| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulassi | Structured version Visualization version GIF version | ||
| Description: Associative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| axi.2 | ⊢ 𝐵 ∈ ℂ |
| axi.3 | ⊢ 𝐶 ∈ ℂ |
| Ref | Expression |
|---|---|
| mulassi | ⊢ ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | axi.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
| 4 | mulass 11163 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | |
| 5 | 1, 2, 3, 4 | mp3an 1463 | 1 ⊢ ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7390 ℂcc 11073 · cmul 11080 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-mulass 11141 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 8th4div3 12409 numma 12700 decbin0 12796 sq4e2t8 14171 3dec 14238 faclbnd4lem1 14265 ef01bndlem 16159 3dvdsdec 16309 3dvds2dec 16310 dec5dvds 17042 karatsuba 17061 sincos4thpi 26429 sincos6thpi 26432 ang180lem2 26727 ang180lem3 26728 asin1 26811 efiatan2 26834 2efiatan 26835 log2cnv 26861 log2ublem2 26864 log2ublem3 26865 log2ub 26866 bclbnd 27198 bposlem8 27209 2lgsoddprmlem3d 27331 ax5seglem7 28869 ipasslem10 30775 siilem1 30787 normlem0 31045 normlem9 31054 bcseqi 31056 polid2i 31093 dfdec100 32762 dpmul100 32824 dpmul1000 32826 dpexpp1 32835 dpmul4 32841 quad3 35664 iexpire 35729 mulassnni 41981 sn-1ticom 42430 sn-0tie0 42446 fourierswlem 46235 fouriersw 46236 41prothprm 47624 tgoldbachlt 47821 |
| Copyright terms: Public domain | W3C validator |