| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > numltc | Structured version Visualization version GIF version | ||
| Description: Comparing two decimal integers (unequal higher places). (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| numlt.1 | ⊢ 𝑇 ∈ ℕ |
| numlt.2 | ⊢ 𝐴 ∈ ℕ0 |
| numlt.3 | ⊢ 𝐵 ∈ ℕ0 |
| numltc.3 | ⊢ 𝐶 ∈ ℕ0 |
| numltc.4 | ⊢ 𝐷 ∈ ℕ0 |
| numltc.5 | ⊢ 𝐶 < 𝑇 |
| numltc.6 | ⊢ 𝐴 < 𝐵 |
| Ref | Expression |
|---|---|
| numltc | ⊢ ((𝑇 · 𝐴) + 𝐶) < ((𝑇 · 𝐵) + 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | numlt.1 | . . . . 5 ⊢ 𝑇 ∈ ℕ | |
| 2 | numlt.2 | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
| 3 | numltc.3 | . . . . 5 ⊢ 𝐶 ∈ ℕ0 | |
| 4 | numltc.5 | . . . . 5 ⊢ 𝐶 < 𝑇 | |
| 5 | 1, 2, 3, 1, 4 | numlt 12733 | . . . 4 ⊢ ((𝑇 · 𝐴) + 𝐶) < ((𝑇 · 𝐴) + 𝑇) |
| 6 | 1 | nnrei 12249 | . . . . . . 7 ⊢ 𝑇 ∈ ℝ |
| 7 | 6 | recni 11249 | . . . . . 6 ⊢ 𝑇 ∈ ℂ |
| 8 | 2 | nn0rei 12512 | . . . . . . 7 ⊢ 𝐴 ∈ ℝ |
| 9 | 8 | recni 11249 | . . . . . 6 ⊢ 𝐴 ∈ ℂ |
| 10 | ax-1cn 11187 | . . . . . 6 ⊢ 1 ∈ ℂ | |
| 11 | 7, 9, 10 | adddii 11247 | . . . . 5 ⊢ (𝑇 · (𝐴 + 1)) = ((𝑇 · 𝐴) + (𝑇 · 1)) |
| 12 | 7 | mulridi 11239 | . . . . . 6 ⊢ (𝑇 · 1) = 𝑇 |
| 13 | 12 | oveq2i 7416 | . . . . 5 ⊢ ((𝑇 · 𝐴) + (𝑇 · 1)) = ((𝑇 · 𝐴) + 𝑇) |
| 14 | 11, 13 | eqtri 2758 | . . . 4 ⊢ (𝑇 · (𝐴 + 1)) = ((𝑇 · 𝐴) + 𝑇) |
| 15 | 5, 14 | breqtrri 5146 | . . 3 ⊢ ((𝑇 · 𝐴) + 𝐶) < (𝑇 · (𝐴 + 1)) |
| 16 | numltc.6 | . . . . 5 ⊢ 𝐴 < 𝐵 | |
| 17 | numlt.3 | . . . . . 6 ⊢ 𝐵 ∈ ℕ0 | |
| 18 | nn0ltp1le 12651 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 < 𝐵 ↔ (𝐴 + 1) ≤ 𝐵)) | |
| 19 | 2, 17, 18 | mp2an 692 | . . . . 5 ⊢ (𝐴 < 𝐵 ↔ (𝐴 + 1) ≤ 𝐵) |
| 20 | 16, 19 | mpbi 230 | . . . 4 ⊢ (𝐴 + 1) ≤ 𝐵 |
| 21 | 1 | nngt0i 12279 | . . . . 5 ⊢ 0 < 𝑇 |
| 22 | peano2re 11408 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ) | |
| 23 | 8, 22 | ax-mp 5 | . . . . . 6 ⊢ (𝐴 + 1) ∈ ℝ |
| 24 | 17 | nn0rei 12512 | . . . . . 6 ⊢ 𝐵 ∈ ℝ |
| 25 | 23, 24, 6 | lemul2i 12165 | . . . . 5 ⊢ (0 < 𝑇 → ((𝐴 + 1) ≤ 𝐵 ↔ (𝑇 · (𝐴 + 1)) ≤ (𝑇 · 𝐵))) |
| 26 | 21, 25 | ax-mp 5 | . . . 4 ⊢ ((𝐴 + 1) ≤ 𝐵 ↔ (𝑇 · (𝐴 + 1)) ≤ (𝑇 · 𝐵)) |
| 27 | 20, 26 | mpbi 230 | . . 3 ⊢ (𝑇 · (𝐴 + 1)) ≤ (𝑇 · 𝐵) |
| 28 | 6, 8 | remulcli 11251 | . . . . 5 ⊢ (𝑇 · 𝐴) ∈ ℝ |
| 29 | 3 | nn0rei 12512 | . . . . 5 ⊢ 𝐶 ∈ ℝ |
| 30 | 28, 29 | readdcli 11250 | . . . 4 ⊢ ((𝑇 · 𝐴) + 𝐶) ∈ ℝ |
| 31 | 6, 23 | remulcli 11251 | . . . 4 ⊢ (𝑇 · (𝐴 + 1)) ∈ ℝ |
| 32 | 6, 24 | remulcli 11251 | . . . 4 ⊢ (𝑇 · 𝐵) ∈ ℝ |
| 33 | 30, 31, 32 | ltletri 11363 | . . 3 ⊢ ((((𝑇 · 𝐴) + 𝐶) < (𝑇 · (𝐴 + 1)) ∧ (𝑇 · (𝐴 + 1)) ≤ (𝑇 · 𝐵)) → ((𝑇 · 𝐴) + 𝐶) < (𝑇 · 𝐵)) |
| 34 | 15, 27, 33 | mp2an 692 | . 2 ⊢ ((𝑇 · 𝐴) + 𝐶) < (𝑇 · 𝐵) |
| 35 | numltc.4 | . . 3 ⊢ 𝐷 ∈ ℕ0 | |
| 36 | 32, 35 | nn0addge1i 12549 | . 2 ⊢ (𝑇 · 𝐵) ≤ ((𝑇 · 𝐵) + 𝐷) |
| 37 | 35 | nn0rei 12512 | . . . 4 ⊢ 𝐷 ∈ ℝ |
| 38 | 32, 37 | readdcli 11250 | . . 3 ⊢ ((𝑇 · 𝐵) + 𝐷) ∈ ℝ |
| 39 | 30, 32, 38 | ltletri 11363 | . 2 ⊢ ((((𝑇 · 𝐴) + 𝐶) < (𝑇 · 𝐵) ∧ (𝑇 · 𝐵) ≤ ((𝑇 · 𝐵) + 𝐷)) → ((𝑇 · 𝐴) + 𝐶) < ((𝑇 · 𝐵) + 𝐷)) |
| 40 | 34, 36, 39 | mp2an 692 | 1 ⊢ ((𝑇 · 𝐴) + 𝐶) < ((𝑇 · 𝐵) + 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2108 class class class wbr 5119 (class class class)co 7405 ℝcr 11128 0cc0 11129 1c1 11130 + caddc 11132 · cmul 11134 < clt 11269 ≤ cle 11270 ℕcn 12240 ℕ0cn0 12501 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-z 12589 |
| This theorem is referenced by: decltc 12737 numlti 12745 |
| Copyright terms: Public domain | W3C validator |