MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3dec Structured version   Visualization version   GIF version

Theorem 3dec 13353
Description: A "decimal constructor" which is used to build up "decimal integers" or "numeric terms" in base 10 with 3 "digits". (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.)
Hypotheses
Ref Expression
3dec.a 𝐴 ∈ ℕ0
3dec.b 𝐵 ∈ ℕ0
Assertion
Ref Expression
3dec 𝐴𝐵𝐶 = ((((10↑2) · 𝐴) + (10 · 𝐵)) + 𝐶)

Proof of Theorem 3dec
StepHypRef Expression
1 dfdec10 11831 . 2 𝐴𝐵𝐶 = ((10 · 𝐴𝐵) + 𝐶)
2 dfdec10 11831 . . . . . 6 𝐴𝐵 = ((10 · 𝐴) + 𝐵)
32oveq2i 6921 . . . . 5 (10 · 𝐴𝐵) = (10 · ((10 · 𝐴) + 𝐵))
4 1nn 11370 . . . . . . . 8 1 ∈ ℕ
54decnncl2 11853 . . . . . . 7 10 ∈ ℕ
65nncni 11368 . . . . . 6 10 ∈ ℂ
7 3dec.a . . . . . . . 8 𝐴 ∈ ℕ0
87nn0cni 11638 . . . . . . 7 𝐴 ∈ ℂ
96, 8mulcli 10371 . . . . . 6 (10 · 𝐴) ∈ ℂ
10 3dec.b . . . . . . 7 𝐵 ∈ ℕ0
1110nn0cni 11638 . . . . . 6 𝐵 ∈ ℂ
126, 9, 11adddii 10376 . . . . 5 (10 · ((10 · 𝐴) + 𝐵)) = ((10 · (10 · 𝐴)) + (10 · 𝐵))
133, 12eqtri 2849 . . . 4 (10 · 𝐴𝐵) = ((10 · (10 · 𝐴)) + (10 · 𝐵))
146, 6, 8mulassi 10375 . . . . . . 7 ((10 · 10) · 𝐴) = (10 · (10 · 𝐴))
1514eqcomi 2834 . . . . . 6 (10 · (10 · 𝐴)) = ((10 · 10) · 𝐴)
166sqvali 13244 . . . . . . . 8 (10↑2) = (10 · 10)
1716eqcomi 2834 . . . . . . 7 (10 · 10) = (10↑2)
1817oveq1i 6920 . . . . . 6 ((10 · 10) · 𝐴) = ((10↑2) · 𝐴)
1915, 18eqtri 2849 . . . . 5 (10 · (10 · 𝐴)) = ((10↑2) · 𝐴)
2019oveq1i 6920 . . . 4 ((10 · (10 · 𝐴)) + (10 · 𝐵)) = (((10↑2) · 𝐴) + (10 · 𝐵))
2113, 20eqtri 2849 . . 3 (10 · 𝐴𝐵) = (((10↑2) · 𝐴) + (10 · 𝐵))
2221oveq1i 6920 . 2 ((10 · 𝐴𝐵) + 𝐶) = ((((10↑2) · 𝐴) + (10 · 𝐵)) + 𝐶)
231, 22eqtri 2849 1 𝐴𝐵𝐶 = ((((10↑2) · 𝐴) + (10 · 𝐵)) + 𝐶)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1656  wcel 2164  (class class class)co 6910  0cc0 10259  1c1 10260   + caddc 10262   · cmul 10264  2c2 11413  0cn0 11625  cdc 11828  cexp 13161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-nn 11358  df-2 11421  df-3 11422  df-4 11423  df-5 11424  df-6 11425  df-7 11426  df-8 11427  df-9 11428  df-n0 11626  df-z 11712  df-dec 11829  df-uz 11976  df-seq 13103  df-exp 13162
This theorem is referenced by:  3dvds2dec  15438
  Copyright terms: Public domain W3C validator