Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sqmid3api Structured version   Visualization version   GIF version

Theorem sqmid3api 39435
Description: Value of the square of the middle term of a 3-term arithmetic progression. (Contributed by Steven Nguyen, 20-Sep-2022.)
Hypotheses
Ref Expression
sqmid3api.a 𝐴 ∈ ℂ
sqmid3api.n 𝑁 ∈ ℂ
sqmid3api.b (𝐴 + 𝑁) = 𝐵
sqmid3api.c (𝐵 + 𝑁) = 𝐶
Assertion
Ref Expression
sqmid3api (𝐵 · 𝐵) = ((𝐴 · 𝐶) + (𝑁 · 𝑁))

Proof of Theorem sqmid3api
StepHypRef Expression
1 sqmid3api.a . . 3 𝐴 ∈ ℂ
2 sqmid3api.n . . 3 𝑁 ∈ ℂ
31, 2, 1, 2muladdi 11091 . 2 ((𝐴 + 𝑁) · (𝐴 + 𝑁)) = (((𝐴 · 𝐴) + (𝑁 · 𝑁)) + ((𝐴 · 𝑁) + (𝐴 · 𝑁)))
4 sqmid3api.b . . 3 (𝐴 + 𝑁) = 𝐵
54, 4oveq12i 7163 . 2 ((𝐴 + 𝑁) · (𝐴 + 𝑁)) = (𝐵 · 𝐵)
61, 1mulcli 10648 . . . 4 (𝐴 · 𝐴) ∈ ℂ
72, 2mulcli 10648 . . . 4 (𝑁 · 𝑁) ∈ ℂ
81, 2mulcli 10648 . . . . 5 (𝐴 · 𝑁) ∈ ℂ
98, 8addcli 10647 . . . 4 ((𝐴 · 𝑁) + (𝐴 · 𝑁)) ∈ ℂ
106, 7, 9add32i 10863 . . 3 (((𝐴 · 𝐴) + (𝑁 · 𝑁)) + ((𝐴 · 𝑁) + (𝐴 · 𝑁))) = (((𝐴 · 𝐴) + ((𝐴 · 𝑁) + (𝐴 · 𝑁))) + (𝑁 · 𝑁))
111, 2addcli 10647 . . . . . 6 (𝐴 + 𝑁) ∈ ℂ
121, 11, 2adddii 10653 . . . . 5 (𝐴 · ((𝐴 + 𝑁) + 𝑁)) = ((𝐴 · (𝐴 + 𝑁)) + (𝐴 · 𝑁))
134oveq1i 7161 . . . . . . 7 ((𝐴 + 𝑁) + 𝑁) = (𝐵 + 𝑁)
14 sqmid3api.c . . . . . . 7 (𝐵 + 𝑁) = 𝐶
1513, 14eqtri 2847 . . . . . 6 ((𝐴 + 𝑁) + 𝑁) = 𝐶
1615oveq2i 7162 . . . . 5 (𝐴 · ((𝐴 + 𝑁) + 𝑁)) = (𝐴 · 𝐶)
171, 1, 2adddii 10653 . . . . . . 7 (𝐴 · (𝐴 + 𝑁)) = ((𝐴 · 𝐴) + (𝐴 · 𝑁))
1817oveq1i 7161 . . . . . 6 ((𝐴 · (𝐴 + 𝑁)) + (𝐴 · 𝑁)) = (((𝐴 · 𝐴) + (𝐴 · 𝑁)) + (𝐴 · 𝑁))
196, 8, 8addassi 10651 . . . . . 6 (((𝐴 · 𝐴) + (𝐴 · 𝑁)) + (𝐴 · 𝑁)) = ((𝐴 · 𝐴) + ((𝐴 · 𝑁) + (𝐴 · 𝑁)))
2018, 19eqtri 2847 . . . . 5 ((𝐴 · (𝐴 + 𝑁)) + (𝐴 · 𝑁)) = ((𝐴 · 𝐴) + ((𝐴 · 𝑁) + (𝐴 · 𝑁)))
2112, 16, 203eqtr3ri 2856 . . . 4 ((𝐴 · 𝐴) + ((𝐴 · 𝑁) + (𝐴 · 𝑁))) = (𝐴 · 𝐶)
2221oveq1i 7161 . . 3 (((𝐴 · 𝐴) + ((𝐴 · 𝑁) + (𝐴 · 𝑁))) + (𝑁 · 𝑁)) = ((𝐴 · 𝐶) + (𝑁 · 𝑁))
2310, 22eqtri 2847 . 2 (((𝐴 · 𝐴) + (𝑁 · 𝑁)) + ((𝐴 · 𝑁) + (𝐴 · 𝑁))) = ((𝐴 · 𝐶) + (𝑁 · 𝑁))
243, 5, 233eqtr3i 2855 1 (𝐵 · 𝐵) = ((𝐴 · 𝐶) + (𝑁 · 𝑁))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  wcel 2115  (class class class)co 7151  cc 10535   + caddc 10540   · cmul 10542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7457  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-br 5054  df-opab 5116  df-mpt 5134  df-id 5448  df-po 5462  df-so 5463  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-iota 6304  df-fun 6347  df-fn 6348  df-f 6349  df-f1 6350  df-fo 6351  df-f1o 6352  df-fv 6353  df-ov 7154  df-er 8287  df-en 8508  df-dom 8509  df-sdom 8510  df-pnf 10677  df-mnf 10678  df-ltxr 10680
This theorem is referenced by:  sqn5i  39437
  Copyright terms: Public domain W3C validator