Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sqmid3api Structured version   Visualization version   GIF version

Theorem sqmid3api 40232
Description: Value of the square of the middle term of a 3-term arithmetic progression. (Contributed by Steven Nguyen, 20-Sep-2022.)
Hypotheses
Ref Expression
sqmid3api.a 𝐴 ∈ ℂ
sqmid3api.n 𝑁 ∈ ℂ
sqmid3api.b (𝐴 + 𝑁) = 𝐵
sqmid3api.c (𝐵 + 𝑁) = 𝐶
Assertion
Ref Expression
sqmid3api (𝐵 · 𝐵) = ((𝐴 · 𝐶) + (𝑁 · 𝑁))

Proof of Theorem sqmid3api
StepHypRef Expression
1 sqmid3api.a . . 3 𝐴 ∈ ℂ
2 sqmid3api.n . . 3 𝑁 ∈ ℂ
31, 2, 1, 2muladdi 11356 . 2 ((𝐴 + 𝑁) · (𝐴 + 𝑁)) = (((𝐴 · 𝐴) + (𝑁 · 𝑁)) + ((𝐴 · 𝑁) + (𝐴 · 𝑁)))
4 sqmid3api.b . . 3 (𝐴 + 𝑁) = 𝐵
54, 4oveq12i 7267 . 2 ((𝐴 + 𝑁) · (𝐴 + 𝑁)) = (𝐵 · 𝐵)
61, 1mulcli 10913 . . . 4 (𝐴 · 𝐴) ∈ ℂ
72, 2mulcli 10913 . . . 4 (𝑁 · 𝑁) ∈ ℂ
81, 2mulcli 10913 . . . . 5 (𝐴 · 𝑁) ∈ ℂ
98, 8addcli 10912 . . . 4 ((𝐴 · 𝑁) + (𝐴 · 𝑁)) ∈ ℂ
106, 7, 9add32i 11128 . . 3 (((𝐴 · 𝐴) + (𝑁 · 𝑁)) + ((𝐴 · 𝑁) + (𝐴 · 𝑁))) = (((𝐴 · 𝐴) + ((𝐴 · 𝑁) + (𝐴 · 𝑁))) + (𝑁 · 𝑁))
111, 2addcli 10912 . . . . . 6 (𝐴 + 𝑁) ∈ ℂ
121, 11, 2adddii 10918 . . . . 5 (𝐴 · ((𝐴 + 𝑁) + 𝑁)) = ((𝐴 · (𝐴 + 𝑁)) + (𝐴 · 𝑁))
134oveq1i 7265 . . . . . . 7 ((𝐴 + 𝑁) + 𝑁) = (𝐵 + 𝑁)
14 sqmid3api.c . . . . . . 7 (𝐵 + 𝑁) = 𝐶
1513, 14eqtri 2766 . . . . . 6 ((𝐴 + 𝑁) + 𝑁) = 𝐶
1615oveq2i 7266 . . . . 5 (𝐴 · ((𝐴 + 𝑁) + 𝑁)) = (𝐴 · 𝐶)
171, 1, 2adddii 10918 . . . . . . 7 (𝐴 · (𝐴 + 𝑁)) = ((𝐴 · 𝐴) + (𝐴 · 𝑁))
1817oveq1i 7265 . . . . . 6 ((𝐴 · (𝐴 + 𝑁)) + (𝐴 · 𝑁)) = (((𝐴 · 𝐴) + (𝐴 · 𝑁)) + (𝐴 · 𝑁))
196, 8, 8addassi 10916 . . . . . 6 (((𝐴 · 𝐴) + (𝐴 · 𝑁)) + (𝐴 · 𝑁)) = ((𝐴 · 𝐴) + ((𝐴 · 𝑁) + (𝐴 · 𝑁)))
2018, 19eqtri 2766 . . . . 5 ((𝐴 · (𝐴 + 𝑁)) + (𝐴 · 𝑁)) = ((𝐴 · 𝐴) + ((𝐴 · 𝑁) + (𝐴 · 𝑁)))
2112, 16, 203eqtr3ri 2775 . . . 4 ((𝐴 · 𝐴) + ((𝐴 · 𝑁) + (𝐴 · 𝑁))) = (𝐴 · 𝐶)
2221oveq1i 7265 . . 3 (((𝐴 · 𝐴) + ((𝐴 · 𝑁) + (𝐴 · 𝑁))) + (𝑁 · 𝑁)) = ((𝐴 · 𝐶) + (𝑁 · 𝑁))
2310, 22eqtri 2766 . 2 (((𝐴 · 𝐴) + (𝑁 · 𝑁)) + ((𝐴 · 𝑁) + (𝐴 · 𝑁))) = ((𝐴 · 𝐶) + (𝑁 · 𝑁))
243, 5, 233eqtr3i 2774 1 (𝐵 · 𝐵) = ((𝐴 · 𝐶) + (𝑁 · 𝑁))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  (class class class)co 7255  cc 10800   + caddc 10805   · cmul 10807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-ltxr 10945
This theorem is referenced by:  sqn5i  40234
  Copyright terms: Public domain W3C validator