Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulassi | Structured version Visualization version GIF version |
Description: Associative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
axi.2 | ⊢ 𝐵 ∈ ℂ |
axi.3 | ⊢ 𝐶 ∈ ℂ |
Ref | Expression |
---|---|
mulassi | ⊢ ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | axi.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
4 | mulass 10890 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | |
5 | 1, 2, 3, 4 | mp3an 1459 | 1 ⊢ ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 · cmul 10807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-mulass 10868 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: 8th4div3 12123 numma 12410 decbin0 12506 sq4e2t8 13844 3dec 13908 faclbnd4lem1 13935 ef01bndlem 15821 3dvdsdec 15969 3dvds2dec 15970 dec5dvds 16693 karatsuba 16713 sincos4thpi 25575 sincos6thpi 25577 ang180lem2 25865 ang180lem3 25866 asin1 25949 efiatan2 25972 2efiatan 25973 log2cnv 25999 log2ublem2 26002 log2ublem3 26003 log2ub 26004 bclbnd 26333 bposlem8 26344 2lgsoddprmlem3d 26466 ax5seglem7 27206 ipasslem10 29102 siilem1 29114 normlem0 29372 normlem9 29381 bcseqi 29383 polid2i 29420 dfdec100 31046 dpmul100 31073 dpmul1000 31075 dpexpp1 31084 dpmul4 31090 quad3 33528 iexpire 33607 mulassnni 39923 sn-1ticom 40337 sn-0tie0 40342 sn-inelr 40356 fourierswlem 43661 fouriersw 43662 41prothprm 44959 tgoldbachlt 45156 |
Copyright terms: Public domain | W3C validator |