MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numma Structured version   Visualization version   GIF version

Theorem numma 12134
Description: Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
numma.1 𝑇 ∈ ℕ0
numma.2 𝐴 ∈ ℕ0
numma.3 𝐵 ∈ ℕ0
numma.4 𝐶 ∈ ℕ0
numma.5 𝐷 ∈ ℕ0
numma.6 𝑀 = ((𝑇 · 𝐴) + 𝐵)
numma.7 𝑁 = ((𝑇 · 𝐶) + 𝐷)
numma.8 𝑃 ∈ ℕ0
numma.9 ((𝐴 · 𝑃) + 𝐶) = 𝐸
numma.10 ((𝐵 · 𝑃) + 𝐷) = 𝐹
Assertion
Ref Expression
numma ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹)

Proof of Theorem numma
StepHypRef Expression
1 numma.6 . . . 4 𝑀 = ((𝑇 · 𝐴) + 𝐵)
21oveq1i 7149 . . 3 (𝑀 · 𝑃) = (((𝑇 · 𝐴) + 𝐵) · 𝑃)
3 numma.7 . . 3 𝑁 = ((𝑇 · 𝐶) + 𝐷)
42, 3oveq12i 7151 . 2 ((𝑀 · 𝑃) + 𝑁) = ((((𝑇 · 𝐴) + 𝐵) · 𝑃) + ((𝑇 · 𝐶) + 𝐷))
5 numma.1 . . . . . . 7 𝑇 ∈ ℕ0
65nn0cni 11901 . . . . . 6 𝑇 ∈ ℂ
7 numma.2 . . . . . . . 8 𝐴 ∈ ℕ0
87nn0cni 11901 . . . . . . 7 𝐴 ∈ ℂ
9 numma.8 . . . . . . . 8 𝑃 ∈ ℕ0
109nn0cni 11901 . . . . . . 7 𝑃 ∈ ℂ
118, 10mulcli 10641 . . . . . 6 (𝐴 · 𝑃) ∈ ℂ
12 numma.4 . . . . . . 7 𝐶 ∈ ℕ0
1312nn0cni 11901 . . . . . 6 𝐶 ∈ ℂ
146, 11, 13adddii 10646 . . . . 5 (𝑇 · ((𝐴 · 𝑃) + 𝐶)) = ((𝑇 · (𝐴 · 𝑃)) + (𝑇 · 𝐶))
156, 8, 10mulassi 10645 . . . . . 6 ((𝑇 · 𝐴) · 𝑃) = (𝑇 · (𝐴 · 𝑃))
1615oveq1i 7149 . . . . 5 (((𝑇 · 𝐴) · 𝑃) + (𝑇 · 𝐶)) = ((𝑇 · (𝐴 · 𝑃)) + (𝑇 · 𝐶))
1714, 16eqtr4i 2827 . . . 4 (𝑇 · ((𝐴 · 𝑃) + 𝐶)) = (((𝑇 · 𝐴) · 𝑃) + (𝑇 · 𝐶))
1817oveq1i 7149 . . 3 ((𝑇 · ((𝐴 · 𝑃) + 𝐶)) + ((𝐵 · 𝑃) + 𝐷)) = ((((𝑇 · 𝐴) · 𝑃) + (𝑇 · 𝐶)) + ((𝐵 · 𝑃) + 𝐷))
196, 8mulcli 10641 . . . . . 6 (𝑇 · 𝐴) ∈ ℂ
20 numma.3 . . . . . . 7 𝐵 ∈ ℕ0
2120nn0cni 11901 . . . . . 6 𝐵 ∈ ℂ
2219, 21, 10adddiri 10647 . . . . 5 (((𝑇 · 𝐴) + 𝐵) · 𝑃) = (((𝑇 · 𝐴) · 𝑃) + (𝐵 · 𝑃))
2322oveq1i 7149 . . . 4 ((((𝑇 · 𝐴) + 𝐵) · 𝑃) + ((𝑇 · 𝐶) + 𝐷)) = ((((𝑇 · 𝐴) · 𝑃) + (𝐵 · 𝑃)) + ((𝑇 · 𝐶) + 𝐷))
2419, 10mulcli 10641 . . . . 5 ((𝑇 · 𝐴) · 𝑃) ∈ ℂ
256, 13mulcli 10641 . . . . 5 (𝑇 · 𝐶) ∈ ℂ
2621, 10mulcli 10641 . . . . 5 (𝐵 · 𝑃) ∈ ℂ
27 numma.5 . . . . . 6 𝐷 ∈ ℕ0
2827nn0cni 11901 . . . . 5 𝐷 ∈ ℂ
2924, 25, 26, 28add4i 10857 . . . 4 ((((𝑇 · 𝐴) · 𝑃) + (𝑇 · 𝐶)) + ((𝐵 · 𝑃) + 𝐷)) = ((((𝑇 · 𝐴) · 𝑃) + (𝐵 · 𝑃)) + ((𝑇 · 𝐶) + 𝐷))
3023, 29eqtr4i 2827 . . 3 ((((𝑇 · 𝐴) + 𝐵) · 𝑃) + ((𝑇 · 𝐶) + 𝐷)) = ((((𝑇 · 𝐴) · 𝑃) + (𝑇 · 𝐶)) + ((𝐵 · 𝑃) + 𝐷))
3118, 30eqtr4i 2827 . 2 ((𝑇 · ((𝐴 · 𝑃) + 𝐶)) + ((𝐵 · 𝑃) + 𝐷)) = ((((𝑇 · 𝐴) + 𝐵) · 𝑃) + ((𝑇 · 𝐶) + 𝐷))
32 numma.9 . . . 4 ((𝐴 · 𝑃) + 𝐶) = 𝐸
3332oveq2i 7150 . . 3 (𝑇 · ((𝐴 · 𝑃) + 𝐶)) = (𝑇 · 𝐸)
34 numma.10 . . 3 ((𝐵 · 𝑃) + 𝐷) = 𝐹
3533, 34oveq12i 7151 . 2 ((𝑇 · ((𝐴 · 𝑃) + 𝐶)) + ((𝐵 · 𝑃) + 𝐷)) = ((𝑇 · 𝐸) + 𝐹)
364, 31, 353eqtr2i 2830 1 ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  wcel 2112  (class class class)co 7139   + caddc 10533   · cmul 10535  0cn0 11889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7142  df-om 7565  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-ltxr 10673  df-nn 11630  df-n0 11890
This theorem is referenced by:  nummac  12135  numadd  12137  decma  12141
  Copyright terms: Public domain W3C validator