| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > numltc | Structured version Visualization version GIF version | ||
| Description: Comparing two decimal integers (unequal higher places). (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| numlt.1 | ⊢ 𝑇 ∈ ℕ |
| numlt.2 | ⊢ 𝐴 ∈ ℕ0 |
| numlt.3 | ⊢ 𝐵 ∈ ℕ0 |
| numltc.3 | ⊢ 𝐶 ∈ ℕ0 |
| numltc.4 | ⊢ 𝐷 ∈ ℕ0 |
| numltc.5 | ⊢ 𝐶 < 𝑇 |
| numltc.6 | ⊢ 𝐴 < 𝐵 |
| Ref | Expression |
|---|---|
| numltc | ⊢ ((𝑇 · 𝐴) + 𝐶) < ((𝑇 · 𝐵) + 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | numlt.1 | . . . . 5 ⊢ 𝑇 ∈ ℕ | |
| 2 | numlt.2 | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
| 3 | numltc.3 | . . . . 5 ⊢ 𝐶 ∈ ℕ0 | |
| 4 | numltc.5 | . . . . 5 ⊢ 𝐶 < 𝑇 | |
| 5 | 1, 2, 3, 1, 4 | numlt 12634 | . . . 4 ⊢ ((𝑇 · 𝐴) + 𝐶) < ((𝑇 · 𝐴) + 𝑇) |
| 6 | 1 | nnrei 12155 | . . . . . . 7 ⊢ 𝑇 ∈ ℝ |
| 7 | 6 | recni 11148 | . . . . . 6 ⊢ 𝑇 ∈ ℂ |
| 8 | 2 | nn0rei 12413 | . . . . . . 7 ⊢ 𝐴 ∈ ℝ |
| 9 | 8 | recni 11148 | . . . . . 6 ⊢ 𝐴 ∈ ℂ |
| 10 | ax-1cn 11086 | . . . . . 6 ⊢ 1 ∈ ℂ | |
| 11 | 7, 9, 10 | adddii 11146 | . . . . 5 ⊢ (𝑇 · (𝐴 + 1)) = ((𝑇 · 𝐴) + (𝑇 · 1)) |
| 12 | 7 | mulridi 11138 | . . . . . 6 ⊢ (𝑇 · 1) = 𝑇 |
| 13 | 12 | oveq2i 7364 | . . . . 5 ⊢ ((𝑇 · 𝐴) + (𝑇 · 1)) = ((𝑇 · 𝐴) + 𝑇) |
| 14 | 11, 13 | eqtri 2752 | . . . 4 ⊢ (𝑇 · (𝐴 + 1)) = ((𝑇 · 𝐴) + 𝑇) |
| 15 | 5, 14 | breqtrri 5122 | . . 3 ⊢ ((𝑇 · 𝐴) + 𝐶) < (𝑇 · (𝐴 + 1)) |
| 16 | numltc.6 | . . . . 5 ⊢ 𝐴 < 𝐵 | |
| 17 | numlt.3 | . . . . . 6 ⊢ 𝐵 ∈ ℕ0 | |
| 18 | nn0ltp1le 12552 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 < 𝐵 ↔ (𝐴 + 1) ≤ 𝐵)) | |
| 19 | 2, 17, 18 | mp2an 692 | . . . . 5 ⊢ (𝐴 < 𝐵 ↔ (𝐴 + 1) ≤ 𝐵) |
| 20 | 16, 19 | mpbi 230 | . . . 4 ⊢ (𝐴 + 1) ≤ 𝐵 |
| 21 | 1 | nngt0i 12185 | . . . . 5 ⊢ 0 < 𝑇 |
| 22 | peano2re 11307 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ) | |
| 23 | 8, 22 | ax-mp 5 | . . . . . 6 ⊢ (𝐴 + 1) ∈ ℝ |
| 24 | 17 | nn0rei 12413 | . . . . . 6 ⊢ 𝐵 ∈ ℝ |
| 25 | 23, 24, 6 | lemul2i 12066 | . . . . 5 ⊢ (0 < 𝑇 → ((𝐴 + 1) ≤ 𝐵 ↔ (𝑇 · (𝐴 + 1)) ≤ (𝑇 · 𝐵))) |
| 26 | 21, 25 | ax-mp 5 | . . . 4 ⊢ ((𝐴 + 1) ≤ 𝐵 ↔ (𝑇 · (𝐴 + 1)) ≤ (𝑇 · 𝐵)) |
| 27 | 20, 26 | mpbi 230 | . . 3 ⊢ (𝑇 · (𝐴 + 1)) ≤ (𝑇 · 𝐵) |
| 28 | 6, 8 | remulcli 11150 | . . . . 5 ⊢ (𝑇 · 𝐴) ∈ ℝ |
| 29 | 3 | nn0rei 12413 | . . . . 5 ⊢ 𝐶 ∈ ℝ |
| 30 | 28, 29 | readdcli 11149 | . . . 4 ⊢ ((𝑇 · 𝐴) + 𝐶) ∈ ℝ |
| 31 | 6, 23 | remulcli 11150 | . . . 4 ⊢ (𝑇 · (𝐴 + 1)) ∈ ℝ |
| 32 | 6, 24 | remulcli 11150 | . . . 4 ⊢ (𝑇 · 𝐵) ∈ ℝ |
| 33 | 30, 31, 32 | ltletri 11262 | . . 3 ⊢ ((((𝑇 · 𝐴) + 𝐶) < (𝑇 · (𝐴 + 1)) ∧ (𝑇 · (𝐴 + 1)) ≤ (𝑇 · 𝐵)) → ((𝑇 · 𝐴) + 𝐶) < (𝑇 · 𝐵)) |
| 34 | 15, 27, 33 | mp2an 692 | . 2 ⊢ ((𝑇 · 𝐴) + 𝐶) < (𝑇 · 𝐵) |
| 35 | numltc.4 | . . 3 ⊢ 𝐷 ∈ ℕ0 | |
| 36 | 32, 35 | nn0addge1i 12450 | . 2 ⊢ (𝑇 · 𝐵) ≤ ((𝑇 · 𝐵) + 𝐷) |
| 37 | 35 | nn0rei 12413 | . . . 4 ⊢ 𝐷 ∈ ℝ |
| 38 | 32, 37 | readdcli 11149 | . . 3 ⊢ ((𝑇 · 𝐵) + 𝐷) ∈ ℝ |
| 39 | 30, 32, 38 | ltletri 11262 | . 2 ⊢ ((((𝑇 · 𝐴) + 𝐶) < (𝑇 · 𝐵) ∧ (𝑇 · 𝐵) ≤ ((𝑇 · 𝐵) + 𝐷)) → ((𝑇 · 𝐴) + 𝐶) < ((𝑇 · 𝐵) + 𝐷)) |
| 40 | 34, 36, 39 | mp2an 692 | 1 ⊢ ((𝑇 · 𝐴) + 𝐶) < ((𝑇 · 𝐵) + 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 class class class wbr 5095 (class class class)co 7353 ℝcr 11027 0cc0 11028 1c1 11029 + caddc 11031 · cmul 11033 < clt 11168 ≤ cle 11169 ℕcn 12146 ℕ0cn0 12402 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 |
| This theorem is referenced by: decltc 12638 numlti 12646 |
| Copyright terms: Public domain | W3C validator |