Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > numsucc | Structured version Visualization version GIF version |
Description: The successor of a decimal integer (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
numsucc.1 | ⊢ 𝑌 ∈ ℕ0 |
numsucc.2 | ⊢ 𝑇 = (𝑌 + 1) |
numsucc.3 | ⊢ 𝐴 ∈ ℕ0 |
numsucc.4 | ⊢ (𝐴 + 1) = 𝐵 |
numsucc.5 | ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝑌) |
Ref | Expression |
---|---|
numsucc | ⊢ (𝑁 + 1) = ((𝑇 · 𝐵) + 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numsucc.2 | . . . . . . 7 ⊢ 𝑇 = (𝑌 + 1) | |
2 | numsucc.1 | . . . . . . . 8 ⊢ 𝑌 ∈ ℕ0 | |
3 | 1nn0 11964 | . . . . . . . 8 ⊢ 1 ∈ ℕ0 | |
4 | 2, 3 | nn0addcli 11985 | . . . . . . 7 ⊢ (𝑌 + 1) ∈ ℕ0 |
5 | 1, 4 | eqeltri 2849 | . . . . . 6 ⊢ 𝑇 ∈ ℕ0 |
6 | 5 | nn0cni 11960 | . . . . 5 ⊢ 𝑇 ∈ ℂ |
7 | 6 | mulid1i 10697 | . . . 4 ⊢ (𝑇 · 1) = 𝑇 |
8 | 7 | oveq2i 7168 | . . 3 ⊢ ((𝑇 · 𝐴) + (𝑇 · 1)) = ((𝑇 · 𝐴) + 𝑇) |
9 | numsucc.3 | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
10 | 9 | nn0cni 11960 | . . . 4 ⊢ 𝐴 ∈ ℂ |
11 | ax-1cn 10647 | . . . 4 ⊢ 1 ∈ ℂ | |
12 | 6, 10, 11 | adddii 10705 | . . 3 ⊢ (𝑇 · (𝐴 + 1)) = ((𝑇 · 𝐴) + (𝑇 · 1)) |
13 | 1 | eqcomi 2768 | . . . 4 ⊢ (𝑌 + 1) = 𝑇 |
14 | numsucc.5 | . . . 4 ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝑌) | |
15 | 5, 9, 2, 13, 14 | numsuc 12165 | . . 3 ⊢ (𝑁 + 1) = ((𝑇 · 𝐴) + 𝑇) |
16 | 8, 12, 15 | 3eqtr4ri 2793 | . 2 ⊢ (𝑁 + 1) = (𝑇 · (𝐴 + 1)) |
17 | numsucc.4 | . . 3 ⊢ (𝐴 + 1) = 𝐵 | |
18 | 17 | oveq2i 7168 | . 2 ⊢ (𝑇 · (𝐴 + 1)) = (𝑇 · 𝐵) |
19 | 9, 3 | nn0addcli 11985 | . . . 4 ⊢ (𝐴 + 1) ∈ ℕ0 |
20 | 17, 19 | eqeltrri 2850 | . . 3 ⊢ 𝐵 ∈ ℕ0 |
21 | 5, 20 | num0u 12162 | . 2 ⊢ (𝑇 · 𝐵) = ((𝑇 · 𝐵) + 0) |
22 | 16, 18, 21 | 3eqtri 2786 | 1 ⊢ (𝑁 + 1) = ((𝑇 · 𝐵) + 0) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2112 (class class class)co 7157 0cc0 10589 1c1 10590 + caddc 10592 · cmul 10594 ℕ0cn0 11948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5174 ax-nul 5181 ax-pow 5239 ax-pr 5303 ax-un 7466 ax-resscn 10646 ax-1cn 10647 ax-icn 10648 ax-addcl 10649 ax-addrcl 10650 ax-mulcl 10651 ax-mulrcl 10652 ax-mulcom 10653 ax-addass 10654 ax-mulass 10655 ax-distr 10656 ax-i2m1 10657 ax-1ne0 10658 ax-1rid 10659 ax-rnegex 10660 ax-rrecex 10661 ax-cnre 10662 ax-pre-lttri 10663 ax-pre-lttrn 10664 ax-pre-ltadd 10665 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3700 df-csb 3809 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-pss 3880 df-nul 4229 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4803 df-iun 4889 df-br 5038 df-opab 5100 df-mpt 5118 df-tr 5144 df-id 5435 df-eprel 5440 df-po 5448 df-so 5449 df-fr 5488 df-we 5490 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-rn 5540 df-res 5541 df-ima 5542 df-pred 6132 df-ord 6178 df-on 6179 df-lim 6180 df-suc 6181 df-iota 6300 df-fun 6343 df-fn 6344 df-f 6345 df-f1 6346 df-fo 6347 df-f1o 6348 df-fv 6349 df-ov 7160 df-om 7587 df-wrecs 7964 df-recs 8025 df-rdg 8063 df-er 8306 df-en 8542 df-dom 8543 df-sdom 8544 df-pnf 10729 df-mnf 10730 df-ltxr 10732 df-nn 11689 df-n0 11949 |
This theorem is referenced by: decsucc 12192 |
Copyright terms: Public domain | W3C validator |