MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  9t11e99 Structured version   Visualization version   GIF version

Theorem 9t11e99 12865
Description: 9 times 11 equals 99. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 6-Sep-2021.)
Assertion
Ref Expression
9t11e99 (9 · 11) = 99

Proof of Theorem 9t11e99
StepHypRef Expression
1 9cn 12367 . . . 4 9 ∈ ℂ
2 10nn0 12753 . . . . . 6 10 ∈ ℕ0
32nn0cni 12540 . . . . 5 10 ∈ ℂ
4 ax-1cn 11214 . . . . 5 1 ∈ ℂ
53, 4mulcli 11269 . . . 4 (10 · 1) ∈ ℂ
61, 5, 4adddii 11274 . . 3 (9 · ((10 · 1) + 1)) = ((9 · (10 · 1)) + (9 · 1))
73mulridi 11266 . . . . . 6 (10 · 1) = 10
87oveq2i 7443 . . . . 5 (9 · (10 · 1)) = (9 · 10)
91, 3mulcomi 11270 . . . . 5 (9 · 10) = (10 · 9)
108, 9eqtri 2764 . . . 4 (9 · (10 · 1)) = (10 · 9)
111mulridi 11266 . . . 4 (9 · 1) = 9
1210, 11oveq12i 7444 . . 3 ((9 · (10 · 1)) + (9 · 1)) = ((10 · 9) + 9)
136, 12eqtri 2764 . 2 (9 · ((10 · 1) + 1)) = ((10 · 9) + 9)
14 dfdec10 12738 . . 3 11 = ((10 · 1) + 1)
1514oveq2i 7443 . 2 (9 · 11) = (9 · ((10 · 1) + 1))
16 dfdec10 12738 . 2 99 = ((10 · 9) + 9)
1713, 15, 163eqtr4i 2774 1 (9 · 11) = 99
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  (class class class)co 7432  0cc0 11156  1c1 11157   + caddc 11159   · cmul 11161  9c9 12329  cdc 12735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-ltxr 11301  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-dec 12736
This theorem is referenced by:  3dvds2dec  16371  1259lem3  17171
  Copyright terms: Public domain W3C validator