| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sqmid3api | Structured version Visualization version GIF version | ||
| Description: Value of the square of the middle term of a 3-term arithmetic progression. (Contributed by Steven Nguyen, 20-Sep-2022.) |
| Ref | Expression |
|---|---|
| sqmid3api.a | ⊢ 𝐴 ∈ ℂ |
| sqmid3api.n | ⊢ 𝑁 ∈ ℂ |
| sqmid3api.b | ⊢ (𝐴 + 𝑁) = 𝐵 |
| sqmid3api.c | ⊢ (𝐵 + 𝑁) = 𝐶 |
| Ref | Expression |
|---|---|
| sqmid3api | ⊢ (𝐵 · 𝐵) = ((𝐴 · 𝐶) + (𝑁 · 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqmid3api.a | . . 3 ⊢ 𝐴 ∈ ℂ | |
| 2 | sqmid3api.n | . . 3 ⊢ 𝑁 ∈ ℂ | |
| 3 | 1, 2, 1, 2 | muladdi 11589 | . 2 ⊢ ((𝐴 + 𝑁) · (𝐴 + 𝑁)) = (((𝐴 · 𝐴) + (𝑁 · 𝑁)) + ((𝐴 · 𝑁) + (𝐴 · 𝑁))) |
| 4 | sqmid3api.b | . . 3 ⊢ (𝐴 + 𝑁) = 𝐵 | |
| 5 | 4, 4 | oveq12i 7365 | . 2 ⊢ ((𝐴 + 𝑁) · (𝐴 + 𝑁)) = (𝐵 · 𝐵) |
| 6 | 1, 1 | mulcli 11141 | . . . 4 ⊢ (𝐴 · 𝐴) ∈ ℂ |
| 7 | 2, 2 | mulcli 11141 | . . . 4 ⊢ (𝑁 · 𝑁) ∈ ℂ |
| 8 | 1, 2 | mulcli 11141 | . . . . 5 ⊢ (𝐴 · 𝑁) ∈ ℂ |
| 9 | 8, 8 | addcli 11140 | . . . 4 ⊢ ((𝐴 · 𝑁) + (𝐴 · 𝑁)) ∈ ℂ |
| 10 | 6, 7, 9 | add32i 11358 | . . 3 ⊢ (((𝐴 · 𝐴) + (𝑁 · 𝑁)) + ((𝐴 · 𝑁) + (𝐴 · 𝑁))) = (((𝐴 · 𝐴) + ((𝐴 · 𝑁) + (𝐴 · 𝑁))) + (𝑁 · 𝑁)) |
| 11 | 1, 2 | addcli 11140 | . . . . . 6 ⊢ (𝐴 + 𝑁) ∈ ℂ |
| 12 | 1, 11, 2 | adddii 11146 | . . . . 5 ⊢ (𝐴 · ((𝐴 + 𝑁) + 𝑁)) = ((𝐴 · (𝐴 + 𝑁)) + (𝐴 · 𝑁)) |
| 13 | 4 | oveq1i 7363 | . . . . . . 7 ⊢ ((𝐴 + 𝑁) + 𝑁) = (𝐵 + 𝑁) |
| 14 | sqmid3api.c | . . . . . . 7 ⊢ (𝐵 + 𝑁) = 𝐶 | |
| 15 | 13, 14 | eqtri 2752 | . . . . . 6 ⊢ ((𝐴 + 𝑁) + 𝑁) = 𝐶 |
| 16 | 15 | oveq2i 7364 | . . . . 5 ⊢ (𝐴 · ((𝐴 + 𝑁) + 𝑁)) = (𝐴 · 𝐶) |
| 17 | 1, 1, 2 | adddii 11146 | . . . . . . 7 ⊢ (𝐴 · (𝐴 + 𝑁)) = ((𝐴 · 𝐴) + (𝐴 · 𝑁)) |
| 18 | 17 | oveq1i 7363 | . . . . . 6 ⊢ ((𝐴 · (𝐴 + 𝑁)) + (𝐴 · 𝑁)) = (((𝐴 · 𝐴) + (𝐴 · 𝑁)) + (𝐴 · 𝑁)) |
| 19 | 6, 8, 8 | addassi 11144 | . . . . . 6 ⊢ (((𝐴 · 𝐴) + (𝐴 · 𝑁)) + (𝐴 · 𝑁)) = ((𝐴 · 𝐴) + ((𝐴 · 𝑁) + (𝐴 · 𝑁))) |
| 20 | 18, 19 | eqtri 2752 | . . . . 5 ⊢ ((𝐴 · (𝐴 + 𝑁)) + (𝐴 · 𝑁)) = ((𝐴 · 𝐴) + ((𝐴 · 𝑁) + (𝐴 · 𝑁))) |
| 21 | 12, 16, 20 | 3eqtr3ri 2761 | . . . 4 ⊢ ((𝐴 · 𝐴) + ((𝐴 · 𝑁) + (𝐴 · 𝑁))) = (𝐴 · 𝐶) |
| 22 | 21 | oveq1i 7363 | . . 3 ⊢ (((𝐴 · 𝐴) + ((𝐴 · 𝑁) + (𝐴 · 𝑁))) + (𝑁 · 𝑁)) = ((𝐴 · 𝐶) + (𝑁 · 𝑁)) |
| 23 | 10, 22 | eqtri 2752 | . 2 ⊢ (((𝐴 · 𝐴) + (𝑁 · 𝑁)) + ((𝐴 · 𝑁) + (𝐴 · 𝑁))) = ((𝐴 · 𝐶) + (𝑁 · 𝑁)) |
| 24 | 3, 5, 23 | 3eqtr3i 2760 | 1 ⊢ (𝐵 · 𝐵) = ((𝐴 · 𝐶) + (𝑁 · 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7353 ℂcc 11026 + caddc 11031 · cmul 11033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-ltxr 11173 |
| This theorem is referenced by: sqn5i 42258 |
| Copyright terms: Public domain | W3C validator |