| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2t6m3t4e0 | Structured version Visualization version GIF version | ||
| Description: 2 times 6 minus 3 times 4 equals 0. (Contributed by AV, 24-May-2019.) |
| Ref | Expression |
|---|---|
| 2t6m3t4e0 | ⊢ ((2 · 6) − (3 · 4)) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6cn 12219 | . . . 4 ⊢ 6 ∈ ℂ | |
| 2 | 1 | 2timesi 12261 | . . 3 ⊢ (2 · 6) = (6 + 6) |
| 3 | 2p2e4 12258 | . . . . . 6 ⊢ (2 + 2) = 4 | |
| 4 | 3 | eqcomi 2738 | . . . . 5 ⊢ 4 = (2 + 2) |
| 5 | 4 | oveq2i 7360 | . . . 4 ⊢ (3 · 4) = (3 · (2 + 2)) |
| 6 | 3cn 12209 | . . . . 5 ⊢ 3 ∈ ℂ | |
| 7 | 2cn 12203 | . . . . 5 ⊢ 2 ∈ ℂ | |
| 8 | 6, 7, 7 | adddii 11127 | . . . 4 ⊢ (3 · (2 + 2)) = ((3 · 2) + (3 · 2)) |
| 9 | 3t2e6 12289 | . . . . 5 ⊢ (3 · 2) = 6 | |
| 10 | 9, 9 | oveq12i 7361 | . . . 4 ⊢ ((3 · 2) + (3 · 2)) = (6 + 6) |
| 11 | 5, 8, 10 | 3eqtri 2756 | . . 3 ⊢ (3 · 4) = (6 + 6) |
| 12 | 2, 11 | oveq12i 7361 | . 2 ⊢ ((2 · 6) − (3 · 4)) = ((6 + 6) − (6 + 6)) |
| 13 | 1, 1 | addcli 11121 | . . 3 ⊢ (6 + 6) ∈ ℂ |
| 14 | 13 | subidi 11435 | . 2 ⊢ ((6 + 6) − (6 + 6)) = 0 |
| 15 | 12, 14 | eqtri 2752 | 1 ⊢ ((2 · 6) − (3 · 4)) = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7349 0cc0 11009 + caddc 11012 · cmul 11014 − cmin 11347 2c2 12183 3c3 12184 4c4 12185 6c6 12187 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-ltxr 11154 df-sub 11349 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 |
| This theorem is referenced by: zlmodzxzequa 48491 zlmodzxzequap 48494 |
| Copyright terms: Public domain | W3C validator |