Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2t6m3t4e0 Structured version   Visualization version   GIF version

Theorem 2t6m3t4e0 44689
Description: 2 times 6 minus 3 times 4 equals 0. (Contributed by AV, 24-May-2019.)
Assertion
Ref Expression
2t6m3t4e0 ((2 · 6) − (3 · 4)) = 0

Proof of Theorem 2t6m3t4e0
StepHypRef Expression
1 6cn 11716 . . . 4 6 ∈ ℂ
212timesi 11763 . . 3 (2 · 6) = (6 + 6)
3 2p2e4 11760 . . . . . 6 (2 + 2) = 4
43eqcomi 2831 . . . . 5 4 = (2 + 2)
54oveq2i 7151 . . . 4 (3 · 4) = (3 · (2 + 2))
6 3cn 11706 . . . . 5 3 ∈ ℂ
7 2cn 11700 . . . . 5 2 ∈ ℂ
86, 7, 7adddii 10642 . . . 4 (3 · (2 + 2)) = ((3 · 2) + (3 · 2))
9 3t2e6 11791 . . . . 5 (3 · 2) = 6
109, 9oveq12i 7152 . . . 4 ((3 · 2) + (3 · 2)) = (6 + 6)
115, 8, 103eqtri 2849 . . 3 (3 · 4) = (6 + 6)
122, 11oveq12i 7152 . 2 ((2 · 6) − (3 · 4)) = ((6 + 6) − (6 + 6))
131, 1addcli 10636 . . 3 (6 + 6) ∈ ℂ
1413subidi 10946 . 2 ((6 + 6) − (6 + 6)) = 0
1512, 14eqtri 2845 1 ((2 · 6) − (3 · 4)) = 0
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  (class class class)co 7140  0cc0 10526   + caddc 10529   · cmul 10531  cmin 10859  2c2 11680  3c3 11681  4c4 11682  6c6 11684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-po 5451  df-so 5452  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10666  df-mnf 10667  df-ltxr 10669  df-sub 10861  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692
This theorem is referenced by:  zlmodzxzequa  44844  zlmodzxzequap  44847
  Copyright terms: Public domain W3C validator