MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3dec Structured version   Visualization version   GIF version

Theorem 3dec 14315
Description: A "decimal constructor" which is used to build up "decimal integers" or "numeric terms" in base 10 with 3 "digits". (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.)
Hypotheses
Ref Expression
3dec.a 𝐴 ∈ ℕ0
3dec.b 𝐵 ∈ ℕ0
Assertion
Ref Expression
3dec 𝐴𝐵𝐶 = ((((10↑2) · 𝐴) + (10 · 𝐵)) + 𝐶)

Proof of Theorem 3dec
StepHypRef Expression
1 dfdec10 12761 . 2 𝐴𝐵𝐶 = ((10 · 𝐴𝐵) + 𝐶)
2 dfdec10 12761 . . . . . 6 𝐴𝐵 = ((10 · 𝐴) + 𝐵)
32oveq2i 7459 . . . . 5 (10 · 𝐴𝐵) = (10 · ((10 · 𝐴) + 𝐵))
4 10nn 12774 . . . . . . 7 10 ∈ ℕ
54nncni 12303 . . . . . 6 10 ∈ ℂ
6 3dec.a . . . . . . . 8 𝐴 ∈ ℕ0
76nn0cni 12565 . . . . . . 7 𝐴 ∈ ℂ
85, 7mulcli 11297 . . . . . 6 (10 · 𝐴) ∈ ℂ
9 3dec.b . . . . . . 7 𝐵 ∈ ℕ0
109nn0cni 12565 . . . . . 6 𝐵 ∈ ℂ
115, 8, 10adddii 11302 . . . . 5 (10 · ((10 · 𝐴) + 𝐵)) = ((10 · (10 · 𝐴)) + (10 · 𝐵))
123, 11eqtri 2768 . . . 4 (10 · 𝐴𝐵) = ((10 · (10 · 𝐴)) + (10 · 𝐵))
135, 5, 7mulassi 11301 . . . . . . 7 ((10 · 10) · 𝐴) = (10 · (10 · 𝐴))
1413eqcomi 2749 . . . . . 6 (10 · (10 · 𝐴)) = ((10 · 10) · 𝐴)
155sqvali 14229 . . . . . . . 8 (10↑2) = (10 · 10)
1615eqcomi 2749 . . . . . . 7 (10 · 10) = (10↑2)
1716oveq1i 7458 . . . . . 6 ((10 · 10) · 𝐴) = ((10↑2) · 𝐴)
1814, 17eqtri 2768 . . . . 5 (10 · (10 · 𝐴)) = ((10↑2) · 𝐴)
1918oveq1i 7458 . . . 4 ((10 · (10 · 𝐴)) + (10 · 𝐵)) = (((10↑2) · 𝐴) + (10 · 𝐵))
2012, 19eqtri 2768 . . 3 (10 · 𝐴𝐵) = (((10↑2) · 𝐴) + (10 · 𝐵))
2120oveq1i 7458 . 2 ((10 · 𝐴𝐵) + 𝐶) = ((((10↑2) · 𝐴) + (10 · 𝐵)) + 𝐶)
221, 21eqtri 2768 1 𝐴𝐵𝐶 = ((((10↑2) · 𝐴) + (10 · 𝐵)) + 𝐶)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  (class class class)co 7448  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  2c2 12348  0cn0 12553  cdc 12758  cexp 14112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-seq 14053  df-exp 14113
This theorem is referenced by:  3dvds2dec  16381
  Copyright terms: Public domain W3C validator