MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mod2xnegi Structured version   Visualization version   GIF version

Theorem mod2xnegi 16980
Description: Version of mod2xi 16978 with a negative mod value. (Contributed by Mario Carneiro, 21-Feb-2014.)
Hypotheses
Ref Expression
mod2xnegi.1 𝐴 ∈ ℕ
mod2xnegi.2 𝐵 ∈ ℕ0
mod2xnegi.3 𝐷 ∈ ℤ
mod2xnegi.4 𝐾 ∈ ℕ
mod2xnegi.5 𝑀 ∈ ℕ0
mod2xnegi.6 𝐿 ∈ ℕ0
mod2xnegi.10 ((𝐴𝐵) mod 𝑁) = (𝐿 mod 𝑁)
mod2xnegi.7 (2 · 𝐵) = 𝐸
mod2xnegi.8 (𝐿 + 𝐾) = 𝑁
mod2xnegi.9 ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐾)
Assertion
Ref Expression
mod2xnegi ((𝐴𝐸) mod 𝑁) = (𝑀 mod 𝑁)

Proof of Theorem mod2xnegi
StepHypRef Expression
1 mod2xnegi.8 . . 3 (𝐿 + 𝐾) = 𝑁
2 mod2xnegi.6 . . . 4 𝐿 ∈ ℕ0
3 mod2xnegi.4 . . . 4 𝐾 ∈ ℕ
4 nn0nnaddcl 12409 . . . 4 ((𝐿 ∈ ℕ0𝐾 ∈ ℕ) → (𝐿 + 𝐾) ∈ ℕ)
52, 3, 4mp2an 692 . . 3 (𝐿 + 𝐾) ∈ ℕ
61, 5eqeltrri 2828 . 2 𝑁 ∈ ℕ
7 mod2xnegi.1 . 2 𝐴 ∈ ℕ
8 mod2xnegi.2 . 2 𝐵 ∈ ℕ0
96nnzi 12493 . . . 4 𝑁 ∈ ℤ
10 mod2xnegi.3 . . . 4 𝐷 ∈ ℤ
11 zaddcl 12509 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝑁 + 𝐷) ∈ ℤ)
129, 10, 11mp2an 692 . . 3 (𝑁 + 𝐷) ∈ ℤ
133nnnn0i 12386 . . . . 5 𝐾 ∈ ℕ0
1413, 13nn0addcli 12415 . . . 4 (𝐾 + 𝐾) ∈ ℕ0
1514nn0zi 12494 . . 3 (𝐾 + 𝐾) ∈ ℤ
16 zsubcl 12511 . . 3 (((𝑁 + 𝐷) ∈ ℤ ∧ (𝐾 + 𝐾) ∈ ℤ) → ((𝑁 + 𝐷) − (𝐾 + 𝐾)) ∈ ℤ)
1712, 15, 16mp2an 692 . 2 ((𝑁 + 𝐷) − (𝐾 + 𝐾)) ∈ ℤ
18 mod2xnegi.5 . 2 𝑀 ∈ ℕ0
19 mod2xnegi.10 . 2 ((𝐴𝐵) mod 𝑁) = (𝐿 mod 𝑁)
20 mod2xnegi.7 . 2 (2 · 𝐵) = 𝐸
216nncni 12132 . . . . . 6 𝑁 ∈ ℂ
22 zcn 12470 . . . . . . 7 (𝐷 ∈ ℤ → 𝐷 ∈ ℂ)
2310, 22ax-mp 5 . . . . . 6 𝐷 ∈ ℂ
2421, 23addcli 11115 . . . . 5 (𝑁 + 𝐷) ∈ ℂ
253nncni 12132 . . . . . 6 𝐾 ∈ ℂ
2625, 25addcli 11115 . . . . 5 (𝐾 + 𝐾) ∈ ℂ
2724, 26, 21subdiri 11564 . . . 4 (((𝑁 + 𝐷) − (𝐾 + 𝐾)) · 𝑁) = (((𝑁 + 𝐷) · 𝑁) − ((𝐾 + 𝐾) · 𝑁))
2827oveq1i 7356 . . 3 ((((𝑁 + 𝐷) − (𝐾 + 𝐾)) · 𝑁) + 𝑀) = ((((𝑁 + 𝐷) · 𝑁) − ((𝐾 + 𝐾) · 𝑁)) + 𝑀)
2924, 21mulcli 11116 . . . 4 ((𝑁 + 𝐷) · 𝑁) ∈ ℂ
3018nn0cni 12390 . . . 4 𝑀 ∈ ℂ
3126, 21mulcli 11116 . . . 4 ((𝐾 + 𝐾) · 𝑁) ∈ ℂ
3229, 30, 31addsubi 11450 . . 3 ((((𝑁 + 𝐷) · 𝑁) + 𝑀) − ((𝐾 + 𝐾) · 𝑁)) = ((((𝑁 + 𝐷) · 𝑁) − ((𝐾 + 𝐾) · 𝑁)) + 𝑀)
33 mod2xnegi.9 . . . . . . 7 ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐾)
