![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulassi | Structured version Visualization version GIF version |
Description: Associative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
axi.2 | ⊢ 𝐵 ∈ ℂ |
axi.3 | ⊢ 𝐶 ∈ ℂ |
Ref | Expression |
---|---|
mulassi | ⊢ ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | axi.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
4 | mulass 11272 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | |
5 | 1, 2, 3, 4 | mp3an 1461 | 1 ⊢ ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 (class class class)co 7448 ℂcc 11182 · cmul 11189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-mulass 11250 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: 8th4div3 12513 numma 12802 decbin0 12898 sq4e2t8 14248 3dec 14315 faclbnd4lem1 14342 ef01bndlem 16232 3dvdsdec 16380 3dvds2dec 16381 dec5dvds 17111 karatsuba 17131 sincos4thpi 26573 sincos6thpi 26576 ang180lem2 26871 ang180lem3 26872 asin1 26955 efiatan2 26978 2efiatan 26979 log2cnv 27005 log2ublem2 27008 log2ublem3 27009 log2ub 27010 bclbnd 27342 bposlem8 27353 2lgsoddprmlem3d 27475 ax5seglem7 28968 ipasslem10 30871 siilem1 30883 normlem0 31141 normlem9 31150 bcseqi 31152 polid2i 31189 dfdec100 32834 dpmul100 32861 dpmul1000 32863 dpexpp1 32872 dpmul4 32878 quad3 35638 iexpire 35697 mulassnni 41943 sn-1ticom 42410 sn-0tie0 42415 sn-inelr 42443 fourierswlem 46151 fouriersw 46152 41prothprm 47493 tgoldbachlt 47690 |
Copyright terms: Public domain | W3C validator |