| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulassi | Structured version Visualization version GIF version | ||
| Description: Associative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| axi.2 | ⊢ 𝐵 ∈ ℂ |
| axi.3 | ⊢ 𝐶 ∈ ℂ |
| Ref | Expression |
|---|---|
| mulassi | ⊢ ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | axi.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
| 4 | mulass 11101 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | |
| 5 | 1, 2, 3, 4 | mp3an 1463 | 1 ⊢ ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 (class class class)co 7352 ℂcc 11011 · cmul 11018 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-mulass 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 8th4div3 12348 numma 12638 decbin0 12734 sq4e2t8 14108 3dec 14175 faclbnd4lem1 14202 ef01bndlem 16095 3dvdsdec 16245 3dvds2dec 16246 dec5dvds 16978 karatsuba 16997 sincos4thpi 26450 sincos6thpi 26453 ang180lem2 26748 ang180lem3 26749 asin1 26832 efiatan2 26855 2efiatan 26856 log2cnv 26882 log2ublem2 26885 log2ublem3 26886 log2ub 26887 bclbnd 27219 bposlem8 27230 2lgsoddprmlem3d 27352 ax5seglem7 28915 ipasslem10 30821 siilem1 30833 normlem0 31091 normlem9 31100 bcseqi 31102 polid2i 31139 dfdec100 32818 dpmul100 32884 dpmul1000 32886 dpexpp1 32895 dpmul4 32901 quad3 35735 iexpire 35800 mulassnni 42099 sn-1ticom 42553 sn-0tie0 42569 fourierswlem 46352 fouriersw 46353 41prothprm 47743 tgoldbachlt 47940 |
| Copyright terms: Public domain | W3C validator |