MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numltc Structured version   Visualization version   GIF version

Theorem numltc 12759
Description: Comparing two decimal integers (unequal higher places). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
numlt.1 𝑇 ∈ ℕ
numlt.2 𝐴 ∈ ℕ0
numlt.3 𝐵 ∈ ℕ0
numltc.3 𝐶 ∈ ℕ0
numltc.4 𝐷 ∈ ℕ0
numltc.5 𝐶 < 𝑇
numltc.6 𝐴 < 𝐵
Assertion
Ref Expression
numltc ((𝑇 · 𝐴) + 𝐶) < ((𝑇 · 𝐵) + 𝐷)

Proof of Theorem numltc
StepHypRef Expression
1 numlt.1 . . . . 5 𝑇 ∈ ℕ
2 numlt.2 . . . . 5 𝐴 ∈ ℕ0
3 numltc.3 . . . . 5 𝐶 ∈ ℕ0
4 numltc.5 . . . . 5 𝐶 < 𝑇
51, 2, 3, 1, 4numlt 12758 . . . 4 ((𝑇 · 𝐴) + 𝐶) < ((𝑇 · 𝐴) + 𝑇)
61nnrei 12275 . . . . . . 7 𝑇 ∈ ℝ
76recni 11275 . . . . . 6 𝑇 ∈ ℂ
82nn0rei 12537 . . . . . . 7 𝐴 ∈ ℝ
98recni 11275 . . . . . 6 𝐴 ∈ ℂ
10 ax-1cn 11213 . . . . . 6 1 ∈ ℂ
117, 9, 10adddii 11273 . . . . 5 (𝑇 · (𝐴 + 1)) = ((𝑇 · 𝐴) + (𝑇 · 1))
127mulridi 11265 . . . . . 6 (𝑇 · 1) = 𝑇
1312oveq2i 7442 . . . . 5 ((𝑇 · 𝐴) + (𝑇 · 1)) = ((𝑇 · 𝐴) + 𝑇)
1411, 13eqtri 2765 . . . 4 (𝑇 · (𝐴 + 1)) = ((𝑇 · 𝐴) + 𝑇)
155, 14breqtrri 5170 . . 3 ((𝑇 · 𝐴) + 𝐶) < (𝑇 · (𝐴 + 1))
16 numltc.6 . . . . 5 𝐴 < 𝐵
17 numlt.3 . . . . . 6 𝐵 ∈ ℕ0
18 nn0ltp1le 12676 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 < 𝐵 ↔ (𝐴 + 1) ≤ 𝐵))
192, 17, 18mp2an 692 . . . . 5 (𝐴 < 𝐵 ↔ (𝐴 + 1) ≤ 𝐵)
2016, 19mpbi 230 . . . 4 (𝐴 + 1) ≤ 𝐵
211nngt0i 12305 . . . . 5 0 < 𝑇
22 peano2re 11434 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
238, 22ax-mp 5 . . . . . 6 (𝐴 + 1) ∈ ℝ
2417nn0rei 12537 . . . . . 6 𝐵 ∈ ℝ
2523, 24, 6lemul2i 12191 . . . . 5 (0 < 𝑇 → ((𝐴 + 1) ≤ 𝐵 ↔ (𝑇 · (𝐴 + 1)) ≤ (𝑇 · 𝐵)))
2621, 25ax-mp 5 . . . 4 ((𝐴 + 1) ≤ 𝐵 ↔ (𝑇 · (𝐴 + 1)) ≤ (𝑇 · 𝐵))
2720, 26mpbi 230 . . 3 (𝑇 · (𝐴 + 1)) ≤ (𝑇 · 𝐵)
286, 8remulcli 11277 . . . . 5 (𝑇 · 𝐴) ∈ ℝ
293nn0rei 12537 . . . . 5 𝐶 ∈ ℝ
3028, 29readdcli 11276 . . . 4 ((𝑇 · 𝐴) + 𝐶) ∈ ℝ
316, 23remulcli 11277 . . . 4 (𝑇 · (𝐴 + 1)) ∈ ℝ
326, 24remulcli 11277 . . . 4 (𝑇 · 𝐵) ∈ ℝ
3330, 31, 32ltletri 11389 . . 3 ((((𝑇 · 𝐴) + 𝐶) < (𝑇 · (𝐴 + 1)) ∧ (𝑇 · (𝐴 + 1)) ≤ (𝑇 · 𝐵)) → ((𝑇 · 𝐴) + 𝐶) < (𝑇 · 𝐵))
3415, 27, 33mp2an 692 . 2 ((𝑇 · 𝐴) + 𝐶) < (𝑇 · 𝐵)
35 numltc.4 . . 3 𝐷 ∈ ℕ0
3632, 35nn0addge1i 12574 . 2 (𝑇 · 𝐵) ≤ ((𝑇 · 𝐵) + 𝐷)
3735nn0rei 12537 . . . 4 𝐷 ∈ ℝ
3832, 37readdcli 11276 . . 3 ((𝑇 · 𝐵) + 𝐷) ∈ ℝ
3930, 32, 38ltletri 11389 . 2 ((((𝑇 · 𝐴) + 𝐶) < (𝑇 · 𝐵) ∧ (𝑇 · 𝐵) ≤ ((𝑇 · 𝐵) + 𝐷)) → ((𝑇 · 𝐴) + 𝐶) < ((𝑇 · 𝐵) + 𝐷))
4034, 36, 39mp2an 692 1 ((𝑇 · 𝐴) + 𝐶) < ((𝑇 · 𝐵) + 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2108   class class class wbr 5143  (class class class)co 7431  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cle 11296  cn 12266  0cn0 12526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614
This theorem is referenced by:  decltc  12762  numlti  12770
  Copyright terms: Public domain W3C validator