| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulassi | Structured version Visualization version GIF version | ||
| Description: Associative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| axi.2 | ⊢ 𝐵 ∈ ℂ |
| axi.3 | ⊢ 𝐶 ∈ ℂ |
| Ref | Expression |
|---|---|
| mulassi | ⊢ ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | axi.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
| 4 | mulass 11091 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | |
| 5 | 1, 2, 3, 4 | mp3an 1463 | 1 ⊢ ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 (class class class)co 7346 ℂcc 11001 · cmul 11008 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-mulass 11069 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 8th4div3 12338 numma 12629 decbin0 12725 sq4e2t8 14103 3dec 14170 faclbnd4lem1 14197 ef01bndlem 16090 3dvdsdec 16240 3dvds2dec 16241 dec5dvds 16973 karatsuba 16992 sincos4thpi 26447 sincos6thpi 26450 ang180lem2 26745 ang180lem3 26746 asin1 26829 efiatan2 26852 2efiatan 26853 log2cnv 26879 log2ublem2 26882 log2ublem3 26883 log2ub 26884 bclbnd 27216 bposlem8 27227 2lgsoddprmlem3d 27349 ax5seglem7 28911 ipasslem10 30814 siilem1 30826 normlem0 31084 normlem9 31093 bcseqi 31095 polid2i 31132 dfdec100 32808 dpmul100 32872 dpmul1000 32874 dpexpp1 32883 dpmul4 32889 quad3 35702 iexpire 35767 mulassnni 42018 sn-1ticom 42467 sn-0tie0 42483 fourierswlem 46267 fouriersw 46268 41prothprm 47649 tgoldbachlt 47846 |
| Copyright terms: Public domain | W3C validator |