| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > numltc | Structured version Visualization version GIF version | ||
| Description: Comparing two decimal integers (unequal higher places). (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| numlt.1 | ⊢ 𝑇 ∈ ℕ |
| numlt.2 | ⊢ 𝐴 ∈ ℕ0 |
| numlt.3 | ⊢ 𝐵 ∈ ℕ0 |
| numltc.3 | ⊢ 𝐶 ∈ ℕ0 |
| numltc.4 | ⊢ 𝐷 ∈ ℕ0 |
| numltc.5 | ⊢ 𝐶 < 𝑇 |
| numltc.6 | ⊢ 𝐴 < 𝐵 |
| Ref | Expression |
|---|---|
| numltc | ⊢ ((𝑇 · 𝐴) + 𝐶) < ((𝑇 · 𝐵) + 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | numlt.1 | . . . . 5 ⊢ 𝑇 ∈ ℕ | |
| 2 | numlt.2 | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
| 3 | numltc.3 | . . . . 5 ⊢ 𝐶 ∈ ℕ0 | |
| 4 | numltc.5 | . . . . 5 ⊢ 𝐶 < 𝑇 | |
| 5 | 1, 2, 3, 1, 4 | numlt 12674 | . . . 4 ⊢ ((𝑇 · 𝐴) + 𝐶) < ((𝑇 · 𝐴) + 𝑇) |
| 6 | 1 | nnrei 12195 | . . . . . . 7 ⊢ 𝑇 ∈ ℝ |
| 7 | 6 | recni 11188 | . . . . . 6 ⊢ 𝑇 ∈ ℂ |
| 8 | 2 | nn0rei 12453 | . . . . . . 7 ⊢ 𝐴 ∈ ℝ |
| 9 | 8 | recni 11188 | . . . . . 6 ⊢ 𝐴 ∈ ℂ |
| 10 | ax-1cn 11126 | . . . . . 6 ⊢ 1 ∈ ℂ | |
| 11 | 7, 9, 10 | adddii 11186 | . . . . 5 ⊢ (𝑇 · (𝐴 + 1)) = ((𝑇 · 𝐴) + (𝑇 · 1)) |
| 12 | 7 | mulridi 11178 | . . . . . 6 ⊢ (𝑇 · 1) = 𝑇 |
| 13 | 12 | oveq2i 7398 | . . . . 5 ⊢ ((𝑇 · 𝐴) + (𝑇 · 1)) = ((𝑇 · 𝐴) + 𝑇) |
| 14 | 11, 13 | eqtri 2752 | . . . 4 ⊢ (𝑇 · (𝐴 + 1)) = ((𝑇 · 𝐴) + 𝑇) |
| 15 | 5, 14 | breqtrri 5134 | . . 3 ⊢ ((𝑇 · 𝐴) + 𝐶) < (𝑇 · (𝐴 + 1)) |
| 16 | numltc.6 | . . . . 5 ⊢ 𝐴 < 𝐵 | |
| 17 | numlt.3 | . . . . . 6 ⊢ 𝐵 ∈ ℕ0 | |
| 18 | nn0ltp1le 12592 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 < 𝐵 ↔ (𝐴 + 1) ≤ 𝐵)) | |
| 19 | 2, 17, 18 | mp2an 692 | . . . . 5 ⊢ (𝐴 < 𝐵 ↔ (𝐴 + 1) ≤ 𝐵) |
| 20 | 16, 19 | mpbi 230 | . . . 4 ⊢ (𝐴 + 1) ≤ 𝐵 |
| 21 | 1 | nngt0i 12225 | . . . . 5 ⊢ 0 < 𝑇 |
| 22 | peano2re 11347 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ) | |
| 23 | 8, 22 | ax-mp 5 | . . . . . 6 ⊢ (𝐴 + 1) ∈ ℝ |
| 24 | 17 | nn0rei 12453 | . . . . . 6 ⊢ 𝐵 ∈ ℝ |
| 25 | 23, 24, 6 | lemul2i 12106 | . . . . 5 ⊢ (0 < 𝑇 → ((𝐴 + 1) ≤ 𝐵 ↔ (𝑇 · (𝐴 + 1)) ≤ (𝑇 · 𝐵))) |
| 26 | 21, 25 | ax-mp 5 | . . . 4 ⊢ ((𝐴 + 1) ≤ 𝐵 ↔ (𝑇 · (𝐴 + 1)) ≤ (𝑇 · 𝐵)) |
| 27 | 20, 26 | mpbi 230 | . . 3 ⊢ (𝑇 · (𝐴 + 1)) ≤ (𝑇 · 𝐵) |
| 28 | 6, 8 | remulcli 11190 | . . . . 5 ⊢ (𝑇 · 𝐴) ∈ ℝ |
| 29 | 3 | nn0rei 12453 | . . . . 5 ⊢ 𝐶 ∈ ℝ |
| 30 | 28, 29 | readdcli 11189 | . . . 4 ⊢ ((𝑇 · 𝐴) + 𝐶) ∈ ℝ |
| 31 | 6, 23 | remulcli 11190 | . . . 4 ⊢ (𝑇 · (𝐴 + 1)) ∈ ℝ |
| 32 | 6, 24 | remulcli 11190 | . . . 4 ⊢ (𝑇 · 𝐵) ∈ ℝ |
| 33 | 30, 31, 32 | ltletri 11302 | . . 3 ⊢ ((((𝑇 · 𝐴) + 𝐶) < (𝑇 · (𝐴 + 1)) ∧ (𝑇 · (𝐴 + 1)) ≤ (𝑇 · 𝐵)) → ((𝑇 · 𝐴) + 𝐶) < (𝑇 · 𝐵)) |
| 34 | 15, 27, 33 | mp2an 692 | . 2 ⊢ ((𝑇 · 𝐴) + 𝐶) < (𝑇 · 𝐵) |
| 35 | numltc.4 | . . 3 ⊢ 𝐷 ∈ ℕ0 | |
| 36 | 32, 35 | nn0addge1i 12490 | . 2 ⊢ (𝑇 · 𝐵) ≤ ((𝑇 · 𝐵) + 𝐷) |
| 37 | 35 | nn0rei 12453 | . . . 4 ⊢ 𝐷 ∈ ℝ |
| 38 | 32, 37 | readdcli 11189 | . . 3 ⊢ ((𝑇 · 𝐵) + 𝐷) ∈ ℝ |
| 39 | 30, 32, 38 | ltletri 11302 | . 2 ⊢ ((((𝑇 · 𝐴) + 𝐶) < (𝑇 · 𝐵) ∧ (𝑇 · 𝐵) ≤ ((𝑇 · 𝐵) + 𝐷)) → ((𝑇 · 𝐴) + 𝐶) < ((𝑇 · 𝐵) + 𝐷)) |
| 40 | 34, 36, 39 | mp2an 692 | 1 ⊢ ((𝑇 · 𝐴) + 𝐶) < ((𝑇 · 𝐵) + 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 class class class wbr 5107 (class class class)co 7387 ℝcr 11067 0cc0 11068 1c1 11069 + caddc 11071 · cmul 11073 < clt 11208 ≤ cle 11209 ℕcn 12186 ℕ0cn0 12442 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 |
| This theorem is referenced by: decltc 12678 numlti 12686 |
| Copyright terms: Public domain | W3C validator |