![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3dec | Structured version Visualization version GIF version |
Description: A "decimal constructor" which is used to build up "decimal integers" or "numeric terms" in base 10 with 3 "digits". (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.) |
Ref | Expression |
---|---|
3dec.a | ⊢ 𝐴 ∈ ℕ0 |
3dec.b | ⊢ 𝐵 ∈ ℕ0 |
Ref | Expression |
---|---|
3dec | ⊢ ;;𝐴𝐵𝐶 = ((((;10↑2) · 𝐴) + (;10 · 𝐵)) + 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdec10 11831 | . 2 ⊢ ;;𝐴𝐵𝐶 = ((;10 · ;𝐴𝐵) + 𝐶) | |
2 | dfdec10 11831 | . . . . . 6 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
3 | 2 | oveq2i 6921 | . . . . 5 ⊢ (;10 · ;𝐴𝐵) = (;10 · ((;10 · 𝐴) + 𝐵)) |
4 | 1nn 11370 | . . . . . . . 8 ⊢ 1 ∈ ℕ | |
5 | 4 | decnncl2 11853 | . . . . . . 7 ⊢ ;10 ∈ ℕ |
6 | 5 | nncni 11368 | . . . . . 6 ⊢ ;10 ∈ ℂ |
7 | 3dec.a | . . . . . . . 8 ⊢ 𝐴 ∈ ℕ0 | |
8 | 7 | nn0cni 11638 | . . . . . . 7 ⊢ 𝐴 ∈ ℂ |
9 | 6, 8 | mulcli 10371 | . . . . . 6 ⊢ (;10 · 𝐴) ∈ ℂ |
10 | 3dec.b | . . . . . . 7 ⊢ 𝐵 ∈ ℕ0 | |
11 | 10 | nn0cni 11638 | . . . . . 6 ⊢ 𝐵 ∈ ℂ |
12 | 6, 9, 11 | adddii 10376 | . . . . 5 ⊢ (;10 · ((;10 · 𝐴) + 𝐵)) = ((;10 · (;10 · 𝐴)) + (;10 · 𝐵)) |
13 | 3, 12 | eqtri 2849 | . . . 4 ⊢ (;10 · ;𝐴𝐵) = ((;10 · (;10 · 𝐴)) + (;10 · 𝐵)) |
14 | 6, 6, 8 | mulassi 10375 | . . . . . . 7 ⊢ ((;10 · ;10) · 𝐴) = (;10 · (;10 · 𝐴)) |
15 | 14 | eqcomi 2834 | . . . . . 6 ⊢ (;10 · (;10 · 𝐴)) = ((;10 · ;10) · 𝐴) |
16 | 6 | sqvali 13244 | . . . . . . . 8 ⊢ (;10↑2) = (;10 · ;10) |
17 | 16 | eqcomi 2834 | . . . . . . 7 ⊢ (;10 · ;10) = (;10↑2) |
18 | 17 | oveq1i 6920 | . . . . . 6 ⊢ ((;10 · ;10) · 𝐴) = ((;10↑2) · 𝐴) |
19 | 15, 18 | eqtri 2849 | . . . . 5 ⊢ (;10 · (;10 · 𝐴)) = ((;10↑2) · 𝐴) |
20 | 19 | oveq1i 6920 | . . . 4 ⊢ ((;10 · (;10 · 𝐴)) + (;10 · 𝐵)) = (((;10↑2) · 𝐴) + (;10 · 𝐵)) |
21 | 13, 20 | eqtri 2849 | . . 3 ⊢ (;10 · ;𝐴𝐵) = (((;10↑2) · 𝐴) + (;10 · 𝐵)) |
22 | 21 | oveq1i 6920 | . 2 ⊢ ((;10 · ;𝐴𝐵) + 𝐶) = ((((;10↑2) · 𝐴) + (;10 · 𝐵)) + 𝐶) |
23 | 1, 22 | eqtri 2849 | 1 ⊢ ;;𝐴𝐵𝐶 = ((((;10↑2) · 𝐴) + (;10 · 𝐵)) + 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1656 ∈ wcel 2164 (class class class)co 6910 0cc0 10259 1c1 10260 + caddc 10262 · cmul 10264 2c2 11413 ℕ0cn0 11625 ;cdc 11828 ↑cexp 13161 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-2nd 7434 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-er 8014 df-en 8229 df-dom 8230 df-sdom 8231 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-nn 11358 df-2 11421 df-3 11422 df-4 11423 df-5 11424 df-6 11425 df-7 11426 df-8 11427 df-9 11428 df-n0 11626 df-z 11712 df-dec 11829 df-uz 11976 df-seq 13103 df-exp 13162 |
This theorem is referenced by: 3dvds2dec 15438 |
Copyright terms: Public domain | W3C validator |