![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2t6m3t4e0 | Structured version Visualization version GIF version |
Description: 2 times 6 minus 3 times 4 equals 0. (Contributed by AV, 24-May-2019.) |
Ref | Expression |
---|---|
2t6m3t4e0 | ⊢ ((2 · 6) − (3 · 4)) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6cn 12355 | . . . 4 ⊢ 6 ∈ ℂ | |
2 | 1 | 2timesi 12402 | . . 3 ⊢ (2 · 6) = (6 + 6) |
3 | 2p2e4 12399 | . . . . . 6 ⊢ (2 + 2) = 4 | |
4 | 3 | eqcomi 2744 | . . . . 5 ⊢ 4 = (2 + 2) |
5 | 4 | oveq2i 7442 | . . . 4 ⊢ (3 · 4) = (3 · (2 + 2)) |
6 | 3cn 12345 | . . . . 5 ⊢ 3 ∈ ℂ | |
7 | 2cn 12339 | . . . . 5 ⊢ 2 ∈ ℂ | |
8 | 6, 7, 7 | adddii 11271 | . . . 4 ⊢ (3 · (2 + 2)) = ((3 · 2) + (3 · 2)) |
9 | 3t2e6 12430 | . . . . 5 ⊢ (3 · 2) = 6 | |
10 | 9, 9 | oveq12i 7443 | . . . 4 ⊢ ((3 · 2) + (3 · 2)) = (6 + 6) |
11 | 5, 8, 10 | 3eqtri 2767 | . . 3 ⊢ (3 · 4) = (6 + 6) |
12 | 2, 11 | oveq12i 7443 | . 2 ⊢ ((2 · 6) − (3 · 4)) = ((6 + 6) − (6 + 6)) |
13 | 1, 1 | addcli 11265 | . . 3 ⊢ (6 + 6) ∈ ℂ |
14 | 13 | subidi 11578 | . 2 ⊢ ((6 + 6) − (6 + 6)) = 0 |
15 | 12, 14 | eqtri 2763 | 1 ⊢ ((2 · 6) − (3 · 4)) = 0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 (class class class)co 7431 0cc0 11153 + caddc 11156 · cmul 11158 − cmin 11490 2c2 12319 3c3 12320 4c4 12321 6c6 12323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-ltxr 11298 df-sub 11492 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 |
This theorem is referenced by: zlmodzxzequa 48342 zlmodzxzequap 48345 |
Copyright terms: Public domain | W3C validator |