Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulassi | Structured version Visualization version GIF version |
Description: Associative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
axi.2 | ⊢ 𝐵 ∈ ℂ |
axi.3 | ⊢ 𝐶 ∈ ℂ |
Ref | Expression |
---|---|
mulassi | ⊢ ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | axi.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
4 | mulass 11060 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | |
5 | 1, 2, 3, 4 | mp3an 1460 | 1 ⊢ ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 (class class class)co 7337 ℂcc 10970 · cmul 10977 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-mulass 11038 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: 8th4div3 12294 numma 12582 decbin0 12678 sq4e2t8 14017 3dec 14081 faclbnd4lem1 14108 ef01bndlem 15992 3dvdsdec 16140 3dvds2dec 16141 dec5dvds 16862 karatsuba 16882 sincos4thpi 25776 sincos6thpi 25778 ang180lem2 26066 ang180lem3 26067 asin1 26150 efiatan2 26173 2efiatan 26174 log2cnv 26200 log2ublem2 26203 log2ublem3 26204 log2ub 26205 bclbnd 26534 bposlem8 26545 2lgsoddprmlem3d 26667 ax5seglem7 27592 ipasslem10 29489 siilem1 29501 normlem0 29759 normlem9 29768 bcseqi 29770 polid2i 29807 dfdec100 31431 dpmul100 31458 dpmul1000 31460 dpexpp1 31469 dpmul4 31475 quad3 33927 iexpire 33991 mulassnni 40257 sn-1ticom 40684 sn-0tie0 40689 sn-inelr 40703 fourierswlem 44116 fouriersw 44117 41prothprm 45431 tgoldbachlt 45628 |
Copyright terms: Public domain | W3C validator |