Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > numma | Structured version Visualization version GIF version |
Description: Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
numma.1 | ⊢ 𝑇 ∈ ℕ0 |
numma.2 | ⊢ 𝐴 ∈ ℕ0 |
numma.3 | ⊢ 𝐵 ∈ ℕ0 |
numma.4 | ⊢ 𝐶 ∈ ℕ0 |
numma.5 | ⊢ 𝐷 ∈ ℕ0 |
numma.6 | ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) |
numma.7 | ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) |
numma.8 | ⊢ 𝑃 ∈ ℕ0 |
numma.9 | ⊢ ((𝐴 · 𝑃) + 𝐶) = 𝐸 |
numma.10 | ⊢ ((𝐵 · 𝑃) + 𝐷) = 𝐹 |
Ref | Expression |
---|---|
numma | ⊢ ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numma.6 | . . . 4 ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) | |
2 | 1 | oveq1i 7265 | . . 3 ⊢ (𝑀 · 𝑃) = (((𝑇 · 𝐴) + 𝐵) · 𝑃) |
3 | numma.7 | . . 3 ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) | |
4 | 2, 3 | oveq12i 7267 | . 2 ⊢ ((𝑀 · 𝑃) + 𝑁) = ((((𝑇 · 𝐴) + 𝐵) · 𝑃) + ((𝑇 · 𝐶) + 𝐷)) |
5 | numma.1 | . . . . . . 7 ⊢ 𝑇 ∈ ℕ0 | |
6 | 5 | nn0cni 12175 | . . . . . 6 ⊢ 𝑇 ∈ ℂ |
7 | numma.2 | . . . . . . . 8 ⊢ 𝐴 ∈ ℕ0 | |
8 | 7 | nn0cni 12175 | . . . . . . 7 ⊢ 𝐴 ∈ ℂ |
9 | numma.8 | . . . . . . . 8 ⊢ 𝑃 ∈ ℕ0 | |
10 | 9 | nn0cni 12175 | . . . . . . 7 ⊢ 𝑃 ∈ ℂ |
11 | 8, 10 | mulcli 10913 | . . . . . 6 ⊢ (𝐴 · 𝑃) ∈ ℂ |
12 | numma.4 | . . . . . . 7 ⊢ 𝐶 ∈ ℕ0 | |
13 | 12 | nn0cni 12175 | . . . . . 6 ⊢ 𝐶 ∈ ℂ |
14 | 6, 11, 13 | adddii 10918 | . . . . 5 ⊢ (𝑇 · ((𝐴 · 𝑃) + 𝐶)) = ((𝑇 · (𝐴 · 𝑃)) + (𝑇 · 𝐶)) |
15 | 6, 8, 10 | mulassi 10917 | . . . . . 6 ⊢ ((𝑇 · 𝐴) · 𝑃) = (𝑇 · (𝐴 · 𝑃)) |
16 | 15 | oveq1i 7265 | . . . . 5 ⊢ (((𝑇 · 𝐴) · 𝑃) + (𝑇 · 𝐶)) = ((𝑇 · (𝐴 · 𝑃)) + (𝑇 · 𝐶)) |
17 | 14, 16 | eqtr4i 2769 | . . . 4 ⊢ (𝑇 · ((𝐴 · 𝑃) + 𝐶)) = (((𝑇 · 𝐴) · 𝑃) + (𝑇 · 𝐶)) |
18 | 17 | oveq1i 7265 | . . 3 ⊢ ((𝑇 · ((𝐴 · 𝑃) + 𝐶)) + ((𝐵 · 𝑃) + 𝐷)) = ((((𝑇 · 𝐴) · 𝑃) + (𝑇 · 𝐶)) + ((𝐵 · 𝑃) + 𝐷)) |
19 | 6, 8 | mulcli 10913 | . . . . . 6 ⊢ (𝑇 · 𝐴) ∈ ℂ |
20 | numma.3 | . . . . . . 7 ⊢ 𝐵 ∈ ℕ0 | |
21 | 20 | nn0cni 12175 | . . . . . 6 ⊢ 𝐵 ∈ ℂ |
22 | 19, 21, 10 | adddiri 10919 | . . . . 5 ⊢ (((𝑇 · 𝐴) + 𝐵) · 𝑃) = (((𝑇 · 𝐴) · 𝑃) + (𝐵 · 𝑃)) |
23 | 22 | oveq1i 7265 | . . . 4 ⊢ ((((𝑇 · 𝐴) + 𝐵) · 𝑃) + ((𝑇 · 𝐶) + 𝐷)) = ((((𝑇 · 𝐴) · 𝑃) + (𝐵 · 𝑃)) + ((𝑇 · 𝐶) + 𝐷)) |
24 | 19, 10 | mulcli 10913 | . . . . 5 ⊢ ((𝑇 · 𝐴) · 𝑃) ∈ ℂ |
25 | 6, 13 | mulcli 10913 | . . . . 5 ⊢ (𝑇 · 𝐶) ∈ ℂ |
26 | 21, 10 | mulcli 10913 | . . . . 5 ⊢ (𝐵 · 𝑃) ∈ ℂ |
27 | numma.5 | . . . . . 6 ⊢ 𝐷 ∈ ℕ0 | |
28 | 27 | nn0cni 12175 | . . . . 5 ⊢ 𝐷 ∈ ℂ |
29 | 24, 25, 26, 28 | add4i 11129 | . . . 4 ⊢ ((((𝑇 · 𝐴) · 𝑃) + (𝑇 · 𝐶)) + ((𝐵 · 𝑃) + 𝐷)) = ((((𝑇 · 𝐴) · 𝑃) + (𝐵 · 𝑃)) + ((𝑇 · 𝐶) + 𝐷)) |
30 | 23, 29 | eqtr4i 2769 | . . 3 ⊢ ((((𝑇 · 𝐴) + 𝐵) · 𝑃) + ((𝑇 · 𝐶) + 𝐷)) = ((((𝑇 · 𝐴) · 𝑃) + (𝑇 · 𝐶)) + ((𝐵 · 𝑃) + 𝐷)) |
31 | 18, 30 | eqtr4i 2769 | . 2 ⊢ ((𝑇 · ((𝐴 · 𝑃) + 𝐶)) + ((𝐵 · 𝑃) + 𝐷)) = ((((𝑇 · 𝐴) + 𝐵) · 𝑃) + ((𝑇 · 𝐶) + 𝐷)) |
32 | numma.9 | . . . 4 ⊢ ((𝐴 · 𝑃) + 𝐶) = 𝐸 | |
33 | 32 | oveq2i 7266 | . . 3 ⊢ (𝑇 · ((𝐴 · 𝑃) + 𝐶)) = (𝑇 · 𝐸) |
34 | numma.10 | . . 3 ⊢ ((𝐵 · 𝑃) + 𝐷) = 𝐹 | |
35 | 33, 34 | oveq12i 7267 | . 2 ⊢ ((𝑇 · ((𝐴 · 𝑃) + 𝐶)) + ((𝐵 · 𝑃) + 𝐷)) = ((𝑇 · 𝐸) + 𝐹) |
36 | 4, 31, 35 | 3eqtr2i 2772 | 1 ⊢ ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 (class class class)co 7255 + caddc 10805 · cmul 10807 ℕ0cn0 12163 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-nn 11904 df-n0 12164 |
This theorem is referenced by: nummac 12411 numadd 12413 decma 12417 |
Copyright terms: Public domain | W3C validator |