| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2t6m3t4e0 | Structured version Visualization version GIF version | ||
| Description: 2 times 6 minus 3 times 4 equals 0. (Contributed by AV, 24-May-2019.) |
| Ref | Expression |
|---|---|
| 2t6m3t4e0 | ⊢ ((2 · 6) − (3 · 4)) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6cn 12216 | . . . 4 ⊢ 6 ∈ ℂ | |
| 2 | 1 | 2timesi 12258 | . . 3 ⊢ (2 · 6) = (6 + 6) |
| 3 | 2p2e4 12255 | . . . . . 6 ⊢ (2 + 2) = 4 | |
| 4 | 3 | eqcomi 2740 | . . . . 5 ⊢ 4 = (2 + 2) |
| 5 | 4 | oveq2i 7357 | . . . 4 ⊢ (3 · 4) = (3 · (2 + 2)) |
| 6 | 3cn 12206 | . . . . 5 ⊢ 3 ∈ ℂ | |
| 7 | 2cn 12200 | . . . . 5 ⊢ 2 ∈ ℂ | |
| 8 | 6, 7, 7 | adddii 11124 | . . . 4 ⊢ (3 · (2 + 2)) = ((3 · 2) + (3 · 2)) |
| 9 | 3t2e6 12286 | . . . . 5 ⊢ (3 · 2) = 6 | |
| 10 | 9, 9 | oveq12i 7358 | . . . 4 ⊢ ((3 · 2) + (3 · 2)) = (6 + 6) |
| 11 | 5, 8, 10 | 3eqtri 2758 | . . 3 ⊢ (3 · 4) = (6 + 6) |
| 12 | 2, 11 | oveq12i 7358 | . 2 ⊢ ((2 · 6) − (3 · 4)) = ((6 + 6) − (6 + 6)) |
| 13 | 1, 1 | addcli 11118 | . . 3 ⊢ (6 + 6) ∈ ℂ |
| 14 | 13 | subidi 11432 | . 2 ⊢ ((6 + 6) − (6 + 6)) = 0 |
| 15 | 12, 14 | eqtri 2754 | 1 ⊢ ((2 · 6) − (3 · 4)) = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 (class class class)co 7346 0cc0 11006 + caddc 11009 · cmul 11011 − cmin 11344 2c2 12180 3c3 12181 4c4 12182 6c6 12184 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-ltxr 11151 df-sub 11346 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 |
| This theorem is referenced by: zlmodzxzequa 48596 zlmodzxzequap 48599 |
| Copyright terms: Public domain | W3C validator |