MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3dec Structured version   Visualization version   GIF version

Theorem 3dec 14173
Description: A "decimal constructor" which is used to build up "decimal integers" or "numeric terms" in base 10 with 3 "digits". (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.)
Hypotheses
Ref Expression
3dec.a 𝐴 ∈ ℕ0
3dec.b 𝐵 ∈ ℕ0
Assertion
Ref Expression
3dec 𝐴𝐵𝐶 = ((((10↑2) · 𝐴) + (10 · 𝐵)) + 𝐶)

Proof of Theorem 3dec
StepHypRef Expression
1 dfdec10 12628 . 2 𝐴𝐵𝐶 = ((10 · 𝐴𝐵) + 𝐶)
2 dfdec10 12628 . . . . . 6 𝐴𝐵 = ((10 · 𝐴) + 𝐵)
32oveq2i 7373 . . . . 5 (10 · 𝐴𝐵) = (10 · ((10 · 𝐴) + 𝐵))
4 10nn 12641 . . . . . . 7 10 ∈ ℕ
54nncni 12170 . . . . . 6 10 ∈ ℂ
6 3dec.a . . . . . . . 8 𝐴 ∈ ℕ0
76nn0cni 12432 . . . . . . 7 𝐴 ∈ ℂ
85, 7mulcli 11169 . . . . . 6 (10 · 𝐴) ∈ ℂ
9 3dec.b . . . . . . 7 𝐵 ∈ ℕ0
109nn0cni 12432 . . . . . 6 𝐵 ∈ ℂ
115, 8, 10adddii 11174 . . . . 5 (10 · ((10 · 𝐴) + 𝐵)) = ((10 · (10 · 𝐴)) + (10 · 𝐵))
123, 11eqtri 2765 . . . 4 (10 · 𝐴𝐵) = ((10 · (10 · 𝐴)) + (10 · 𝐵))
135, 5, 7mulassi 11173 . . . . . . 7 ((10 · 10) · 𝐴) = (10 · (10 · 𝐴))
1413eqcomi 2746 . . . . . 6 (10 · (10 · 𝐴)) = ((10 · 10) · 𝐴)
155sqvali 14091 . . . . . . . 8 (10↑2) = (10 · 10)
1615eqcomi 2746 . . . . . . 7 (10 · 10) = (10↑2)
1716oveq1i 7372 . . . . . 6 ((10 · 10) · 𝐴) = ((10↑2) · 𝐴)
1814, 17eqtri 2765 . . . . 5 (10 · (10 · 𝐴)) = ((10↑2) · 𝐴)
1918oveq1i 7372 . . . 4 ((10 · (10 · 𝐴)) + (10 · 𝐵)) = (((10↑2) · 𝐴) + (10 · 𝐵))
2012, 19eqtri 2765 . . 3 (10 · 𝐴𝐵) = (((10↑2) · 𝐴) + (10 · 𝐵))
2120oveq1i 7372 . 2 ((10 · 𝐴𝐵) + 𝐶) = ((((10↑2) · 𝐴) + (10 · 𝐵)) + 𝐶)
221, 21eqtri 2765 1 𝐴𝐵𝐶 = ((((10↑2) · 𝐴) + (10 · 𝐵)) + 𝐶)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wcel 2107  (class class class)co 7362  0cc0 11058  1c1 11059   + caddc 11061   · cmul 11063  2c2 12215  0cn0 12420  cdc 12625  cexp 13974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-nn 12161  df-2 12223  df-3 12224  df-4 12225  df-5 12226  df-6 12227  df-7 12228  df-8 12229  df-9 12230  df-n0 12421  df-z 12507  df-dec 12626  df-uz 12771  df-seq 13914  df-exp 13975
This theorem is referenced by:  3dvds2dec  16222
  Copyright terms: Public domain W3C validator