| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4t3lem | Structured version Visualization version GIF version | ||
| Description: Lemma for 4t3e12 12696 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 4t3lem.1 | ⊢ 𝐴 ∈ ℕ0 |
| 4t3lem.2 | ⊢ 𝐵 ∈ ℕ0 |
| 4t3lem.3 | ⊢ 𝐶 = (𝐵 + 1) |
| 4t3lem.4 | ⊢ (𝐴 · 𝐵) = 𝐷 |
| 4t3lem.5 | ⊢ (𝐷 + 𝐴) = 𝐸 |
| Ref | Expression |
|---|---|
| 4t3lem | ⊢ (𝐴 · 𝐶) = 𝐸 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4t3lem.3 | . . 3 ⊢ 𝐶 = (𝐵 + 1) | |
| 2 | 1 | oveq2i 7366 | . 2 ⊢ (𝐴 · 𝐶) = (𝐴 · (𝐵 + 1)) |
| 3 | 4t3lem.1 | . . . . . 6 ⊢ 𝐴 ∈ ℕ0 | |
| 4 | 3 | nn0cni 12404 | . . . . 5 ⊢ 𝐴 ∈ ℂ |
| 5 | 4t3lem.2 | . . . . . 6 ⊢ 𝐵 ∈ ℕ0 | |
| 6 | 5 | nn0cni 12404 | . . . . 5 ⊢ 𝐵 ∈ ℂ |
| 7 | ax-1cn 11075 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 8 | 4, 6, 7 | adddii 11135 | . . . 4 ⊢ (𝐴 · (𝐵 + 1)) = ((𝐴 · 𝐵) + (𝐴 · 1)) |
| 9 | 4t3lem.4 | . . . . 5 ⊢ (𝐴 · 𝐵) = 𝐷 | |
| 10 | 4 | mulridi 11127 | . . . . 5 ⊢ (𝐴 · 1) = 𝐴 |
| 11 | 9, 10 | oveq12i 7367 | . . . 4 ⊢ ((𝐴 · 𝐵) + (𝐴 · 1)) = (𝐷 + 𝐴) |
| 12 | 8, 11 | eqtri 2756 | . . 3 ⊢ (𝐴 · (𝐵 + 1)) = (𝐷 + 𝐴) |
| 13 | 4t3lem.5 | . . 3 ⊢ (𝐷 + 𝐴) = 𝐸 | |
| 14 | 12, 13 | eqtri 2756 | . 2 ⊢ (𝐴 · (𝐵 + 1)) = 𝐸 |
| 15 | 2, 14 | eqtri 2756 | 1 ⊢ (𝐴 · 𝐶) = 𝐸 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 (class class class)co 7355 1c1 11018 + caddc 11020 · cmul 11022 ℕ0cn0 12392 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-mulcl 11079 ax-mulcom 11081 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1rid 11087 ax-cnre 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-nn 12137 df-n0 12393 |
| This theorem is referenced by: 4t3e12 12696 4t4e16 12697 5t2e10 12698 5t3e15 12699 5t4e20 12700 5t5e25 12701 6t3e18 12703 6t4e24 12704 6t5e30 12705 6t6e36 12706 7t3e21 12708 7t4e28 12709 7t5e35 12710 7t6e42 12711 7t7e49 12712 8t3e24 12714 8t4e32 12715 8t5e40 12716 8t6e48 12717 8t7e56 12718 8t8e64 12719 9t3e27 12721 9t4e36 12722 9t5e45 12723 9t6e54 12724 9t7e63 12725 9t8e72 12726 9t9e81 12727 |
| Copyright terms: Public domain | W3C validator |