![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sqmid3api | Structured version Visualization version GIF version |
Description: Value of the square of the middle term of a 3-term arithmetic progression. (Contributed by Steven Nguyen, 20-Sep-2022.) |
Ref | Expression |
---|---|
sqmid3api.a | ⊢ 𝐴 ∈ ℂ |
sqmid3api.n | ⊢ 𝑁 ∈ ℂ |
sqmid3api.b | ⊢ (𝐴 + 𝑁) = 𝐵 |
sqmid3api.c | ⊢ (𝐵 + 𝑁) = 𝐶 |
Ref | Expression |
---|---|
sqmid3api | ⊢ (𝐵 · 𝐵) = ((𝐴 · 𝐶) + (𝑁 · 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sqmid3api.a | . . 3 ⊢ 𝐴 ∈ ℂ | |
2 | sqmid3api.n | . . 3 ⊢ 𝑁 ∈ ℂ | |
3 | 1, 2, 1, 2 | muladdi 11712 | . 2 ⊢ ((𝐴 + 𝑁) · (𝐴 + 𝑁)) = (((𝐴 · 𝐴) + (𝑁 · 𝑁)) + ((𝐴 · 𝑁) + (𝐴 · 𝑁))) |
4 | sqmid3api.b | . . 3 ⊢ (𝐴 + 𝑁) = 𝐵 | |
5 | 4, 4 | oveq12i 7443 | . 2 ⊢ ((𝐴 + 𝑁) · (𝐴 + 𝑁)) = (𝐵 · 𝐵) |
6 | 1, 1 | mulcli 11266 | . . . 4 ⊢ (𝐴 · 𝐴) ∈ ℂ |
7 | 2, 2 | mulcli 11266 | . . . 4 ⊢ (𝑁 · 𝑁) ∈ ℂ |
8 | 1, 2 | mulcli 11266 | . . . . 5 ⊢ (𝐴 · 𝑁) ∈ ℂ |
9 | 8, 8 | addcli 11265 | . . . 4 ⊢ ((𝐴 · 𝑁) + (𝐴 · 𝑁)) ∈ ℂ |
10 | 6, 7, 9 | add32i 11483 | . . 3 ⊢ (((𝐴 · 𝐴) + (𝑁 · 𝑁)) + ((𝐴 · 𝑁) + (𝐴 · 𝑁))) = (((𝐴 · 𝐴) + ((𝐴 · 𝑁) + (𝐴 · 𝑁))) + (𝑁 · 𝑁)) |
11 | 1, 2 | addcli 11265 | . . . . . 6 ⊢ (𝐴 + 𝑁) ∈ ℂ |
12 | 1, 11, 2 | adddii 11271 | . . . . 5 ⊢ (𝐴 · ((𝐴 + 𝑁) + 𝑁)) = ((𝐴 · (𝐴 + 𝑁)) + (𝐴 · 𝑁)) |
13 | 4 | oveq1i 7441 | . . . . . . 7 ⊢ ((𝐴 + 𝑁) + 𝑁) = (𝐵 + 𝑁) |
14 | sqmid3api.c | . . . . . . 7 ⊢ (𝐵 + 𝑁) = 𝐶 | |
15 | 13, 14 | eqtri 2763 | . . . . . 6 ⊢ ((𝐴 + 𝑁) + 𝑁) = 𝐶 |
16 | 15 | oveq2i 7442 | . . . . 5 ⊢ (𝐴 · ((𝐴 + 𝑁) + 𝑁)) = (𝐴 · 𝐶) |
17 | 1, 1, 2 | adddii 11271 | . . . . . . 7 ⊢ (𝐴 · (𝐴 + 𝑁)) = ((𝐴 · 𝐴) + (𝐴 · 𝑁)) |
18 | 17 | oveq1i 7441 | . . . . . 6 ⊢ ((𝐴 · (𝐴 + 𝑁)) + (𝐴 · 𝑁)) = (((𝐴 · 𝐴) + (𝐴 · 𝑁)) + (𝐴 · 𝑁)) |
19 | 6, 8, 8 | addassi 11269 | . . . . . 6 ⊢ (((𝐴 · 𝐴) + (𝐴 · 𝑁)) + (𝐴 · 𝑁)) = ((𝐴 · 𝐴) + ((𝐴 · 𝑁) + (𝐴 · 𝑁))) |
20 | 18, 19 | eqtri 2763 | . . . . 5 ⊢ ((𝐴 · (𝐴 + 𝑁)) + (𝐴 · 𝑁)) = ((𝐴 · 𝐴) + ((𝐴 · 𝑁) + (𝐴 · 𝑁))) |
21 | 12, 16, 20 | 3eqtr3ri 2772 | . . . 4 ⊢ ((𝐴 · 𝐴) + ((𝐴 · 𝑁) + (𝐴 · 𝑁))) = (𝐴 · 𝐶) |
22 | 21 | oveq1i 7441 | . . 3 ⊢ (((𝐴 · 𝐴) + ((𝐴 · 𝑁) + (𝐴 · 𝑁))) + (𝑁 · 𝑁)) = ((𝐴 · 𝐶) + (𝑁 · 𝑁)) |
23 | 10, 22 | eqtri 2763 | . 2 ⊢ (((𝐴 · 𝐴) + (𝑁 · 𝑁)) + ((𝐴 · 𝑁) + (𝐴 · 𝑁))) = ((𝐴 · 𝐶) + (𝑁 · 𝑁)) |
24 | 3, 5, 23 | 3eqtr3i 2771 | 1 ⊢ (𝐵 · 𝐵) = ((𝐴 · 𝐶) + (𝑁 · 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2106 (class class class)co 7431 ℂcc 11151 + caddc 11156 · cmul 11158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-ltxr 11298 |
This theorem is referenced by: sqn5i 42299 |
Copyright terms: Public domain | W3C validator |