MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numma Structured version   Visualization version   GIF version

Theorem numma 12693
Description: Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
numma.1 𝑇 ∈ ℕ0
numma.2 𝐴 ∈ ℕ0
numma.3 𝐵 ∈ ℕ0
numma.4 𝐶 ∈ ℕ0
numma.5 𝐷 ∈ ℕ0
numma.6 𝑀 = ((𝑇 · 𝐴) + 𝐵)
numma.7 𝑁 = ((𝑇 · 𝐶) + 𝐷)
numma.8 𝑃 ∈ ℕ0
numma.9 ((𝐴 · 𝑃) + 𝐶) = 𝐸
numma.10 ((𝐵 · 𝑃) + 𝐷) = 𝐹
Assertion
Ref Expression
numma ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹)

Proof of Theorem numma
StepHypRef Expression
1 numma.6 . . . 4 𝑀 = ((𝑇 · 𝐴) + 𝐵)
21oveq1i 7397 . . 3 (𝑀 · 𝑃) = (((𝑇 · 𝐴) + 𝐵) · 𝑃)
3 numma.7 . . 3 𝑁 = ((𝑇 · 𝐶) + 𝐷)
42, 3oveq12i 7399 . 2 ((𝑀 · 𝑃) + 𝑁) = ((((𝑇 · 𝐴) + 𝐵) · 𝑃) + ((𝑇 · 𝐶) + 𝐷))
5 numma.1 . . . . . . 7 𝑇 ∈ ℕ0
65nn0cni 12454 . . . . . 6 𝑇 ∈ ℂ
7 numma.2 . . . . . . . 8 𝐴 ∈ ℕ0
87nn0cni 12454 . . . . . . 7 𝐴 ∈ ℂ
9 numma.8 . . . . . . . 8 𝑃 ∈ ℕ0
109nn0cni 12454 . . . . . . 7 𝑃 ∈ ℂ
118, 10mulcli 11181 . . . . . 6 (𝐴 · 𝑃) ∈ ℂ
12 numma.4 . . . . . . 7 𝐶 ∈ ℕ0
1312nn0cni 12454 . . . . . 6 𝐶 ∈ ℂ
146, 11, 13adddii 11186 . . . . 5 (𝑇 · ((𝐴 · 𝑃) + 𝐶)) = ((𝑇 · (𝐴 · 𝑃)) + (𝑇 · 𝐶))
156, 8, 10mulassi 11185 . . . . . 6 ((𝑇 · 𝐴) · 𝑃) = (𝑇 · (𝐴 · 𝑃))
1615oveq1i 7397 . . . . 5 (((𝑇 · 𝐴) · 𝑃) + (𝑇 · 𝐶)) = ((𝑇 · (𝐴 · 𝑃)) + (𝑇 · 𝐶))
1714, 16eqtr4i 2755 . . . 4 (𝑇 · ((𝐴 · 𝑃) + 𝐶)) = (((𝑇 · 𝐴) · 𝑃) + (𝑇 · 𝐶))
1817oveq1i 7397 . . 3 ((𝑇 · ((𝐴 · 𝑃) + 𝐶)) + ((𝐵 · 𝑃) + 𝐷)) = ((((𝑇 · 𝐴) · 𝑃) + (𝑇 · 𝐶)) + ((𝐵 · 𝑃) + 𝐷))
196, 8mulcli 11181 . . . . . 6 (𝑇 · 𝐴) ∈ ℂ
20 numma.3 . . . . . . 7 𝐵 ∈ ℕ0
2120nn0cni 12454 . . . . . 6 𝐵 ∈ ℂ
2219, 21, 10adddiri 11187 . . . . 5 (((𝑇 · 𝐴) + 𝐵) · 𝑃) = (((𝑇 · 𝐴) · 𝑃) + (𝐵 · 𝑃))
2322oveq1i 7397 . . . 4 ((((𝑇 · 𝐴) + 𝐵) · 𝑃) + ((𝑇 · 𝐶) + 𝐷)) = ((((𝑇 · 𝐴) · 𝑃) + (𝐵 · 𝑃)) + ((𝑇 · 𝐶) + 𝐷))
2419, 10mulcli 11181 . . . . 5 ((𝑇 · 𝐴) · 𝑃) ∈ ℂ
256, 13mulcli 11181 . . . . 5 (𝑇 · 𝐶) ∈ ℂ
2621, 10mulcli 11181 . . . . 5 (𝐵 · 𝑃) ∈ ℂ
27 numma.5 . . . . . 6 𝐷 ∈ ℕ0
2827nn0cni 12454 . . . . 5 𝐷 ∈ ℂ
2924, 25, 26, 28add4i 11399 . . . 4 ((((𝑇 · 𝐴) · 𝑃) + (𝑇 · 𝐶)) + ((𝐵 · 𝑃) + 𝐷)) = ((((𝑇 · 𝐴) · 𝑃) + (𝐵 · 𝑃)) + ((𝑇 · 𝐶) + 𝐷))
3023, 29eqtr4i 2755 . . 3 ((((𝑇 · 𝐴) + 𝐵) · 𝑃) + ((𝑇 · 𝐶) + 𝐷)) = ((((𝑇 · 𝐴) · 𝑃) + (𝑇 · 𝐶)) + ((𝐵 · 𝑃) + 𝐷))
3118, 30eqtr4i 2755 . 2 ((𝑇 · ((𝐴 · 𝑃) + 𝐶)) + ((𝐵 · 𝑃) + 𝐷)) = ((((𝑇 · 𝐴) + 𝐵) · 𝑃) + ((𝑇 · 𝐶) + 𝐷))
32 numma.9 . . . 4 ((𝐴 · 𝑃) + 𝐶) = 𝐸
3332oveq2i 7398 . . 3 (𝑇 · ((𝐴 · 𝑃) + 𝐶)) = (𝑇 · 𝐸)
34 numma.10 . . 3 ((𝐵 · 𝑃) + 𝐷) = 𝐹
3533, 34oveq12i 7399 . 2 ((𝑇 · ((𝐴 · 𝑃) + 𝐶)) + ((𝐵 · 𝑃) + 𝐷)) = ((𝑇 · 𝐸) + 𝐹)
364, 31, 353eqtr2i 2758 1 ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  (class class class)co 7387   + caddc 11071   · cmul 11073  0cn0 12442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-ltxr 11213  df-nn 12187  df-n0 12443
This theorem is referenced by:  nummac  12694  numadd  12696  decma  12700
  Copyright terms: Public domain W3C validator