| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulassi | Structured version Visualization version GIF version | ||
| Description: Associative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| axi.2 | ⊢ 𝐵 ∈ ℂ |
| axi.3 | ⊢ 𝐶 ∈ ℂ |
| Ref | Expression |
|---|---|
| mulassi | ⊢ ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | axi.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
| 4 | mulass 11116 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | |
| 5 | 1, 2, 3, 4 | mp3an 1463 | 1 ⊢ ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7353 ℂcc 11026 · cmul 11033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-mulass 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 8th4div3 12362 numma 12653 decbin0 12749 sq4e2t8 14124 3dec 14191 faclbnd4lem1 14218 ef01bndlem 16111 3dvdsdec 16261 3dvds2dec 16262 dec5dvds 16994 karatsuba 17013 sincos4thpi 26438 sincos6thpi 26441 ang180lem2 26736 ang180lem3 26737 asin1 26820 efiatan2 26843 2efiatan 26844 log2cnv 26870 log2ublem2 26873 log2ublem3 26874 log2ub 26875 bclbnd 27207 bposlem8 27218 2lgsoddprmlem3d 27340 ax5seglem7 28898 ipasslem10 30801 siilem1 30813 normlem0 31071 normlem9 31080 bcseqi 31082 polid2i 31119 dfdec100 32788 dpmul100 32850 dpmul1000 32852 dpexpp1 32861 dpmul4 32867 quad3 35642 iexpire 35707 mulassnni 41959 sn-1ticom 42408 sn-0tie0 42424 fourierswlem 46212 fouriersw 46213 41prothprm 47604 tgoldbachlt 47801 |
| Copyright terms: Public domain | W3C validator |