MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numma Structured version   Visualization version   GIF version

Theorem numma 12751
Description: Perform a multiply-add of two decimal integers ๐‘€ and ๐‘ against a fixed multiplicand ๐‘ƒ (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
numma.1 ๐‘‡ โˆˆ โ„•0
numma.2 ๐ด โˆˆ โ„•0
numma.3 ๐ต โˆˆ โ„•0
numma.4 ๐ถ โˆˆ โ„•0
numma.5 ๐ท โˆˆ โ„•0
numma.6 ๐‘€ = ((๐‘‡ ยท ๐ด) + ๐ต)
numma.7 ๐‘ = ((๐‘‡ ยท ๐ถ) + ๐ท)
numma.8 ๐‘ƒ โˆˆ โ„•0
numma.9 ((๐ด ยท ๐‘ƒ) + ๐ถ) = ๐ธ
numma.10 ((๐ต ยท ๐‘ƒ) + ๐ท) = ๐น
Assertion
Ref Expression
numma ((๐‘€ ยท ๐‘ƒ) + ๐‘) = ((๐‘‡ ยท ๐ธ) + ๐น)

Proof of Theorem numma
StepHypRef Expression
1 numma.6 . . . 4 ๐‘€ = ((๐‘‡ ยท ๐ด) + ๐ต)
21oveq1i 7430 . . 3 (๐‘€ ยท ๐‘ƒ) = (((๐‘‡ ยท ๐ด) + ๐ต) ยท ๐‘ƒ)
3 numma.7 . . 3 ๐‘ = ((๐‘‡ ยท ๐ถ) + ๐ท)
42, 3oveq12i 7432 . 2 ((๐‘€ ยท ๐‘ƒ) + ๐‘) = ((((๐‘‡ ยท ๐ด) + ๐ต) ยท ๐‘ƒ) + ((๐‘‡ ยท ๐ถ) + ๐ท))
5 numma.1 . . . . . . 7 ๐‘‡ โˆˆ โ„•0
65nn0cni 12514 . . . . . 6 ๐‘‡ โˆˆ โ„‚
7 numma.2 . . . . . . . 8 ๐ด โˆˆ โ„•0
87nn0cni 12514 . . . . . . 7 ๐ด โˆˆ โ„‚
9 numma.8 . . . . . . . 8 ๐‘ƒ โˆˆ โ„•0
109nn0cni 12514 . . . . . . 7 ๐‘ƒ โˆˆ โ„‚
118, 10mulcli 11251 . . . . . 6 (๐ด ยท ๐‘ƒ) โˆˆ โ„‚
12 numma.4 . . . . . . 7 ๐ถ โˆˆ โ„•0
1312nn0cni 12514 . . . . . 6 ๐ถ โˆˆ โ„‚
146, 11, 13adddii 11256 . . . . 5 (๐‘‡ ยท ((๐ด ยท ๐‘ƒ) + ๐ถ)) = ((๐‘‡ ยท (๐ด ยท ๐‘ƒ)) + (๐‘‡ ยท ๐ถ))
156, 8, 10mulassi 11255 . . . . . 6 ((๐‘‡ ยท ๐ด) ยท ๐‘ƒ) = (๐‘‡ ยท (๐ด ยท ๐‘ƒ))
1615oveq1i 7430 . . . . 5 (((๐‘‡ ยท ๐ด) ยท ๐‘ƒ) + (๐‘‡ ยท ๐ถ)) = ((๐‘‡ ยท (๐ด ยท ๐‘ƒ)) + (๐‘‡ ยท ๐ถ))
1714, 16eqtr4i 2759 . . . 4 (๐‘‡ ยท ((๐ด ยท ๐‘ƒ) + ๐ถ)) = (((๐‘‡ ยท ๐ด) ยท ๐‘ƒ) + (๐‘‡ ยท ๐ถ))
1817oveq1i 7430 . . 3 ((๐‘‡ ยท ((๐ด ยท ๐‘ƒ) + ๐ถ)) + ((๐ต ยท ๐‘ƒ) + ๐ท)) = ((((๐‘‡ ยท ๐ด) ยท ๐‘ƒ) + (๐‘‡ ยท ๐ถ)) + ((๐ต ยท ๐‘ƒ) + ๐ท))
196, 8mulcli 11251 . . . . . 6 (๐‘‡ ยท ๐ด) โˆˆ โ„‚