3433oveq2i 7357 . . . . . 6 ((𝑁 · 𝑁) + ((𝐷 · 𝑁) + 𝑀)) = ((𝑁 · 𝑁) + (𝐾 · 𝐾))
3521, 25, 25adddii 11121 . . . . . 6 (𝑁 · (𝐾 + 𝐾)) = ((𝑁 · 𝐾) + (𝑁 · 𝐾))
3634, 35oveq12i 7358 . . . . 5 (((𝑁 · 𝑁) + ((𝐷 · 𝑁) + 𝑀)) − (𝑁 · (𝐾 + 𝐾))) = (((𝑁 · 𝑁) + (𝐾 · 𝐾)) − ((𝑁 · 𝐾) + (𝑁 · 𝐾)))
3721, 23, 21adddiri 11122 . . . . . . . 8 ((𝑁 + 𝐷) · 𝑁) = ((𝑁 · 𝑁) + (𝐷 · 𝑁))
3837oveq1i 7356 . . . . . . 7 (((𝑁 + 𝐷) · 𝑁) + 𝑀) = (((𝑁 · 𝑁) + (𝐷 · 𝑁)) + 𝑀)
3921, 21mulcli 11116 . . . . . . . 8 (𝑁 · 𝑁) ∈ ℂ
4023, 21mulcli 11116 . . . . . . . 8 (𝐷 · 𝑁) ∈ ℂ
4139, 40, 30addassi 11119 . . . . . . 7 (((𝑁 · 𝑁) + (𝐷 · 𝑁)) + 𝑀) = ((𝑁 · 𝑁) + ((𝐷 · 𝑁) + 𝑀))
4238, 41eqtr2i 2755 . . . . . 6 ((𝑁 · 𝑁) + ((𝐷 · 𝑁) + 𝑀)) = (((𝑁 + 𝐷) · 𝑁) + 𝑀)
4321, 26mulcomi 11117 . . . . . 6 (𝑁 · (𝐾 + 𝐾)) = ((𝐾 + 𝐾) · 𝑁)
4442, 43oveq12i 7358 . . . . 5 (((𝑁 · 𝑁) + ((𝐷 · 𝑁) + 𝑀)) − (𝑁 · (𝐾 + 𝐾))) = ((((𝑁 + 𝐷) · 𝑁) + 𝑀) − ((𝐾 + 𝐾) · 𝑁))
4536, 44eqtr3i 2756 . . . 4 (((𝑁 · 𝑁) + (𝐾 · 𝐾)) − ((𝑁 · 𝐾) + (𝑁 · 𝐾))) = ((((𝑁 + 𝐷) · 𝑁) + 𝑀) − ((𝐾 + 𝐾) · 𝑁))
46 mulsub 11557 . . . . . 6 (((𝑁 ∈ ℂ ∧ 𝐾 ∈ ℂ) ∧ (𝑁 ∈ ℂ ∧ 𝐾 ∈ ℂ)) → ((𝑁𝐾) · (𝑁𝐾)) = (((𝑁 · 𝑁) + (𝐾 · 𝐾)) − ((𝑁 · 𝐾) + (𝑁 · 𝐾))))
4721, 25, 21, 25, 46mp4an 693 . . . . 5 ((𝑁𝐾) · (𝑁𝐾)) = (((𝑁 · 𝑁) + (𝐾 · 𝐾)) − ((𝑁 · 𝐾) + (𝑁 · 𝐾)))
482nn0cni 12390 . . . . . . . 8 𝐿 ∈ ℂ
4921, 25, 48subadd2i 11446 . . . . . . 7 ((𝑁𝐾) = 𝐿 ↔ (𝐿 + 𝐾) = 𝑁)
501, 49mpbir 231 . . . . . 6 (𝑁𝐾) = 𝐿
5150, 50oveq12i 7358 . . . . 5 ((𝑁𝐾) · (𝑁𝐾)) = (𝐿 · 𝐿)
5247, 51eqtr3i 2756 . . . 4 (((𝑁 · 𝑁) + (𝐾 · 𝐾)) − ((𝑁 · 𝐾) + (𝑁 · 𝐾))) = (𝐿 · 𝐿)
5345, 52eqtr3i 2756 . . 3 ((((𝑁 + 𝐷) · 𝑁) + 𝑀) − ((𝐾 + 𝐾) · 𝑁)) = (𝐿 · 𝐿)
5428, 32, 533eqtr2i 2760 . 2 ((((𝑁 + 𝐷) − (𝐾 + 𝐾)) · 𝑁) + 𝑀) = (𝐿 · 𝐿)
556, 7, 8, 17, 2, 18, 19, 20, 54mod2xi 16978 1 ((𝐴𝐸) mod 𝑁) = (𝑀 mod 𝑁)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  (class class class)co 7346  cc 11001   + caddc 11006   · cmul 11008  cmin 11341  cn 12122  2c2 12177  0cn0 12378  cz 12465   mod cmo 13770  cexp 13965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-n0 12379  df-z 12466  df-uz 12730  df-rp 12888  df-fl 13693  df-mod 13771  df-seq 13906  df-exp 13966
This theorem is referenced by:  1259lem4  17042  2503lem2  17046
  Copyright terms: Public domain W3C validator