![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > numsucc | Structured version Visualization version GIF version |
Description: The successor of a decimal integer (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
numsucc.1 | ⊢ 𝑌 ∈ ℕ0 |
numsucc.2 | ⊢ 𝑇 = (𝑌 + 1) |
numsucc.3 | ⊢ 𝐴 ∈ ℕ0 |
numsucc.4 | ⊢ (𝐴 + 1) = 𝐵 |
numsucc.5 | ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝑌) |
Ref | Expression |
---|---|
numsucc | ⊢ (𝑁 + 1) = ((𝑇 · 𝐵) + 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numsucc.2 | . . . . . . 7 ⊢ 𝑇 = (𝑌 + 1) | |
2 | numsucc.1 | . . . . . . . 8 ⊢ 𝑌 ∈ ℕ0 | |
3 | 1nn0 11511 | . . . . . . . 8 ⊢ 1 ∈ ℕ0 | |
4 | 2, 3 | nn0addcli 11533 | . . . . . . 7 ⊢ (𝑌 + 1) ∈ ℕ0 |
5 | 1, 4 | eqeltri 2846 | . . . . . 6 ⊢ 𝑇 ∈ ℕ0 |
6 | 5 | nn0cni 11507 | . . . . 5 ⊢ 𝑇 ∈ ℂ |
7 | 6 | mulid1i 10244 | . . . 4 ⊢ (𝑇 · 1) = 𝑇 |
8 | 7 | oveq2i 6803 | . . 3 ⊢ ((𝑇 · 𝐴) + (𝑇 · 1)) = ((𝑇 · 𝐴) + 𝑇) |
9 | numsucc.3 | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
10 | 9 | nn0cni 11507 | . . . 4 ⊢ 𝐴 ∈ ℂ |
11 | ax-1cn 10196 | . . . 4 ⊢ 1 ∈ ℂ | |
12 | 6, 10, 11 | adddii 10252 | . . 3 ⊢ (𝑇 · (𝐴 + 1)) = ((𝑇 · 𝐴) + (𝑇 · 1)) |
13 | 1 | eqcomi 2780 | . . . 4 ⊢ (𝑌 + 1) = 𝑇 |
14 | numsucc.5 | . . . 4 ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝑌) | |
15 | 5, 9, 2, 13, 14 | numsuc 11714 | . . 3 ⊢ (𝑁 + 1) = ((𝑇 · 𝐴) + 𝑇) |
16 | 8, 12, 15 | 3eqtr4ri 2804 | . 2 ⊢ (𝑁 + 1) = (𝑇 · (𝐴 + 1)) |
17 | numsucc.4 | . . 3 ⊢ (𝐴 + 1) = 𝐵 | |
18 | 17 | oveq2i 6803 | . 2 ⊢ (𝑇 · (𝐴 + 1)) = (𝑇 · 𝐵) |
19 | 9, 3 | nn0addcli 11533 | . . . 4 ⊢ (𝐴 + 1) ∈ ℕ0 |
20 | 17, 19 | eqeltrri 2847 | . . 3 ⊢ 𝐵 ∈ ℕ0 |
21 | 5, 20 | num0u 11711 | . 2 ⊢ (𝑇 · 𝐵) = ((𝑇 · 𝐵) + 0) |
22 | 16, 18, 21 | 3eqtri 2797 | 1 ⊢ (𝑁 + 1) = ((𝑇 · 𝐵) + 0) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1631 ∈ wcel 2145 (class class class)co 6792 0cc0 10138 1c1 10139 + caddc 10141 · cmul 10143 ℕ0cn0 11495 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5821 df-ord 5867 df-on 5868 df-lim 5869 df-suc 5870 df-iota 5992 df-fun 6031 df-fn 6032 df-f 6033 df-f1 6034 df-fo 6035 df-f1o 6036 df-fv 6037 df-ov 6795 df-om 7213 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10278 df-mnf 10279 df-ltxr 10281 df-nn 11223 df-n0 11496 |
This theorem is referenced by: decsucc 11753 decsuccOLD 11754 |
Copyright terms: Public domain | W3C validator |