MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mod2xnegi Structured version   Visualization version   GIF version

Theorem mod2xnegi 16146
Description: Version of mod2xi 16144 with a negative mod value. (Contributed by Mario Carneiro, 21-Feb-2014.)
Hypotheses
Ref Expression
mod2xnegi.1 𝐴 ∈ ℕ
mod2xnegi.2 𝐵 ∈ ℕ0
mod2xnegi.3 𝐷 ∈ ℤ
mod2xnegi.4 𝐾 ∈ ℕ
mod2xnegi.5 𝑀 ∈ ℕ0
mod2xnegi.6 𝐿 ∈ ℕ0
mod2xnegi.10 ((𝐴𝐵) mod 𝑁) = (𝐿 mod 𝑁)
mod2xnegi.7 (2 · 𝐵) = 𝐸
mod2xnegi.8 (𝐿 + 𝐾) = 𝑁
mod2xnegi.9 ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐾)
Assertion
Ref Expression
mod2xnegi ((𝐴𝐸) mod 𝑁) = (𝑀 mod 𝑁)

Proof of Theorem mod2xnegi
StepHypRef Expression
1 mod2xnegi.8 . . 3 (𝐿 + 𝐾) = 𝑁
2 mod2xnegi.6 . . . 4 𝐿 ∈ ℕ0
3 mod2xnegi.4 . . . 4 𝐾 ∈ ℕ
4 nn0nnaddcl 11651 . . . 4 ((𝐿 ∈ ℕ0𝐾 ∈ ℕ) → (𝐿 + 𝐾) ∈ ℕ)
52, 3, 4mp2an 683 . . 3 (𝐿 + 𝐾) ∈ ℕ
61, 5eqeltrri 2903 . 2 𝑁 ∈ ℕ
7 mod2xnegi.1 . 2 𝐴 ∈ ℕ
8 mod2xnegi.2 . 2 𝐵 ∈ ℕ0
96nnzi 11729 . . . 4 𝑁 ∈ ℤ
10 mod2xnegi.3 . . . 4 𝐷 ∈ ℤ
11 zaddcl 11745 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝑁 + 𝐷) ∈ ℤ)
129, 10, 11mp2an 683 . . 3 (𝑁 + 𝐷) ∈ ℤ
133nnnn0i 11627 . . . . 5 𝐾 ∈ ℕ0
1413, 13nn0addcli 11657 . . . 4 (𝐾 + 𝐾) ∈ ℕ0
1514nn0zi 11730 . . 3 (𝐾 + 𝐾) ∈ ℤ
16 zsubcl 11747 . . 3 (((𝑁 + 𝐷) ∈ ℤ ∧ (𝐾 + 𝐾) ∈ ℤ) → ((𝑁 + 𝐷) − (𝐾 + 𝐾)) ∈ ℤ)
1712, 15, 16mp2an 683 . 2 ((𝑁 + 𝐷) − (𝐾 + 𝐾)) ∈ ℤ
18 mod2xnegi.5 . 2 𝑀 ∈ ℕ0
19 mod2xnegi.10 . 2 ((𝐴𝐵) mod 𝑁) = (𝐿 mod 𝑁)
20 mod2xnegi.7 . 2 (2 · 𝐵) = 𝐸
216nncni 11361 . . . . . 6 𝑁 ∈ ℂ
22 zcn 11709 . . . . . . 7 (𝐷 ∈ ℤ → 𝐷 ∈ ℂ)
2310, 22ax-mp 5 . . . . . 6 𝐷 ∈ ℂ
2421, 23addcli 10363 . . . . 5 (𝑁 + 𝐷) ∈ ℂ
253nncni 11361 . . . . . 6 𝐾 ∈ ℂ
2625, 25addcli 10363 . . . . 5 (𝐾 + 𝐾) ∈ ℂ
2724, 26, 21subdiri 10804 . . . 4 (((𝑁 + 𝐷) − (𝐾 + 𝐾)) · 𝑁) = (((𝑁 + 𝐷) · 𝑁) − ((𝐾 + 𝐾) · 𝑁))
2827oveq1i 6915 . . 3 ((((𝑁 + 𝐷) − (𝐾 + 𝐾)) · 𝑁) + 𝑀) = ((((𝑁 + 𝐷) · 𝑁) − ((𝐾 + 𝐾) · 𝑁)) + 𝑀)
