MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mod2xnegi Structured version   Visualization version   GIF version

Theorem mod2xnegi 16401
Description: Version of mod2xi 16399 with a negative mod value. (Contributed by Mario Carneiro, 21-Feb-2014.)
Hypotheses
Ref Expression
mod2xnegi.1 𝐴 ∈ ℕ
mod2xnegi.2 𝐵 ∈ ℕ0
mod2xnegi.3 𝐷 ∈ ℤ
mod2xnegi.4 𝐾 ∈ ℕ
mod2xnegi.5 𝑀 ∈ ℕ0
mod2xnegi.6 𝐿 ∈ ℕ0
mod2xnegi.10 ((𝐴𝐵) mod 𝑁) = (𝐿 mod 𝑁)
mod2xnegi.7 (2 · 𝐵) = 𝐸
mod2xnegi.8 (𝐿 + 𝐾) = 𝑁
mod2xnegi.9 ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐾)
Assertion
Ref Expression
mod2xnegi ((𝐴𝐸) mod 𝑁) = (𝑀 mod 𝑁)

Proof of Theorem mod2xnegi
StepHypRef Expression
1 mod2xnegi.8 . . 3 (𝐿 + 𝐾) = 𝑁
2 mod2xnegi.6 . . . 4 𝐿 ∈ ℕ0
3 mod2xnegi.4 . . . 4 𝐾 ∈ ℕ
4 nn0nnaddcl 11922 . . . 4 ((𝐿 ∈ ℕ0𝐾 ∈ ℕ) → (𝐿 + 𝐾) ∈ ℕ)
52, 3, 4mp2an 690 . . 3 (𝐿 + 𝐾) ∈ ℕ
61, 5eqeltrri 2910 . 2 𝑁 ∈ ℕ
7 mod2xnegi.1 . 2 𝐴 ∈ ℕ
8 mod2xnegi.2 . 2 𝐵 ∈ ℕ0
96nnzi 12000 . . . 4 𝑁 ∈ ℤ
10 mod2xnegi.3 . . . 4 𝐷 ∈ ℤ
11 zaddcl 12016 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝑁 + 𝐷) ∈ ℤ)
129, 10, 11mp2an 690 . . 3 (𝑁 + 𝐷) ∈ ℤ
133nnnn0i 11899 . . . . 5 𝐾 ∈ ℕ0
1413, 13nn0addcli 11928 . . . 4 (𝐾 + 𝐾) ∈ ℕ0
1514nn0zi 12001 . . 3 (𝐾 + 𝐾) ∈ ℤ
16 zsubcl 12018 . . 3 (((𝑁 + 𝐷) ∈ ℤ ∧ (𝐾 + 𝐾) ∈ ℤ) → ((𝑁 + 𝐷) − (𝐾 + 𝐾)) ∈ ℤ)
1712, 15, 16mp2an 690 . 2 ((𝑁 + 𝐷) − (𝐾 + 𝐾)) ∈ ℤ
18 mod2xnegi.5 . 2 𝑀 ∈ ℕ0
19 mod2xnegi.10 . 2 ((𝐴𝐵) mod 𝑁) = (𝐿 mod 𝑁)
20 mod2xnegi.7 . 2 (2 · 𝐵) = 𝐸
216nncni 11642 . . . . . 6 𝑁 ∈ ℂ
22 zcn 11980 . . . . . . 7 (𝐷 ∈ ℤ → 𝐷 ∈ ℂ)
2310, 22ax-mp 5 . . . . . 6 𝐷 ∈ ℂ
2421, 23addcli 10641 . . . . 5 (𝑁 + 𝐷) ∈ ℂ
253nncni 11642 . . . . . 6 𝐾 ∈ ℂ
2625, 25addcli 10641 . . . . 5 (𝐾 + 𝐾) ∈ ℂ
2724, 26, 21subdiri 11084 . . . 4 (((𝑁 + 𝐷) − (𝐾 + 𝐾)) · 𝑁) = (((𝑁 + 𝐷) · 𝑁) − ((𝐾 + 𝐾) · 𝑁))
2827oveq1i 7160 . . 3 ((((𝑁 + 𝐷) − (𝐾 + 𝐾)) · 𝑁) + 𝑀) = ((((𝑁 + 𝐷) · 𝑁) − ((𝐾 + 𝐾) · 𝑁)) + 𝑀)
2924, 21mulcli 10642 . . . 4 ((𝑁 + 𝐷) · 𝑁) ∈ ℂ
3018nn0cni 11903 . . . 4 𝑀 ∈ ℂ
3126, 21mulcli 10642 . . . 4 ((𝐾 + 𝐾) · 𝑁) ∈ ℂ
3229, 30, 31addsubi 10972 . . 3 ((((𝑁 + 𝐷) · 𝑁) + 𝑀) − ((𝐾 + 𝐾) · 𝑁)) = ((((𝑁 + 𝐷) · 𝑁) − ((𝐾 + 𝐾) · 𝑁)) + 𝑀)
33 mod2xnegi.9 . . . . . . 7 ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐾)
