MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4t3lem Structured version   Visualization version   GIF version

Theorem 4t3lem 12810
Description: Lemma for 4t3e12 12811 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.)
Hypotheses
Ref Expression
4t3lem.1 𝐴 ∈ ℕ0
4t3lem.2 𝐵 ∈ ℕ0
4t3lem.3 𝐶 = (𝐵 + 1)
4t3lem.4 (𝐴 · 𝐵) = 𝐷
4t3lem.5 (𝐷 + 𝐴) = 𝐸
Assertion
Ref Expression
4t3lem (𝐴 · 𝐶) = 𝐸

Proof of Theorem 4t3lem
StepHypRef Expression
1 4t3lem.3 . . 3 𝐶 = (𝐵 + 1)
21oveq2i 7421 . 2 (𝐴 · 𝐶) = (𝐴 · (𝐵 + 1))
3 4t3lem.1 . . . . . 6 𝐴 ∈ ℕ0
43nn0cni 12518 . . . . 5 𝐴 ∈ ℂ
5 4t3lem.2 . . . . . 6 𝐵 ∈ ℕ0
65nn0cni 12518 . . . . 5 𝐵 ∈ ℂ
7 ax-1cn 11192 . . . . 5 1 ∈ ℂ
84, 6, 7adddii 11252 . . . 4 (𝐴 · (𝐵 + 1)) = ((𝐴 · 𝐵) + (𝐴 · 1))
9 4t3lem.4 . . . . 5 (𝐴 · 𝐵) = 𝐷
104mulridi 11244 . . . . 5 (𝐴 · 1) = 𝐴
119, 10oveq12i 7422 . . . 4 ((𝐴 · 𝐵) + (𝐴 · 1)) = (𝐷 + 𝐴)
128, 11eqtri 2759 . . 3 (𝐴 · (𝐵 + 1)) = (𝐷 + 𝐴)
13 4t3lem.5 . . 3 (𝐷 + 𝐴) = 𝐸
1412, 13eqtri 2759 . 2 (𝐴 · (𝐵 + 1)) = 𝐸
152, 14eqtri 2759 1 (𝐴 · 𝐶) = 𝐸
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  (class class class)co 7410  1c1 11135   + caddc 11137   · cmul 11139  0cn0 12506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-mulcl 11196  ax-mulcom 11198  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1rid 11204  ax-cnre 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-nn 12246  df-n0 12507
This theorem is referenced by:  4t3e12  12811  4t4e16  12812  5t2e10  12813  5t3e15  12814  5t4e20  12815  5t5e25  12816  6t3e18  12818  6t4e24  12819  6t5e30  12820  6t6e36  12821  7t3e21  12823  7t4e28  12824  7t5e35  12825  7t6e42  12826  7t7e49  12827  8t3e24  12829  8t4e32  12830  8t5e40  12831  8t6e48  12832  8t7e56  12833  8t8e64  12834  9t3e27  12836  9t4e36  12837  9t5e45  12838  9t6e54  12839  9t7e63  12840  9t8e72  12841  9t9e81  12842
  Copyright terms: Public domain W3C validator