MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3dec Structured version   Visualization version   GIF version

Theorem 3dec 14226
Description: A "decimal constructor" which is used to build up "decimal integers" or "numeric terms" in base 10 with 3 "digits". (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.)
Hypotheses
Ref Expression
3dec.a 𝐴 ∈ ℕ0
3dec.b 𝐵 ∈ ℕ0
Assertion
Ref Expression
3dec 𝐴𝐵𝐶 = ((((10↑2) · 𝐴) + (10 · 𝐵)) + 𝐶)

Proof of Theorem 3dec
StepHypRef Expression
1 dfdec10 12680 . 2 𝐴𝐵𝐶 = ((10 · 𝐴𝐵) + 𝐶)
2 dfdec10 12680 . . . . . 6 𝐴𝐵 = ((10 · 𝐴) + 𝐵)
32oveq2i 7420 . . . . 5 (10 · 𝐴𝐵) = (10 · ((10 · 𝐴) + 𝐵))
4 10nn 12693 . . . . . . 7 10 ∈ ℕ
54nncni 12222 . . . . . 6 10 ∈ ℂ
6 3dec.a . . . . . . . 8 𝐴 ∈ ℕ0
76nn0cni 12484 . . . . . . 7 𝐴 ∈ ℂ
85, 7mulcli 11221 . . . . . 6 (10 · 𝐴) ∈ ℂ
9 3dec.b . . . . . . 7 𝐵 ∈ ℕ0
109nn0cni 12484 . . . . . 6 𝐵 ∈ ℂ
115, 8, 10adddii 11226 . . . . 5 (10 · ((10 · 𝐴) + 𝐵)) = ((10 · (10 · 𝐴)) + (10 · 𝐵))
123, 11eqtri 2761 . . . 4 (10 · 𝐴𝐵) = ((10 · (10 · 𝐴)) + (10 · 𝐵))
135, 5, 7mulassi 11225 . . . . . . 7 ((10 · 10) · 𝐴) = (10 · (10 · 𝐴))
1413eqcomi 2742 . . . . . 6 (10 · (10 · 𝐴)) = ((10 · 10) · 𝐴)
155sqvali 14144 . . . . . . . 8 (10↑2) = (10 · 10)
1615eqcomi 2742 . . . . . . 7 (10 · 10) = (10↑2)
1716oveq1i 7419 . . . . . 6 ((10 · 10) · 𝐴) = ((10↑2) · 𝐴)
1814, 17eqtri 2761 . . . . 5 (10 · (10 · 𝐴)) = ((10↑2) · 𝐴)
1918oveq1i 7419 . . . 4 ((10 · (10 · 𝐴)) + (10 · 𝐵)) = (((10↑2) · 𝐴) + (10 · 𝐵))
2012, 19eqtri 2761 . . 3 (10 · 𝐴𝐵) = (((10↑2) · 𝐴) + (10 · 𝐵))
2120oveq1i 7419 . 2 ((10 · 𝐴𝐵) + 𝐶) = ((((10↑2) · 𝐴) + (10 · 𝐵)) + 𝐶)
221, 21eqtri 2761 1 𝐴𝐵𝐶 = ((((10↑2) · 𝐴) + (10 · 𝐵)) + 𝐶)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wcel 2107  (class class class)co 7409  0cc0 11110  1c1 11111   + caddc 11113   · cmul 11115  2c2 12267  0cn0 12472  cdc 12677  cexp 14027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-3 12276  df-4 12277  df-5 12278  df-6 12279  df-7 12280  df-8 12281  df-9 12282  df-n0 12473  df-z 12559  df-dec 12678  df-uz 12823  df-seq 13967  df-exp 14028
This theorem is referenced by:  3dvds2dec  16276
  Copyright terms: Public domain W3C validator