Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulassi | Structured version Visualization version GIF version |
Description: Associative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
axi.2 | ⊢ 𝐵 ∈ ℂ |
axi.3 | ⊢ 𝐶 ∈ ℂ |
Ref | Expression |
---|---|
mulassi | ⊢ ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | axi.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
4 | mulass 10968 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | |
5 | 1, 2, 3, 4 | mp3an 1460 | 1 ⊢ ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2107 (class class class)co 7284 ℂcc 10878 · cmul 10885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-mulass 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: 8th4div3 12202 numma 12490 decbin0 12586 sq4e2t8 13925 3dec 13989 faclbnd4lem1 14016 ef01bndlem 15902 3dvdsdec 16050 3dvds2dec 16051 dec5dvds 16774 karatsuba 16794 sincos4thpi 25679 sincos6thpi 25681 ang180lem2 25969 ang180lem3 25970 asin1 26053 efiatan2 26076 2efiatan 26077 log2cnv 26103 log2ublem2 26106 log2ublem3 26107 log2ub 26108 bclbnd 26437 bposlem8 26448 2lgsoddprmlem3d 26570 ax5seglem7 27312 ipasslem10 29210 siilem1 29222 normlem0 29480 normlem9 29489 bcseqi 29491 polid2i 29528 dfdec100 31153 dpmul100 31180 dpmul1000 31182 dpexpp1 31191 dpmul4 31197 quad3 33637 iexpire 33710 mulassnni 40002 sn-1ticom 40423 sn-0tie0 40428 sn-inelr 40442 fourierswlem 43778 fouriersw 43779 41prothprm 45082 tgoldbachlt 45279 |
Copyright terms: Public domain | W3C validator |