![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > numltc | Structured version Visualization version GIF version |
Description: Comparing two decimal integers (unequal higher places). (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
numlt.1 | ⊢ 𝑇 ∈ ℕ |
numlt.2 | ⊢ 𝐴 ∈ ℕ0 |
numlt.3 | ⊢ 𝐵 ∈ ℕ0 |
numltc.3 | ⊢ 𝐶 ∈ ℕ0 |
numltc.4 | ⊢ 𝐷 ∈ ℕ0 |
numltc.5 | ⊢ 𝐶 < 𝑇 |
numltc.6 | ⊢ 𝐴 < 𝐵 |
Ref | Expression |
---|---|
numltc | ⊢ ((𝑇 · 𝐴) + 𝐶) < ((𝑇 · 𝐵) + 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numlt.1 | . . . . 5 ⊢ 𝑇 ∈ ℕ | |
2 | numlt.2 | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
3 | numltc.3 | . . . . 5 ⊢ 𝐶 ∈ ℕ0 | |
4 | numltc.5 | . . . . 5 ⊢ 𝐶 < 𝑇 | |
5 | 1, 2, 3, 1, 4 | numlt 12756 | . . . 4 ⊢ ((𝑇 · 𝐴) + 𝐶) < ((𝑇 · 𝐴) + 𝑇) |
6 | 1 | nnrei 12273 | . . . . . . 7 ⊢ 𝑇 ∈ ℝ |
7 | 6 | recni 11273 | . . . . . 6 ⊢ 𝑇 ∈ ℂ |
8 | 2 | nn0rei 12535 | . . . . . . 7 ⊢ 𝐴 ∈ ℝ |
9 | 8 | recni 11273 | . . . . . 6 ⊢ 𝐴 ∈ ℂ |
10 | ax-1cn 11211 | . . . . . 6 ⊢ 1 ∈ ℂ | |
11 | 7, 9, 10 | adddii 11271 | . . . . 5 ⊢ (𝑇 · (𝐴 + 1)) = ((𝑇 · 𝐴) + (𝑇 · 1)) |
12 | 7 | mulridi 11263 | . . . . . 6 ⊢ (𝑇 · 1) = 𝑇 |
13 | 12 | oveq2i 7442 | . . . . 5 ⊢ ((𝑇 · 𝐴) + (𝑇 · 1)) = ((𝑇 · 𝐴) + 𝑇) |
14 | 11, 13 | eqtri 2763 | . . . 4 ⊢ (𝑇 · (𝐴 + 1)) = ((𝑇 · 𝐴) + 𝑇) |
15 | 5, 14 | breqtrri 5175 | . . 3 ⊢ ((𝑇 · 𝐴) + 𝐶) < (𝑇 · (𝐴 + 1)) |
16 | numltc.6 | . . . . 5 ⊢ 𝐴 < 𝐵 | |
17 | numlt.3 | . . . . . 6 ⊢ 𝐵 ∈ ℕ0 | |
18 | nn0ltp1le 12674 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 < 𝐵 ↔ (𝐴 + 1) ≤ 𝐵)) | |
19 | 2, 17, 18 | mp2an 692 | . . . . 5 ⊢ (𝐴 < 𝐵 ↔ (𝐴 + 1) ≤ 𝐵) |
20 | 16, 19 | mpbi 230 | . . . 4 ⊢ (𝐴 + 1) ≤ 𝐵 |
21 | 1 | nngt0i 12303 | . . . . 5 ⊢ 0 < 𝑇 |
22 | peano2re 11432 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ) | |
23 | 8, 22 | ax-mp 5 | . . . . . 6 ⊢ (𝐴 + 1) ∈ ℝ |
24 | 17 | nn0rei 12535 | . . . . . 6 ⊢ 𝐵 ∈ ℝ |
25 | 23, 24, 6 | lemul2i 12189 | . . . . 5 ⊢ (0 < 𝑇 → ((𝐴 + 1) ≤ 𝐵 ↔ (𝑇 · (𝐴 + 1)) ≤ (𝑇 · 𝐵))) |
26 | 21, 25 | ax-mp 5 | . . . 4 ⊢ ((𝐴 + 1) ≤ 𝐵 ↔ (𝑇 · (𝐴 + 1)) ≤ (𝑇 · 𝐵)) |
27 | 20, 26 | mpbi 230 | . . 3 ⊢ (𝑇 · (𝐴 + 1)) ≤ (𝑇 · 𝐵) |
28 | 6, 8 | remulcli 11275 | . . . . 5 ⊢ (𝑇 · 𝐴) ∈ ℝ |
29 | 3 | nn0rei 12535 | . . . . 5 ⊢ 𝐶 ∈ ℝ |
30 | 28, 29 | readdcli 11274 | . . . 4 ⊢ ((𝑇 · 𝐴) + 𝐶) ∈ ℝ |
31 | 6, 23 | remulcli 11275 | . . . 4 ⊢ (𝑇 · (𝐴 + 1)) ∈ ℝ |
32 | 6, 24 | remulcli 11275 | . . . 4 ⊢ (𝑇 · 𝐵) ∈ ℝ |
33 | 30, 31, 32 | ltletri 11387 | . . 3 ⊢ ((((𝑇 · 𝐴) + 𝐶) < (𝑇 · (𝐴 + 1)) ∧ (𝑇 · (𝐴 + 1)) ≤ (𝑇 · 𝐵)) → ((𝑇 · 𝐴) + 𝐶) < (𝑇 · 𝐵)) |
34 | 15, 27, 33 | mp2an 692 | . 2 ⊢ ((𝑇 · 𝐴) + 𝐶) < (𝑇 · 𝐵) |
35 | numltc.4 | . . 3 ⊢ 𝐷 ∈ ℕ0 | |
36 | 32, 35 | nn0addge1i 12572 | . 2 ⊢ (𝑇 · 𝐵) ≤ ((𝑇 · 𝐵) + 𝐷) |
37 | 35 | nn0rei 12535 | . . . 4 ⊢ 𝐷 ∈ ℝ |
38 | 32, 37 | readdcli 11274 | . . 3 ⊢ ((𝑇 · 𝐵) + 𝐷) ∈ ℝ |
39 | 30, 32, 38 | ltletri 11387 | . 2 ⊢ ((((𝑇 · 𝐴) + 𝐶) < (𝑇 · 𝐵) ∧ (𝑇 · 𝐵) ≤ ((𝑇 · 𝐵) + 𝐷)) → ((𝑇 · 𝐴) + 𝐶) < ((𝑇 · 𝐵) + 𝐷)) |
40 | 34, 36, 39 | mp2an 692 | 1 ⊢ ((𝑇 · 𝐴) + 𝐶) < ((𝑇 · 𝐵) + 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∈ wcel 2106 class class class wbr 5148 (class class class)co 7431 ℝcr 11152 0cc0 11153 1c1 11154 + caddc 11156 · cmul 11158 < clt 11293 ≤ cle 11294 ℕcn 12264 ℕ0cn0 12524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 |
This theorem is referenced by: decltc 12760 numlti 12768 |
Copyright terms: Public domain | W3C validator |