![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > numsucc | Structured version Visualization version GIF version |
Description: The successor of a decimal integer (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
numsucc.1 | ⊢ 𝑌 ∈ ℕ0 |
numsucc.2 | ⊢ 𝑇 = (𝑌 + 1) |
numsucc.3 | ⊢ 𝐴 ∈ ℕ0 |
numsucc.4 | ⊢ (𝐴 + 1) = 𝐵 |
numsucc.5 | ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝑌) |
Ref | Expression |
---|---|
numsucc | ⊢ (𝑁 + 1) = ((𝑇 · 𝐵) + 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numsucc.2 | . . . . . . 7 ⊢ 𝑇 = (𝑌 + 1) | |
2 | numsucc.1 | . . . . . . . 8 ⊢ 𝑌 ∈ ℕ0 | |
3 | 1nn0 12484 | . . . . . . . 8 ⊢ 1 ∈ ℕ0 | |
4 | 2, 3 | nn0addcli 12505 | . . . . . . 7 ⊢ (𝑌 + 1) ∈ ℕ0 |
5 | 1, 4 | eqeltri 2830 | . . . . . 6 ⊢ 𝑇 ∈ ℕ0 |
6 | 5 | nn0cni 12480 | . . . . 5 ⊢ 𝑇 ∈ ℂ |
7 | 6 | mulridi 11214 | . . . 4 ⊢ (𝑇 · 1) = 𝑇 |
8 | 7 | oveq2i 7415 | . . 3 ⊢ ((𝑇 · 𝐴) + (𝑇 · 1)) = ((𝑇 · 𝐴) + 𝑇) |
9 | numsucc.3 | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
10 | 9 | nn0cni 12480 | . . . 4 ⊢ 𝐴 ∈ ℂ |
11 | ax-1cn 11164 | . . . 4 ⊢ 1 ∈ ℂ | |
12 | 6, 10, 11 | adddii 11222 | . . 3 ⊢ (𝑇 · (𝐴 + 1)) = ((𝑇 · 𝐴) + (𝑇 · 1)) |
13 | 1 | eqcomi 2742 | . . . 4 ⊢ (𝑌 + 1) = 𝑇 |
14 | numsucc.5 | . . . 4 ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝑌) | |
15 | 5, 9, 2, 13, 14 | numsuc 12687 | . . 3 ⊢ (𝑁 + 1) = ((𝑇 · 𝐴) + 𝑇) |
16 | 8, 12, 15 | 3eqtr4ri 2772 | . 2 ⊢ (𝑁 + 1) = (𝑇 · (𝐴 + 1)) |
17 | numsucc.4 | . . 3 ⊢ (𝐴 + 1) = 𝐵 | |
18 | 17 | oveq2i 7415 | . 2 ⊢ (𝑇 · (𝐴 + 1)) = (𝑇 · 𝐵) |
19 | 9, 3 | nn0addcli 12505 | . . . 4 ⊢ (𝐴 + 1) ∈ ℕ0 |
20 | 17, 19 | eqeltrri 2831 | . . 3 ⊢ 𝐵 ∈ ℕ0 |
21 | 5, 20 | num0u 12684 | . 2 ⊢ (𝑇 · 𝐵) = ((𝑇 · 𝐵) + 0) |
22 | 16, 18, 21 | 3eqtri 2765 | 1 ⊢ (𝑁 + 1) = ((𝑇 · 𝐵) + 0) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2107 (class class class)co 7404 0cc0 11106 1c1 11107 + caddc 11109 · cmul 11111 ℕ0cn0 12468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7407 df-om 7851 df-2nd 7971 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-ltxr 11249 df-nn 12209 df-n0 12469 |
This theorem is referenced by: decsucc 12714 |
Copyright terms: Public domain | W3C validator |