![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > numsucc | Structured version Visualization version GIF version |
Description: The successor of a decimal integer (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
numsucc.1 | โข ๐ โ โ0 |
numsucc.2 | โข ๐ = (๐ + 1) |
numsucc.3 | โข ๐ด โ โ0 |
numsucc.4 | โข (๐ด + 1) = ๐ต |
numsucc.5 | โข ๐ = ((๐ ยท ๐ด) + ๐) |
Ref | Expression |
---|---|
numsucc | โข (๐ + 1) = ((๐ ยท ๐ต) + 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numsucc.2 | . . . . . . 7 โข ๐ = (๐ + 1) | |
2 | numsucc.1 | . . . . . . . 8 โข ๐ โ โ0 | |
3 | 1nn0 12488 | . . . . . . . 8 โข 1 โ โ0 | |
4 | 2, 3 | nn0addcli 12509 | . . . . . . 7 โข (๐ + 1) โ โ0 |
5 | 1, 4 | eqeltri 2830 | . . . . . 6 โข ๐ โ โ0 |
6 | 5 | nn0cni 12484 | . . . . 5 โข ๐ โ โ |
7 | 6 | mulridi 11218 | . . . 4 โข (๐ ยท 1) = ๐ |
8 | 7 | oveq2i 7420 | . . 3 โข ((๐ ยท ๐ด) + (๐ ยท 1)) = ((๐ ยท ๐ด) + ๐) |
9 | numsucc.3 | . . . . 5 โข ๐ด โ โ0 | |
10 | 9 | nn0cni 12484 | . . . 4 โข ๐ด โ โ |
11 | ax-1cn 11168 | . . . 4 โข 1 โ โ | |
12 | 6, 10, 11 | adddii 11226 | . . 3 โข (๐ ยท (๐ด + 1)) = ((๐ ยท ๐ด) + (๐ ยท 1)) |
13 | 1 | eqcomi 2742 | . . . 4 โข (๐ + 1) = ๐ |
14 | numsucc.5 | . . . 4 โข ๐ = ((๐ ยท ๐ด) + ๐) | |
15 | 5, 9, 2, 13, 14 | numsuc 12691 | . . 3 โข (๐ + 1) = ((๐ ยท ๐ด) + ๐) |
16 | 8, 12, 15 | 3eqtr4ri 2772 | . 2 โข (๐ + 1) = (๐ ยท (๐ด + 1)) |
17 | numsucc.4 | . . 3 โข (๐ด + 1) = ๐ต | |
18 | 17 | oveq2i 7420 | . 2 โข (๐ ยท (๐ด + 1)) = (๐ ยท ๐ต) |
19 | 9, 3 | nn0addcli 12509 | . . . 4 โข (๐ด + 1) โ โ0 |
20 | 17, 19 | eqeltrri 2831 | . . 3 โข ๐ต โ โ0 |
21 | 5, 20 | num0u 12688 | . 2 โข (๐ ยท ๐ต) = ((๐ ยท ๐ต) + 0) |
22 | 16, 18, 21 | 3eqtri 2765 | 1 โข (๐ + 1) = ((๐ ยท ๐ต) + 0) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 โ wcel 2107 (class class class)co 7409 0cc0 11110 1c1 11111 + caddc 11113 ยท cmul 11115 โ0cn0 12472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-ltxr 11253 df-nn 12213 df-n0 12473 |
This theorem is referenced by: decsucc 12718 |
Copyright terms: Public domain | W3C validator |