| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4t3lem | Structured version Visualization version GIF version | ||
| Description: Lemma for 4t3e12 12811 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 4t3lem.1 | ⊢ 𝐴 ∈ ℕ0 |
| 4t3lem.2 | ⊢ 𝐵 ∈ ℕ0 |
| 4t3lem.3 | ⊢ 𝐶 = (𝐵 + 1) |
| 4t3lem.4 | ⊢ (𝐴 · 𝐵) = 𝐷 |
| 4t3lem.5 | ⊢ (𝐷 + 𝐴) = 𝐸 |
| Ref | Expression |
|---|---|
| 4t3lem | ⊢ (𝐴 · 𝐶) = 𝐸 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4t3lem.3 | . . 3 ⊢ 𝐶 = (𝐵 + 1) | |
| 2 | 1 | oveq2i 7421 | . 2 ⊢ (𝐴 · 𝐶) = (𝐴 · (𝐵 + 1)) |
| 3 | 4t3lem.1 | . . . . . 6 ⊢ 𝐴 ∈ ℕ0 | |
| 4 | 3 | nn0cni 12518 | . . . . 5 ⊢ 𝐴 ∈ ℂ |
| 5 | 4t3lem.2 | . . . . . 6 ⊢ 𝐵 ∈ ℕ0 | |
| 6 | 5 | nn0cni 12518 | . . . . 5 ⊢ 𝐵 ∈ ℂ |
| 7 | ax-1cn 11192 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 8 | 4, 6, 7 | adddii 11252 | . . . 4 ⊢ (𝐴 · (𝐵 + 1)) = ((𝐴 · 𝐵) + (𝐴 · 1)) |
| 9 | 4t3lem.4 | . . . . 5 ⊢ (𝐴 · 𝐵) = 𝐷 | |
| 10 | 4 | mulridi 11244 | . . . . 5 ⊢ (𝐴 · 1) = 𝐴 |
| 11 | 9, 10 | oveq12i 7422 | . . . 4 ⊢ ((𝐴 · 𝐵) + (𝐴 · 1)) = (𝐷 + 𝐴) |
| 12 | 8, 11 | eqtri 2759 | . . 3 ⊢ (𝐴 · (𝐵 + 1)) = (𝐷 + 𝐴) |
| 13 | 4t3lem.5 | . . 3 ⊢ (𝐷 + 𝐴) = 𝐸 | |
| 14 | 12, 13 | eqtri 2759 | . 2 ⊢ (𝐴 · (𝐵 + 1)) = 𝐸 |
| 15 | 2, 14 | eqtri 2759 | 1 ⊢ (𝐴 · 𝐶) = 𝐸 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7410 1c1 11135 + caddc 11137 · cmul 11139 ℕ0cn0 12506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-mulcl 11196 ax-mulcom 11198 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1rid 11204 ax-cnre 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-nn 12246 df-n0 12507 |
| This theorem is referenced by: 4t3e12 12811 4t4e16 12812 5t2e10 12813 5t3e15 12814 5t4e20 12815 5t5e25 12816 6t3e18 12818 6t4e24 12819 6t5e30 12820 6t6e36 12821 7t3e21 12823 7t4e28 12824 7t5e35 12825 7t6e42 12826 7t7e49 12827 8t3e24 12829 8t4e32 12830 8t5e40 12831 8t6e48 12832 8t7e56 12833 8t8e64 12834 9t3e27 12836 9t4e36 12837 9t5e45 12838 9t6e54 12839 9t7e63 12840 9t8e72 12841 9t9e81 12842 |
| Copyright terms: Public domain | W3C validator |