3433oveq2i 7161 . . . . . 6 ((𝑁 · 𝑁) + ((𝐷 · 𝑁) + 𝑀)) = ((𝑁 · 𝑁) + (𝐾 · 𝐾))
3521, 25, 25adddii 10647 . . . . . 6 (𝑁 · (𝐾 + 𝐾)) = ((𝑁 · 𝐾) + (𝑁 · 𝐾))
3634, 35oveq12i 7162 . . . . 5 (((𝑁 · 𝑁) + ((𝐷 · 𝑁) + 𝑀)) − (𝑁 · (𝐾 + 𝐾))) = (((𝑁 · 𝑁) + (𝐾 · 𝐾)) − ((𝑁 · 𝐾) + (𝑁 · 𝐾)))
3721, 23, 21adddiri 10648 . . . . . . . 8 ((𝑁 + 𝐷) · 𝑁) = ((𝑁 · 𝑁) + (𝐷 · 𝑁))
3837oveq1i 7160 . . . . . . 7 (((𝑁 + 𝐷) · 𝑁) + 𝑀) = (((𝑁 · 𝑁) + (𝐷 · 𝑁)) + 𝑀)
3921, 21mulcli 10642 . . . . . . . 8 (𝑁 · 𝑁) ∈ ℂ
4023, 21mulcli 10642 . . . . . . . 8 (𝐷 · 𝑁) ∈ ℂ
4139, 40, 30addassi 10645 . . . . . . 7 (((𝑁 · 𝑁) + (𝐷 · 𝑁)) + 𝑀) = ((𝑁 · 𝑁) + ((𝐷 · 𝑁) + 𝑀))
4238, 41eqtr2i 2845 . . . . . 6 ((𝑁 · 𝑁) + ((𝐷 · 𝑁) + 𝑀)) = (((𝑁 + 𝐷) · 𝑁) + 𝑀)
4321, 26mulcomi 10643 . . . . . 6 (𝑁 · (𝐾 + 𝐾)) = ((𝐾 + 𝐾) · 𝑁)
4442, 43oveq12i 7162 . . . . 5 (((𝑁 · 𝑁) + ((𝐷 · 𝑁) + 𝑀)) − (𝑁 · (𝐾 + 𝐾))) = ((((𝑁 + 𝐷) · 𝑁) + 𝑀) − ((𝐾 + 𝐾) · 𝑁))
4536, 44eqtr3i 2846 . . . 4 (((𝑁 · 𝑁) + (𝐾 · 𝐾)) − ((𝑁 · 𝐾) + (𝑁 · 𝐾))) = ((((𝑁 + 𝐷) · 𝑁) + 𝑀) − ((𝐾 + 𝐾) · 𝑁))
46 mulsub 11077 . . . . . 6 (((𝑁 ∈ ℂ ∧ 𝐾 ∈ ℂ) ∧ (𝑁 ∈ ℂ ∧ 𝐾 ∈ ℂ)) → ((𝑁𝐾) · (𝑁𝐾)) = (((𝑁 · 𝑁) + (𝐾 · 𝐾)) − ((𝑁 · 𝐾) + (𝑁 · 𝐾))))
4721, 25, 21, 25, 46mp4an 691 . . . . 5 ((𝑁𝐾) · (𝑁𝐾)) = (((𝑁 · 𝑁) + (𝐾 · 𝐾)) − ((𝑁 · 𝐾) + (𝑁 · 𝐾)))
482nn0cni 11903 . . . . . . . 8 𝐿 ∈ ℂ
4921, 25, 48subadd2i 10968 . . . . . . 7 ((𝑁𝐾) = 𝐿 ↔ (𝐿 + 𝐾) = 𝑁)
501, 49mpbir 233 . . . . . 6 (𝑁𝐾) = 𝐿
5150, 50oveq12i 7162 . . . . 5 ((𝑁𝐾) · (𝑁𝐾)) = (𝐿 · 𝐿)
5247, 51eqtr3i 2846 . . . 4 (((𝑁 · 𝑁) + (𝐾 · 𝐾)) − ((𝑁 · 𝐾) + (𝑁 · 𝐾))) = (𝐿 · 𝐿)
5345, 52eqtr3i 2846 . . 3 ((((𝑁 + 𝐷) · 𝑁) + 𝑀) − ((𝐾 + 𝐾) · 𝑁)) = (𝐿 · 𝐿)
5428, 32, 533eqtr2i 2850 . 2 ((((𝑁 + 𝐷) − (𝐾 + 𝐾)) · 𝑁) + 𝑀) = (𝐿 · 𝐿)
556, 7, 8, 17, 2, 18, 19, 20, 54mod2xi 16399 1 ((𝐴𝐸) mod 𝑁) = (𝑀 mod 𝑁)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wcel 2110  (class class class)co 7150  cc 10529   + caddc 10534   · cmul 10536  cmin 10864  cn 11632  2c2 11686  0cn0 11891  cz 11975   mod cmo 13231  cexp 13423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-fl 13156  df-mod 13232  df-seq 13364  df-exp 13424
This theorem is referenced by:  1259lem4  16461  2503lem2  16465
  Copyright terms: Public domain W3C validator