| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4t3lem | Structured version Visualization version GIF version | ||
| Description: Lemma for 4t3e12 12681 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 4t3lem.1 | ⊢ 𝐴 ∈ ℕ0 |
| 4t3lem.2 | ⊢ 𝐵 ∈ ℕ0 |
| 4t3lem.3 | ⊢ 𝐶 = (𝐵 + 1) |
| 4t3lem.4 | ⊢ (𝐴 · 𝐵) = 𝐷 |
| 4t3lem.5 | ⊢ (𝐷 + 𝐴) = 𝐸 |
| Ref | Expression |
|---|---|
| 4t3lem | ⊢ (𝐴 · 𝐶) = 𝐸 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4t3lem.3 | . . 3 ⊢ 𝐶 = (𝐵 + 1) | |
| 2 | 1 | oveq2i 7352 | . 2 ⊢ (𝐴 · 𝐶) = (𝐴 · (𝐵 + 1)) |
| 3 | 4t3lem.1 | . . . . . 6 ⊢ 𝐴 ∈ ℕ0 | |
| 4 | 3 | nn0cni 12388 | . . . . 5 ⊢ 𝐴 ∈ ℂ |
| 5 | 4t3lem.2 | . . . . . 6 ⊢ 𝐵 ∈ ℕ0 | |
| 6 | 5 | nn0cni 12388 | . . . . 5 ⊢ 𝐵 ∈ ℂ |
| 7 | ax-1cn 11059 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 8 | 4, 6, 7 | adddii 11119 | . . . 4 ⊢ (𝐴 · (𝐵 + 1)) = ((𝐴 · 𝐵) + (𝐴 · 1)) |
| 9 | 4t3lem.4 | . . . . 5 ⊢ (𝐴 · 𝐵) = 𝐷 | |
| 10 | 4 | mulridi 11111 | . . . . 5 ⊢ (𝐴 · 1) = 𝐴 |
| 11 | 9, 10 | oveq12i 7353 | . . . 4 ⊢ ((𝐴 · 𝐵) + (𝐴 · 1)) = (𝐷 + 𝐴) |
| 12 | 8, 11 | eqtri 2754 | . . 3 ⊢ (𝐴 · (𝐵 + 1)) = (𝐷 + 𝐴) |
| 13 | 4t3lem.5 | . . 3 ⊢ (𝐷 + 𝐴) = 𝐸 | |
| 14 | 12, 13 | eqtri 2754 | . 2 ⊢ (𝐴 · (𝐵 + 1)) = 𝐸 |
| 15 | 2, 14 | eqtri 2754 | 1 ⊢ (𝐴 · 𝐶) = 𝐸 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 (class class class)co 7341 1c1 11002 + caddc 11004 · cmul 11006 ℕ0cn0 12376 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-mulcl 11063 ax-mulcom 11065 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1rid 11071 ax-cnre 11074 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-nn 12121 df-n0 12377 |
| This theorem is referenced by: 4t3e12 12681 4t4e16 12682 5t2e10 12683 5t3e15 12684 5t4e20 12685 5t5e25 12686 6t3e18 12688 6t4e24 12689 6t5e30 12690 6t6e36 12691 7t3e21 12693 7t4e28 12694 7t5e35 12695 7t6e42 12696 7t7e49 12697 8t3e24 12699 8t4e32 12700 8t5e40 12701 8t6e48 12702 8t7e56 12703 8t8e64 12704 9t3e27 12706 9t4e36 12707 9t5e45 12708 9t6e54 12709 9t7e63 12710 9t8e72 12711 9t9e81 12712 |
| Copyright terms: Public domain | W3C validator |