![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulassi | Structured version Visualization version GIF version |
Description: Associative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
axi.2 | ⊢ 𝐵 ∈ ℂ |
axi.3 | ⊢ 𝐶 ∈ ℂ |
Ref | Expression |
---|---|
mulassi | ⊢ ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | axi.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
4 | mulass 11240 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | |
5 | 1, 2, 3, 4 | mp3an 1460 | 1 ⊢ ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 ∈ wcel 2105 (class class class)co 7430 ℂcc 11150 · cmul 11157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-mulass 11218 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: 8th4div3 12483 numma 12774 decbin0 12870 sq4e2t8 14234 3dec 14301 faclbnd4lem1 14328 ef01bndlem 16216 3dvdsdec 16365 3dvds2dec 16366 dec5dvds 17097 karatsuba 17117 sincos4thpi 26569 sincos6thpi 26572 ang180lem2 26867 ang180lem3 26868 asin1 26951 efiatan2 26974 2efiatan 26975 log2cnv 27001 log2ublem2 27004 log2ublem3 27005 log2ub 27006 bclbnd 27338 bposlem8 27349 2lgsoddprmlem3d 27471 ax5seglem7 28964 ipasslem10 30867 siilem1 30879 normlem0 31137 normlem9 31146 bcseqi 31148 polid2i 31185 dfdec100 32836 dpmul100 32863 dpmul1000 32865 dpexpp1 32874 dpmul4 32880 quad3 35654 iexpire 35714 mulassnni 41967 sn-1ticom 42440 sn-0tie0 42445 sn-inelr 42473 fourierswlem 46185 fouriersw 46186 41prothprm 47543 tgoldbachlt 47740 |
Copyright terms: Public domain | W3C validator |