Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sqmid3api | Structured version Visualization version GIF version |
Description: Value of the square of the middle term of a 3-term arithmetic progression. (Contributed by Steven Nguyen, 20-Sep-2022.) |
Ref | Expression |
---|---|
sqmid3api.a | ⊢ 𝐴 ∈ ℂ |
sqmid3api.n | ⊢ 𝑁 ∈ ℂ |
sqmid3api.b | ⊢ (𝐴 + 𝑁) = 𝐵 |
sqmid3api.c | ⊢ (𝐵 + 𝑁) = 𝐶 |
Ref | Expression |
---|---|
sqmid3api | ⊢ (𝐵 · 𝐵) = ((𝐴 · 𝐶) + (𝑁 · 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sqmid3api.a | . . 3 ⊢ 𝐴 ∈ ℂ | |
2 | sqmid3api.n | . . 3 ⊢ 𝑁 ∈ ℂ | |
3 | 1, 2, 1, 2 | muladdi 11356 | . 2 ⊢ ((𝐴 + 𝑁) · (𝐴 + 𝑁)) = (((𝐴 · 𝐴) + (𝑁 · 𝑁)) + ((𝐴 · 𝑁) + (𝐴 · 𝑁))) |
4 | sqmid3api.b | . . 3 ⊢ (𝐴 + 𝑁) = 𝐵 | |
5 | 4, 4 | oveq12i 7267 | . 2 ⊢ ((𝐴 + 𝑁) · (𝐴 + 𝑁)) = (𝐵 · 𝐵) |
6 | 1, 1 | mulcli 10913 | . . . 4 ⊢ (𝐴 · 𝐴) ∈ ℂ |
7 | 2, 2 | mulcli 10913 | . . . 4 ⊢ (𝑁 · 𝑁) ∈ ℂ |
8 | 1, 2 | mulcli 10913 | . . . . 5 ⊢ (𝐴 · 𝑁) ∈ ℂ |
9 | 8, 8 | addcli 10912 | . . . 4 ⊢ ((𝐴 · 𝑁) + (𝐴 · 𝑁)) ∈ ℂ |
10 | 6, 7, 9 | add32i 11128 | . . 3 ⊢ (((𝐴 · 𝐴) + (𝑁 · 𝑁)) + ((𝐴 · 𝑁) + (𝐴 · 𝑁))) = (((𝐴 · 𝐴) + ((𝐴 · 𝑁) + (𝐴 · 𝑁))) + (𝑁 · 𝑁)) |
11 | 1, 2 | addcli 10912 | . . . . . 6 ⊢ (𝐴 + 𝑁) ∈ ℂ |
12 | 1, 11, 2 | adddii 10918 | . . . . 5 ⊢ (𝐴 · ((𝐴 + 𝑁) + 𝑁)) = ((𝐴 · (𝐴 + 𝑁)) + (𝐴 · 𝑁)) |
13 | 4 | oveq1i 7265 | . . . . . . 7 ⊢ ((𝐴 + 𝑁) + 𝑁) = (𝐵 + 𝑁) |
14 | sqmid3api.c | . . . . . . 7 ⊢ (𝐵 + 𝑁) = 𝐶 | |
15 | 13, 14 | eqtri 2766 | . . . . . 6 ⊢ ((𝐴 + 𝑁) + 𝑁) = 𝐶 |
16 | 15 | oveq2i 7266 | . . . . 5 ⊢ (𝐴 · ((𝐴 + 𝑁) + 𝑁)) = (𝐴 · 𝐶) |
17 | 1, 1, 2 | adddii 10918 | . . . . . . 7 ⊢ (𝐴 · (𝐴 + 𝑁)) = ((𝐴 · 𝐴) + (𝐴 · 𝑁)) |
18 | 17 | oveq1i 7265 | . . . . . 6 ⊢ ((𝐴 · (𝐴 + 𝑁)) + (𝐴 · 𝑁)) = (((𝐴 · 𝐴) + (𝐴 · 𝑁)) + (𝐴 · 𝑁)) |
19 | 6, 8, 8 | addassi 10916 | . . . . . 6 ⊢ (((𝐴 · 𝐴) + (𝐴 · 𝑁)) + (𝐴 · 𝑁)) = ((𝐴 · 𝐴) + ((𝐴 · 𝑁) + (𝐴 · 𝑁))) |
20 | 18, 19 | eqtri 2766 | . . . . 5 ⊢ ((𝐴 · (𝐴 + 𝑁)) + (𝐴 · 𝑁)) = ((𝐴 · 𝐴) + ((𝐴 · 𝑁) + (𝐴 · 𝑁))) |
21 | 12, 16, 20 | 3eqtr3ri 2775 | . . . 4 ⊢ ((𝐴 · 𝐴) + ((𝐴 · 𝑁) + (𝐴 · 𝑁))) = (𝐴 · 𝐶) |
22 | 21 | oveq1i 7265 | . . 3 ⊢ (((𝐴 · 𝐴) + ((𝐴 · 𝑁) + (𝐴 · 𝑁))) + (𝑁 · 𝑁)) = ((𝐴 · 𝐶) + (𝑁 · 𝑁)) |
23 | 10, 22 | eqtri 2766 | . 2 ⊢ (((𝐴 · 𝐴) + (𝑁 · 𝑁)) + ((𝐴 · 𝑁) + (𝐴 · 𝑁))) = ((𝐴 · 𝐶) + (𝑁 · 𝑁)) |
24 | 3, 5, 23 | 3eqtr3i 2774 | 1 ⊢ (𝐵 · 𝐵) = ((𝐴 · 𝐶) + (𝑁 · 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 + caddc 10805 · cmul 10807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 |
This theorem is referenced by: sqn5i 40234 |
Copyright terms: Public domain | W3C validator |