MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numsucc Structured version   Visualization version   GIF version

Theorem numsucc 12406
Description: The successor of a decimal integer (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
numsucc.1 𝑌 ∈ ℕ0
numsucc.2 𝑇 = (𝑌 + 1)
numsucc.3 𝐴 ∈ ℕ0
numsucc.4 (𝐴 + 1) = 𝐵
numsucc.5 𝑁 = ((𝑇 · 𝐴) + 𝑌)
Assertion
Ref Expression
numsucc (𝑁 + 1) = ((𝑇 · 𝐵) + 0)

Proof of Theorem numsucc
StepHypRef Expression
1 numsucc.2 . . . . . . 7 𝑇 = (𝑌 + 1)
2 numsucc.1 . . . . . . . 8 𝑌 ∈ ℕ0
3 1nn0 12179 . . . . . . . 8 1 ∈ ℕ0
42, 3nn0addcli 12200 . . . . . . 7 (𝑌 + 1) ∈ ℕ0
51, 4eqeltri 2835 . . . . . 6 𝑇 ∈ ℕ0
65nn0cni 12175 . . . . 5 𝑇 ∈ ℂ
76mulid1i 10910 . . . 4 (𝑇 · 1) = 𝑇
87oveq2i 7266 . . 3 ((𝑇 · 𝐴) + (𝑇 · 1)) = ((𝑇 · 𝐴) + 𝑇)
9 numsucc.3 . . . . 5 𝐴 ∈ ℕ0
109nn0cni 12175 . . . 4 𝐴 ∈ ℂ
11 ax-1cn 10860 . . . 4 1 ∈ ℂ
126, 10, 11adddii 10918 . . 3 (𝑇 · (𝐴 + 1)) = ((𝑇 · 𝐴) + (𝑇 · 1))
131eqcomi 2747 . . . 4 (𝑌 + 1) = 𝑇
14 numsucc.5 . . . 4 𝑁 = ((𝑇 · 𝐴) + 𝑌)
155, 9, 2, 13, 14numsuc 12380 . . 3 (𝑁 + 1) = ((𝑇 · 𝐴) + 𝑇)
168, 12, 153eqtr4ri 2777 . 2 (𝑁 + 1) = (𝑇 · (𝐴 + 1))
17 numsucc.4 . . 3 (𝐴 + 1) = 𝐵
1817oveq2i 7266 . 2 (𝑇 · (𝐴 + 1)) = (𝑇 · 𝐵)
199, 3nn0addcli 12200 . . . 4 (𝐴 + 1) ∈ ℕ0
2017, 19eqeltrri 2836 . . 3 𝐵 ∈ ℕ0
215, 20num0u 12377 . 2 (𝑇 · 𝐵) = ((𝑇 · 𝐵) + 0)
2216, 18, 213eqtri 2770 1 (𝑁 + 1) = ((𝑇 · 𝐵) + 0)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  (class class class)co 7255  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  0cn0 12163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-ltxr 10945  df-nn 11904  df-n0 12164
This theorem is referenced by:  decsucc  12407
  Copyright terms: Public domain W3C validator