20 numma.3 . . . . . . 7 ๐ต โˆˆ โ„•0
2120nn0cni 12514 . . . . . 6 ๐ต โˆˆ โ„‚
2219, 21, 10adddiri 11257 . . . . 5 (((๐‘‡ ยท ๐ด) + ๐ต) ยท ๐‘ƒ) = (((๐‘‡ ยท ๐ด) ยท ๐‘ƒ) + (๐ต ยท ๐‘ƒ))
2322oveq1i 7430 . . . 4 ((((๐‘‡ ยท ๐ด) + ๐ต) ยท ๐‘ƒ) + ((๐‘‡ ยท ๐ถ) + ๐ท)) = ((((๐‘‡ ยท ๐ด) ยท ๐‘ƒ) + (๐ต ยท ๐‘ƒ)) + ((๐‘‡ ยท ๐ถ) + ๐ท))
2419, 10mulcli 11251 . . . . 5 ((๐‘‡ ยท ๐ด) ยท ๐‘ƒ) โˆˆ โ„‚
256, 13mulcli 11251 . . . . 5 (๐‘‡ ยท ๐ถ) โˆˆ โ„‚
2621, 10mulcli 11251 . . . . 5 (๐ต ยท ๐‘ƒ) โˆˆ โ„‚
27 numma.5 . . . . . 6 ๐ท โˆˆ โ„•0
2827nn0cni 12514 . . . . 5 ๐ท โˆˆ โ„‚
2924, 25, 26, 28add4i 11468 . . . 4 ((((๐‘‡ ยท ๐ด) ยท ๐‘ƒ) + (๐‘‡ ยท ๐ถ)) + ((๐ต ยท ๐‘ƒ) + ๐ท)) = ((((๐‘‡ ยท ๐ด) ยท ๐‘ƒ) + (๐ต ยท ๐‘ƒ)) + ((๐‘‡ ยท ๐ถ) + ๐ท))
3023, 29eqtr4i 2759 . . 3 ((((๐‘‡ ยท ๐ด) + ๐ต) ยท ๐‘ƒ) + ((๐‘‡ ยท ๐ถ) + ๐ท)) = ((((๐‘‡ ยท ๐ด) ยท ๐‘ƒ) + (๐‘‡ ยท ๐ถ)) + ((๐ต ยท ๐‘ƒ) + ๐ท))
3118, 30eqtr4i 2759 . 2 ((๐‘‡ ยท ((๐ด ยท ๐‘ƒ) + ๐ถ)) + ((๐ต ยท ๐‘ƒ) + ๐ท)) = ((((๐‘‡ ยท ๐ด) + ๐ต) ยท ๐‘ƒ) + ((๐‘‡ ยท ๐ถ) + ๐ท))
32 numma.9 . . . 4 ((๐ด ยท ๐‘ƒ) + ๐ถ) = ๐ธ
3332oveq2i 7431 . . 3 (๐‘‡ ยท ((๐ด ยท ๐‘ƒ) + ๐ถ)) = (๐‘‡ ยท ๐ธ)
34 numma.10 . . 3 ((๐ต ยท ๐‘ƒ) + ๐ท) = ๐น
3533, 34oveq12i 7432 . 2 ((๐‘‡ ยท ((๐ด ยท ๐‘ƒ) + ๐ถ)) + ((๐ต ยท ๐‘ƒ) + ๐ท)) = ((๐‘‡ ยท ๐ธ) + ๐น)
364, 31, 353eqtr2i 2762 1 ((๐‘€ ยท ๐‘ƒ) + ๐‘) = ((๐‘‡ ยท ๐ธ) + ๐น)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534   โˆˆ wcel 2099  (class class class)co 7420   + caddc 11141   ยท cmul 11143  โ„•0cn0 12502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-ov 7423  df-om 7871  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-er 8724  df-en 8964  df-dom 8965  df-sdom 8966  df-pnf 11280  df-mnf 11281  df-ltxr 11283  df-nn 12243  df-n0 12503
This theorem is referenced by:  nummac  12752  numadd  12754  decma  12758
  Copyright terms: Public domain W3C validator