MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4t3lem Structured version   Visualization version   GIF version

Theorem 4t3lem 11944
Description: Lemma for 4t3e12 11945 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.)
Hypotheses
Ref Expression
4t3lem.1 𝐴 ∈ ℕ0
4t3lem.2 𝐵 ∈ ℕ0
4t3lem.3 𝐶 = (𝐵 + 1)
4t3lem.4 (𝐴 · 𝐵) = 𝐷
4t3lem.5 (𝐷 + 𝐴) = 𝐸
Assertion
Ref Expression
4t3lem (𝐴 · 𝐶) = 𝐸

Proof of Theorem 4t3lem
StepHypRef Expression
1 4t3lem.3 . . 3 𝐶 = (𝐵 + 1)
21oveq2i 6933 . 2 (𝐴 · 𝐶) = (𝐴 · (𝐵 + 1))
3 4t3lem.1 . . . . . 6 𝐴 ∈ ℕ0
43nn0cni 11655 . . . . 5 𝐴 ∈ ℂ
5 4t3lem.2 . . . . . 6 𝐵 ∈ ℕ0
65nn0cni 11655 . . . . 5 𝐵 ∈ ℂ
7 ax-1cn 10330 . . . . 5 1 ∈ ℂ
84, 6, 7adddii 10389 . . . 4 (𝐴 · (𝐵 + 1)) = ((𝐴 · 𝐵) + (𝐴 · 1))
9 4t3lem.4 . . . . 5 (𝐴 · 𝐵) = 𝐷
104mulid1i 10381 . . . . 5 (𝐴 · 1) = 𝐴
119, 10oveq12i 6934 . . . 4 ((𝐴 · 𝐵) + (𝐴 · 1)) = (𝐷 + 𝐴)
128, 11eqtri 2801 . . 3 (𝐴 · (𝐵 + 1)) = (𝐷 + 𝐴)
13 4t3lem.5 . . 3 (𝐷 + 𝐴) = 𝐸
1412, 13eqtri 2801 . 2 (𝐴 · (𝐵 + 1)) = 𝐸
152, 14eqtri 2801 1 (𝐴 · 𝐶) = 𝐸
Colors of variables: wff setvar class
Syntax hints:   = wceq 1601  wcel 2106  (class class class)co 6922  1c1 10273   + caddc 10275   · cmul 10277  0cn0 11642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-mulcl 10334  ax-mulcom 10336  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1rid 10342  ax-cnre 10345
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-ov 6925  df-om 7344  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-nn 11375  df-n0 11643
This theorem is referenced by:  4t3e12  11945  4t4e16  11946  5t2e10  11947  5t3e15  11948  5t4e20  11949  5t5e25  11950  6t3e18  11952  6t4e24  11953  6t5e30  11954  6t6e36  11955  7t3e21  11957  7t4e28  11958  7t5e35  11959  7t6e42  11960  7t7e49  11961  8t3e24  11963  8t4e32  11964  8t5e40  11965  8t6e48  11966  8t7e56  11967  8t8e64  11968  9t3e27  11970  9t4e36  11971  9t5e45  11972  9t6e54  11973  9t7e63  11974  9t8e72  11975  9t9e81  11976
  Copyright terms: Public domain W3C validator