Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sqmid3api Structured version   Visualization version   GIF version

Theorem sqmid3api 42297
Description: Value of the square of the middle term of a 3-term arithmetic progression. (Contributed by Steven Nguyen, 20-Sep-2022.)
Hypotheses
Ref Expression
sqmid3api.a 𝐴 ∈ ℂ
sqmid3api.n 𝑁 ∈ ℂ
sqmid3api.b (𝐴 + 𝑁) = 𝐵
sqmid3api.c (𝐵 + 𝑁) = 𝐶
Assertion
Ref Expression
sqmid3api (𝐵 · 𝐵) = ((𝐴 · 𝐶) + (𝑁 · 𝑁))

Proof of Theorem sqmid3api
StepHypRef Expression
1 sqmid3api.a . . 3 𝐴 ∈ ℂ
2 sqmid3api.n . . 3 𝑁 ∈ ℂ
31, 2, 1, 2muladdi 11712 . 2 ((𝐴 + 𝑁) · (𝐴 + 𝑁)) = (((𝐴 · 𝐴) + (𝑁 · 𝑁)) + ((𝐴 · 𝑁) + (𝐴 · 𝑁)))
4 sqmid3api.b . . 3 (𝐴 + 𝑁) = 𝐵
54, 4oveq12i 7443 . 2 ((𝐴 + 𝑁) · (𝐴 + 𝑁)) = (𝐵 · 𝐵)
61, 1mulcli 11266 . . . 4 (𝐴 · 𝐴) ∈ ℂ
72, 2mulcli 11266 . . . 4 (𝑁 · 𝑁) ∈ ℂ
81, 2mulcli 11266 . . . . 5 (𝐴 · 𝑁) ∈ ℂ
98, 8addcli 11265 . . . 4 ((𝐴 · 𝑁) + (𝐴 · 𝑁)) ∈ ℂ
106, 7, 9add32i 11483 . . 3 (((𝐴 · 𝐴) + (𝑁 · 𝑁)) + ((𝐴 · 𝑁) + (𝐴 · 𝑁))) = (((𝐴 · 𝐴) + ((𝐴 · 𝑁) + (𝐴 · 𝑁))) + (𝑁 · 𝑁))
111, 2addcli 11265 . . . . . 6 (𝐴 + 𝑁) ∈ ℂ
121, 11, 2adddii 11271 . . . . 5 (𝐴 · ((𝐴 + 𝑁) + 𝑁)) = ((𝐴 · (𝐴 + 𝑁)) + (𝐴 · 𝑁))
134oveq1i 7441 . . . . . . 7 ((𝐴 + 𝑁) + 𝑁) = (𝐵 + 𝑁)
14 sqmid3api.c . . . . . . 7 (𝐵 + 𝑁) = 𝐶
1513, 14eqtri 2763 . . . . . 6 ((𝐴 + 𝑁) + 𝑁) = 𝐶
1615oveq2i 7442 . . . . 5 (𝐴 · ((𝐴 + 𝑁) + 𝑁)) = (𝐴 · 𝐶)
171, 1, 2adddii 11271 . . . . . . 7 (𝐴 · (𝐴 + 𝑁)) = ((𝐴 · 𝐴) + (𝐴 · 𝑁))
1817oveq1i 7441 . . . . . 6 ((𝐴 · (𝐴 + 𝑁)) + (𝐴 · 𝑁)) = (((𝐴 · 𝐴) + (𝐴 · 𝑁)) + (𝐴 · 𝑁))
196, 8, 8addassi 11269 . . . . . 6 (((𝐴 · 𝐴) + (𝐴 · 𝑁)) + (𝐴 · 𝑁)) = ((𝐴 · 𝐴) + ((𝐴 · 𝑁) + (𝐴 · 𝑁)))
2018, 19eqtri 2763 . . . . 5 ((𝐴 · (𝐴 + 𝑁)) + (𝐴 · 𝑁)) = ((𝐴 · 𝐴) + ((𝐴 · 𝑁) + (𝐴 · 𝑁)))
2112, 16, 203eqtr3ri 2772 . . . 4 ((𝐴 · 𝐴) + ((𝐴 · 𝑁) + (𝐴 · 𝑁))) = (𝐴 · 𝐶)
2221oveq1i 7441 . . 3 (((𝐴 · 𝐴) + ((𝐴 · 𝑁) + (𝐴 · 𝑁))) + (𝑁 · 𝑁)) = ((𝐴 · 𝐶) + (𝑁 · 𝑁))
2310, 22eqtri 2763 . 2 (((𝐴 · 𝐴) + (𝑁 · 𝑁)) + ((𝐴 · 𝑁) + (𝐴 · 𝑁))) = ((𝐴 · 𝐶) + (𝑁 · 𝑁))
243, 5, 233eqtr3i 2771 1 (𝐵 · 𝐵) = ((𝐴 · 𝐶) + (𝑁 · 𝑁))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2106  (class class class)co 7431  cc 11151   + caddc 11156   · cmul 11158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-ltxr 11298
This theorem is referenced by:  sqn5i  42299
  Copyright terms: Public domain W3C validator