| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulassi | Structured version Visualization version GIF version | ||
| Description: Associative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| axi.2 | ⊢ 𝐵 ∈ ℂ |
| axi.3 | ⊢ 𝐶 ∈ ℂ |
| Ref | Expression |
|---|---|
| mulassi | ⊢ ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | axi.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
| 4 | mulass 11217 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | |
| 5 | 1, 2, 3, 4 | mp3an 1463 | 1 ⊢ ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 (class class class)co 7405 ℂcc 11127 · cmul 11134 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-mulass 11195 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 8th4div3 12461 numma 12752 decbin0 12848 sq4e2t8 14217 3dec 14284 faclbnd4lem1 14311 ef01bndlem 16202 3dvdsdec 16351 3dvds2dec 16352 dec5dvds 17084 karatsuba 17103 sincos4thpi 26474 sincos6thpi 26477 ang180lem2 26772 ang180lem3 26773 asin1 26856 efiatan2 26879 2efiatan 26880 log2cnv 26906 log2ublem2 26909 log2ublem3 26910 log2ub 26911 bclbnd 27243 bposlem8 27254 2lgsoddprmlem3d 27376 ax5seglem7 28914 ipasslem10 30820 siilem1 30832 normlem0 31090 normlem9 31099 bcseqi 31101 polid2i 31138 dfdec100 32809 dpmul100 32871 dpmul1000 32873 dpexpp1 32882 dpmul4 32888 quad3 35692 iexpire 35752 mulassnni 41999 sn-1ticom 42477 sn-0tie0 42482 sn-inelr 42510 fourierswlem 46259 fouriersw 46260 41prothprm 47633 tgoldbachlt 47830 |
| Copyright terms: Public domain | W3C validator |