| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulassi | Structured version Visualization version GIF version | ||
| Description: Associative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| axi.2 | ⊢ 𝐵 ∈ ℂ |
| axi.3 | ⊢ 𝐶 ∈ ℂ |
| Ref | Expression |
|---|---|
| mulassi | ⊢ ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | axi.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
| 4 | mulass 11156 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | |
| 5 | 1, 2, 3, 4 | mp3an 1463 | 1 ⊢ ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 · cmul 11073 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-mulass 11134 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 8th4div3 12402 numma 12693 decbin0 12789 sq4e2t8 14164 3dec 14231 faclbnd4lem1 14258 ef01bndlem 16152 3dvdsdec 16302 3dvds2dec 16303 dec5dvds 17035 karatsuba 17054 sincos4thpi 26422 sincos6thpi 26425 ang180lem2 26720 ang180lem3 26721 asin1 26804 efiatan2 26827 2efiatan 26828 log2cnv 26854 log2ublem2 26857 log2ublem3 26858 log2ub 26859 bclbnd 27191 bposlem8 27202 2lgsoddprmlem3d 27324 ax5seglem7 28862 ipasslem10 30768 siilem1 30780 normlem0 31038 normlem9 31047 bcseqi 31049 polid2i 31086 dfdec100 32755 dpmul100 32817 dpmul1000 32819 dpexpp1 32828 dpmul4 32834 quad3 35657 iexpire 35722 mulassnni 41974 sn-1ticom 42423 sn-0tie0 42439 fourierswlem 46228 fouriersw 46229 41prothprm 47620 tgoldbachlt 47817 |
| Copyright terms: Public domain | W3C validator |