| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > numma | Structured version Visualization version GIF version | ||
| Description: Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| numma.1 | ⊢ 𝑇 ∈ ℕ0 |
| numma.2 | ⊢ 𝐴 ∈ ℕ0 |
| numma.3 | ⊢ 𝐵 ∈ ℕ0 |
| numma.4 | ⊢ 𝐶 ∈ ℕ0 |
| numma.5 | ⊢ 𝐷 ∈ ℕ0 |
| numma.6 | ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) |
| numma.7 | ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) |
| numma.8 | ⊢ 𝑃 ∈ ℕ0 |
| numma.9 | ⊢ ((𝐴 · 𝑃) + 𝐶) = 𝐸 |
| numma.10 | ⊢ ((𝐵 · 𝑃) + 𝐷) = 𝐹 |
| Ref | Expression |
|---|---|
| numma | ⊢ ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | numma.6 | . . . 4 ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) | |
| 2 | 1 | oveq1i 7400 | . . 3 ⊢ (𝑀 · 𝑃) = (((𝑇 · 𝐴) + 𝐵) · 𝑃) |
| 3 | numma.7 | . . 3 ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) | |
| 4 | 2, 3 | oveq12i 7402 | . 2 ⊢ ((𝑀 · 𝑃) + 𝑁) = ((((𝑇 · 𝐴) + 𝐵) · 𝑃) + ((𝑇 · 𝐶) + 𝐷)) |
| 5 | numma.1 | . . . . . . 7 ⊢ 𝑇 ∈ ℕ0 | |
| 6 | 5 | nn0cni 12461 | . . . . . 6 ⊢ 𝑇 ∈ ℂ |
| 7 | numma.2 | . . . . . . . 8 ⊢ 𝐴 ∈ ℕ0 | |
| 8 | 7 | nn0cni 12461 | . . . . . . 7 ⊢ 𝐴 ∈ ℂ |
| 9 | numma.8 | . . . . . . . 8 ⊢ 𝑃 ∈ ℕ0 | |
| 10 | 9 | nn0cni 12461 | . . . . . . 7 ⊢ 𝑃 ∈ ℂ |
| 11 | 8, 10 | mulcli 11188 | . . . . . 6 ⊢ (𝐴 · 𝑃) ∈ ℂ |
| 12 | numma.4 | . . . . . . 7 ⊢ 𝐶 ∈ ℕ0 | |
| 13 | 12 | nn0cni 12461 | . . . . . 6 ⊢ 𝐶 ∈ ℂ |
| 14 | 6, 11, 13 | adddii 11193 | . . . . 5 ⊢ (𝑇 · ((𝐴 · 𝑃) + 𝐶)) = ((𝑇 · (𝐴 · 𝑃)) + (𝑇 · 𝐶)) |
| 15 | 6, 8, 10 | mulassi 11192 | . . . . . 6 ⊢ ((𝑇 · 𝐴) · 𝑃) = (𝑇 · (𝐴 · 𝑃)) |
| 16 | 15 | oveq1i 7400 | . . . . 5 ⊢ (((𝑇 · 𝐴) · 𝑃) + (𝑇 · 𝐶)) = ((𝑇 · (𝐴 · 𝑃)) + (𝑇 · 𝐶)) |
| 17 | 14, 16 | eqtr4i 2756 | . . . 4 ⊢ (𝑇 · ((𝐴 · 𝑃) + 𝐶)) = (((𝑇 · 𝐴) · 𝑃) + (𝑇 · 𝐶)) |
| 18 | 17 | oveq1i 7400 | . . 3 ⊢ ((𝑇 · ((𝐴 · 𝑃) + 𝐶)) + ((𝐵 · 𝑃) + 𝐷)) = ((((𝑇 · 𝐴) · 𝑃) + (𝑇 · 𝐶)) + ((𝐵 · 𝑃) + 𝐷)) |
| 19 | 6, 8 | mulcli 11188 | . . . . . 6 ⊢ (𝑇 · 𝐴) ∈ ℂ |
| 20 | numma.3 | . . . . . . 7 ⊢ 𝐵 ∈ ℕ0 | |
| 21 | 20 | nn0cni 12461 | . . . . . 6 ⊢ 𝐵 ∈ ℂ |
| 22 | 19, 21, 10 | adddiri 11194 | . . . . 5 ⊢ (((𝑇 · 𝐴) + 𝐵) · 𝑃) = (((𝑇 · 𝐴) · 𝑃) + (𝐵 · 𝑃)) |
| 23 | 22 | oveq1i 7400 | . . . 4 ⊢ ((((𝑇 · 𝐴) + 𝐵) · 𝑃) + ((𝑇 · 𝐶) + 𝐷)) = ((((𝑇 · 𝐴) · 𝑃) + (𝐵 · 𝑃)) + ((𝑇 · 𝐶) + 𝐷)) |
| 24 | 19, 10 | mulcli 11188 | . . . . 5 ⊢ ((𝑇 · 𝐴) · 𝑃) ∈ ℂ |
| 25 | 6, 13 | mulcli 11188 | . . . . 5 ⊢ (𝑇 · 𝐶) ∈ ℂ |
| 26 | 21, 10 | mulcli 11188 | . . . . 5 ⊢ (𝐵 · 𝑃) ∈ ℂ |
| 27 | numma.5 | . . . . . 6 ⊢ 𝐷 ∈ ℕ0 | |
| 28 | 27 | nn0cni 12461 | . . . . 5 ⊢ 𝐷 ∈ ℂ |
| 29 | 24, 25, 26, 28 | add4i 11406 | . . . 4 ⊢ ((((𝑇 · 𝐴) · 𝑃) + (𝑇 · 𝐶)) + ((𝐵 · 𝑃) + 𝐷)) = ((((𝑇 · 𝐴) · 𝑃) + (𝐵 · 𝑃)) + ((𝑇 · 𝐶) + 𝐷)) |
| 30 | 23, 29 | eqtr4i 2756 | . . 3 ⊢ ((((𝑇 · 𝐴) + 𝐵) · 𝑃) + ((𝑇 · 𝐶) + 𝐷)) = ((((𝑇 · 𝐴) · 𝑃) + (𝑇 · 𝐶)) + ((𝐵 · 𝑃) + 𝐷)) |
| 31 | 18, 30 | eqtr4i 2756 | . 2 ⊢ ((𝑇 · ((𝐴 · 𝑃) + 𝐶)) + ((𝐵 · 𝑃) + 𝐷)) = ((((𝑇 · 𝐴) + 𝐵) · 𝑃) + ((𝑇 · 𝐶) + 𝐷)) |
| 32 | numma.9 | . . . 4 ⊢ ((𝐴 · 𝑃) + 𝐶) = 𝐸 | |
| 33 | 32 | oveq2i 7401 | . . 3 ⊢ (𝑇 · ((𝐴 · 𝑃) + 𝐶)) = (𝑇 · 𝐸) |
| 34 | numma.10 | . . 3 ⊢ ((𝐵 · 𝑃) + 𝐷) = 𝐹 | |
| 35 | 33, 34 | oveq12i 7402 | . 2 ⊢ ((𝑇 · ((𝐴 · 𝑃) + 𝐶)) + ((𝐵 · 𝑃) + 𝐷)) = ((𝑇 · 𝐸) + 𝐹) |
| 36 | 4, 31, 35 | 3eqtr2i 2759 | 1 ⊢ ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7390 + caddc 11078 · cmul 11080 ℕ0cn0 12449 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-nn 12194 df-n0 12450 |
| This theorem is referenced by: nummac 12701 numadd 12703 decma 12707 |
| Copyright terms: Public domain | W3C validator |