MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulassi Structured version   Visualization version   GIF version

Theorem mulassi 11301
Description: Associative law for multiplication. (Contributed by NM, 23-Nov-1994.)
Hypotheses
Ref Expression
axi.1 𝐴 ∈ ℂ
axi.2 𝐵 ∈ ℂ
axi.3 𝐶 ∈ ℂ
Assertion
Ref Expression
mulassi ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))

Proof of Theorem mulassi
StepHypRef Expression
1 axi.1 . 2 𝐴 ∈ ℂ
2 axi.2 . 2 𝐵 ∈ ℂ
3 axi.3 . 2 𝐶 ∈ ℂ
4 mulass 11272 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
51, 2, 3, 4mp3an 1461 1 ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  (class class class)co 7448  cc 11182   · cmul 11189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-mulass 11250
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089
This theorem is referenced by:  8th4div3  12513  numma  12802  decbin0  12898  sq4e2t8  14248  3dec  14315  faclbnd4lem1  14342  ef01bndlem  16232  3dvdsdec  16380  3dvds2dec  16381  dec5dvds  17111  karatsuba  17131  sincos4thpi  26573  sincos6thpi  26576  ang180lem2  26871  ang180lem3  26872  asin1  26955  efiatan2  26978  2efiatan  26979  log2cnv  27005  log2ublem2  27008  log2ublem3  27009  log2ub  27010  bclbnd  27342  bposlem8  27353  2lgsoddprmlem3d  27475  ax5seglem7  28968  ipasslem10  30871  siilem1  30883  normlem0  31141  normlem9  31150  bcseqi  31152  polid2i  31189  dfdec100  32834  dpmul100  32861  dpmul1000  32863  dpexpp1  32872  dpmul4  32878  quad3  35638  iexpire  35697  mulassnni  41943  sn-1ticom  42410  sn-0tie0  42415  sn-inelr  42443  fourierswlem  46151  fouriersw  46152  41prothprm  47493  tgoldbachlt  47690
  Copyright terms: Public domain W3C validator