 4 | |
4 | 3 | eqcomi 2736 | . . . . 5 ⊢ 4 = (2 + 2) |
5 | 4 | oveq2i 7435 | . . . 4 ⊢ (3 · 4) = (3 · (2 + 2)) |
6 | 3cn 12329 | . . . . 5 ⊢ 3 ∈ ℂ | |
7 | 2cn 12323 | . . . . 5 ⊢ 2 ∈ ℂ | |
8 | 6, 7, 7 | adddii 11262 | . . . 4 ⊢ (3 · (2 + 2)) = ((3 · 2) + (3 · 2)) |
9 | 3t2e6 12414 | . . . . 5 ⊢ (3 · 2) = 6 | |
10 | 9, 9 | oveq12i 7436 | . . . 4 ⊢ ((3 · 2) + (3 · 2)) = (6 + 6) |
11 | 5, 8, 10 | 3eqtri 2759 | . . 3 ⊢ (3 · 4) = (6 + 6) |
12 | 2, 11 | oveq12i 7436 | . 2 ⊢ ((2 · 6) − (3 · 4)) = ((6 + 6) − (6 + 6)) |
13 | 1, 1 | addcli 11256 | . . 3 ⊢ (6 + 6) ∈ ℂ |
14 | 13 | subidi 11567 | . 2 ⊢ ((6 + 6) − (6 + 6)) = 0 |
15 | 12, 14 | eqtri 2755 | 1 ⊢ ((2 · 6) − (3 · 4)) = 0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 (class class class)co 7424 0cc0 11144 + caddc 11147 · cmul 11149 − cmin 11480 2c2 12303 3c3 12304 4c4 12305 6c6 12307 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-br 5151 df-opab 5213 df-mpt 5234 df-id 5578 df-po 5592 df-so 5593 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-er 8729 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11286 df-mnf 11287 df-ltxr 11289 df-sub 11482 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 |
This theorem is referenced by: zlmodzxzequa 47615 zlmodzxzequap 47618 |
Copyright terms: Public domain | W3C validator |