Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sqmid3api Structured version   Visualization version   GIF version

Theorem sqmid3api 42315
Description: Value of the square of the middle term of a 3-term arithmetic progression. (Contributed by Steven Nguyen, 20-Sep-2022.)
Hypotheses
Ref Expression
sqmid3api.a 𝐴 ∈ ℂ
sqmid3api.n 𝑁 ∈ ℂ
sqmid3api.b (𝐴 + 𝑁) = 𝐵
sqmid3api.c (𝐵 + 𝑁) = 𝐶
Assertion
Ref Expression
sqmid3api (𝐵 · 𝐵) = ((𝐴 · 𝐶) + (𝑁 · 𝑁))

Proof of Theorem sqmid3api
StepHypRef Expression
1 sqmid3api.a . . 3 𝐴 ∈ ℂ
2 sqmid3api.n . . 3 𝑁 ∈ ℂ
31, 2, 1, 2muladdi 11565 . 2 ((𝐴 + 𝑁) · (𝐴 + 𝑁)) = (((𝐴 · 𝐴) + (𝑁 · 𝑁)) + ((𝐴 · 𝑁) + (𝐴 · 𝑁)))
4 sqmid3api.b . . 3 (𝐴 + 𝑁) = 𝐵
54, 4oveq12i 7358 . 2 ((𝐴 + 𝑁) · (𝐴 + 𝑁)) = (𝐵 · 𝐵)
61, 1mulcli 11116 . . . 4 (𝐴 · 𝐴) ∈ ℂ
72, 2mulcli 11116 . . . 4 (𝑁 · 𝑁) ∈ ℂ
81, 2mulcli 11116 . . . . 5 (𝐴 · 𝑁) ∈ ℂ
98, 8addcli 11115 . . . 4 ((𝐴 · 𝑁) + (𝐴 · 𝑁)) ∈ ℂ
106, 7, 9add32i 11334 . . 3 (((𝐴 · 𝐴) + (𝑁 · 𝑁)) + ((𝐴 · 𝑁) + (𝐴 · 𝑁))) = (((𝐴 · 𝐴) + ((𝐴 · 𝑁) + (𝐴 · 𝑁))) + (𝑁 · 𝑁))
111, 2addcli 11115 . . . . . 6 (𝐴 + 𝑁) ∈ ℂ
121, 11, 2adddii 11121 . . . . 5 (𝐴 · ((𝐴 + 𝑁) + 𝑁)) = ((𝐴 · (𝐴 + 𝑁)) + (𝐴 · 𝑁))
134oveq1i 7356 . . . . . . 7 ((𝐴 + 𝑁) + 𝑁) = (𝐵 + 𝑁)
14 sqmid3api.c . . . . . . 7 (𝐵 + 𝑁) = 𝐶
1513, 14eqtri 2754 . . . . . 6 ((𝐴 + 𝑁) + 𝑁) = 𝐶
1615oveq2i 7357 . . . . 5 (𝐴 · ((𝐴 + 𝑁) + 𝑁)) = (𝐴 · 𝐶)
171, 1, 2adddii 11121 . . . . . . 7 (𝐴 · (𝐴 + 𝑁)) = ((𝐴 · 𝐴) + (𝐴 · 𝑁))
1817oveq1i 7356 . . . . . 6 ((𝐴 · (𝐴 + 𝑁)) + (𝐴 · 𝑁)) = (((𝐴 · 𝐴) + (𝐴 · 𝑁)) + (𝐴 · 𝑁))
196, 8, 8addassi 11119 . . . . . 6 (((𝐴 · 𝐴) + (𝐴 · 𝑁)) + (𝐴 · 𝑁)) = ((𝐴 · 𝐴) + ((𝐴 · 𝑁) + (𝐴 · 𝑁)))
2018, 19eqtri 2754 . . . . 5 ((𝐴 · (𝐴 + 𝑁)) + (𝐴 · 𝑁)) = ((𝐴 · 𝐴) + ((𝐴 · 𝑁) + (𝐴 · 𝑁)))
2112, 16, 203eqtr3ri 2763 . . . 4 ((𝐴 · 𝐴) + ((𝐴 · 𝑁) + (𝐴 · 𝑁))) = (𝐴 · 𝐶)
2221oveq1i 7356 . . 3 (((𝐴 · 𝐴) + ((𝐴 · 𝑁) + (𝐴 · 𝑁))) + (𝑁 · 𝑁)) = ((𝐴 · 𝐶) + (𝑁 · 𝑁))
2310, 22eqtri 2754 . 2 (((𝐴 · 𝐴) + (𝑁 · 𝑁)) + ((𝐴 · 𝑁) + (𝐴 · 𝑁))) = ((𝐴 · 𝐶) + (𝑁 · 𝑁))
243, 5, 233eqtr3i 2762 1 (𝐵 · 𝐵) = ((𝐴 · 𝐶) + (𝑁 · 𝑁))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  (class class class)co 7346  cc 11001   + caddc 11006   · cmul 11008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-ltxr 11148
This theorem is referenced by:  sqn5i  42317
  Copyright terms: Public domain W3C validator