| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4t3lem | Structured version Visualization version GIF version | ||
| Description: Lemma for 4t3e12 12723 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 4t3lem.1 | ⊢ 𝐴 ∈ ℕ0 |
| 4t3lem.2 | ⊢ 𝐵 ∈ ℕ0 |
| 4t3lem.3 | ⊢ 𝐶 = (𝐵 + 1) |
| 4t3lem.4 | ⊢ (𝐴 · 𝐵) = 𝐷 |
| 4t3lem.5 | ⊢ (𝐷 + 𝐴) = 𝐸 |
| Ref | Expression |
|---|---|
| 4t3lem | ⊢ (𝐴 · 𝐶) = 𝐸 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4t3lem.3 | . . 3 ⊢ 𝐶 = (𝐵 + 1) | |
| 2 | 1 | oveq2i 7380 | . 2 ⊢ (𝐴 · 𝐶) = (𝐴 · (𝐵 + 1)) |
| 3 | 4t3lem.1 | . . . . . 6 ⊢ 𝐴 ∈ ℕ0 | |
| 4 | 3 | nn0cni 12430 | . . . . 5 ⊢ 𝐴 ∈ ℂ |
| 5 | 4t3lem.2 | . . . . . 6 ⊢ 𝐵 ∈ ℕ0 | |
| 6 | 5 | nn0cni 12430 | . . . . 5 ⊢ 𝐵 ∈ ℂ |
| 7 | ax-1cn 11102 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 8 | 4, 6, 7 | adddii 11162 | . . . 4 ⊢ (𝐴 · (𝐵 + 1)) = ((𝐴 · 𝐵) + (𝐴 · 1)) |
| 9 | 4t3lem.4 | . . . . 5 ⊢ (𝐴 · 𝐵) = 𝐷 | |
| 10 | 4 | mulridi 11154 | . . . . 5 ⊢ (𝐴 · 1) = 𝐴 |
| 11 | 9, 10 | oveq12i 7381 | . . . 4 ⊢ ((𝐴 · 𝐵) + (𝐴 · 1)) = (𝐷 + 𝐴) |
| 12 | 8, 11 | eqtri 2752 | . . 3 ⊢ (𝐴 · (𝐵 + 1)) = (𝐷 + 𝐴) |
| 13 | 4t3lem.5 | . . 3 ⊢ (𝐷 + 𝐴) = 𝐸 | |
| 14 | 12, 13 | eqtri 2752 | . 2 ⊢ (𝐴 · (𝐵 + 1)) = 𝐸 |
| 15 | 2, 14 | eqtri 2752 | 1 ⊢ (𝐴 · 𝐶) = 𝐸 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7369 1c1 11045 + caddc 11047 · cmul 11049 ℕ0cn0 12418 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-mulcl 11106 ax-mulcom 11108 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1rid 11114 ax-cnre 11117 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-nn 12163 df-n0 12419 |
| This theorem is referenced by: 4t3e12 12723 4t4e16 12724 5t2e10 12725 5t3e15 12726 5t4e20 12727 5t5e25 12728 6t3e18 12730 6t4e24 12731 6t5e30 12732 6t6e36 12733 7t3e21 12735 7t4e28 12736 7t5e35 12737 7t6e42 12738 7t7e49 12739 8t3e24 12741 8t4e32 12742 8t5e40 12743 8t6e48 12744 8t7e56 12745 8t8e64 12746 9t3e27 12748 9t4e36 12749 9t5e45 12750 9t6e54 12751 9t7e63 12752 9t8e72 12753 9t9e81 12754 |
| Copyright terms: Public domain | W3C validator |