2924, 21mulcli 10364 . . . 4 ((𝑁 + 𝐷) · 𝑁) ∈ ℂ
3018nn0cni 11631 . . . 4 𝑀 ∈ ℂ
3126, 21mulcli 10364 . . . 4 ((𝐾 + 𝐾) · 𝑁) ∈ ℂ
3229, 30, 31addsubi 10694 . . 3 ((((𝑁 + 𝐷) · 𝑁) + 𝑀) − ((𝐾 + 𝐾) · 𝑁)) = ((((𝑁 + 𝐷) · 𝑁) − ((𝐾 + 𝐾) · 𝑁)) + 𝑀)
33 mod2xnegi.9 . . . . . . 7 ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐾)
3433oveq2i 6916 . . . . . 6 ((𝑁 · 𝑁) + ((𝐷 · 𝑁) + 𝑀)) = ((𝑁 · 𝑁) + (𝐾 · 𝐾))
3521, 25, 25adddii 10369 . . . . . 6 (𝑁 · (𝐾 + 𝐾)) = ((𝑁 · 𝐾) + (𝑁 · 𝐾))
3634, 35oveq12i 6917 . . . . 5 (((𝑁 · 𝑁) + ((𝐷 · 𝑁) + 𝑀)) − (𝑁 · (𝐾 + 𝐾))) = (((𝑁 · 𝑁) + (𝐾 · 𝐾)) − ((𝑁 · 𝐾) + (𝑁 · 𝐾)))
3721, 23, 21adddiri 10370 . . . . . . . 8 ((𝑁 + 𝐷) · 𝑁) = ((𝑁 · 𝑁) + (𝐷 · 𝑁))
3837oveq1i 6915 . . . . . . 7 (((𝑁 + 𝐷) · 𝑁) + 𝑀) = (((𝑁 · 𝑁) + (𝐷 · 𝑁)) + 𝑀)
3921, 21mulcli 10364 . . . . . . . 8 (𝑁 · 𝑁) ∈ ℂ
4023, 21mulcli 10364 . . . . . . . 8 (𝐷 · 𝑁) ∈ ℂ
4139, 40, 30addassi 10367 . . . . . . 7 (((𝑁 · 𝑁) + (𝐷 · 𝑁)) + 𝑀) = ((𝑁 · 𝑁) + ((𝐷 · 𝑁) + 𝑀))
4238, 41eqtr2i 2850 . . . . . 6 ((𝑁 · 𝑁) + ((𝐷 · 𝑁) + 𝑀)) = (((𝑁 + 𝐷) · 𝑁) + 𝑀)
4321, 26mulcomi 10365 . . . . . 6 (𝑁 · (𝐾 + 𝐾)) = ((𝐾 + 𝐾) · 𝑁)
4442, 43oveq12i 6917 . . . . 5 (((𝑁 · 𝑁) + ((𝐷 · 𝑁) + 𝑀)) − (𝑁 · (𝐾 + 𝐾))) = ((((𝑁 + 𝐷) · 𝑁) + 𝑀) − ((𝐾 + 𝐾) · 𝑁))
4536, 44eqtr3i 2851 . . . 4 (((𝑁 · 𝑁) + (𝐾 · 𝐾)) − ((𝑁 · 𝐾) + (𝑁 · 𝐾))) = ((((𝑁 + 𝐷) · 𝑁) + 𝑀) − ((𝐾 + 𝐾) · 𝑁))
46 mulsub 10797 . . . . . 6 (((𝑁 ∈ ℂ ∧ 𝐾 ∈ ℂ) ∧ (𝑁 ∈ ℂ ∧ 𝐾 ∈ ℂ)) → ((𝑁𝐾) · (𝑁𝐾)) = (((𝑁 · 𝑁) + (𝐾 · 𝐾)) − ((𝑁 · 𝐾) + (𝑁 · 𝐾))))
4721, 25, 21, 25, 46mp4an 684 . . . . 5 ((𝑁𝐾) · (𝑁𝐾)) = (((𝑁 · 𝑁) + (𝐾 · 𝐾)) − ((𝑁 · 𝐾) + (𝑁 · 𝐾)))
482nn0cni 11631 . . . . . . . 8 𝐿 ∈ ℂ
4921, 25, 48subadd2i 10690 . . . . . . 7 ((𝑁𝐾) = 𝐿 ↔ (𝐿 + 𝐾) = 𝑁)
501, 49mpbir 223 . . . . . 6 (𝑁𝐾) = 𝐿
5150, 50oveq12i 6917 . . . . 5 ((𝑁𝐾) · (𝑁𝐾)) = (𝐿 · 𝐿)
5247, 51eqtr3i 2851 . . . 4 (((𝑁 · 𝑁) + (𝐾 · 𝐾)) − ((𝑁 · 𝐾) + (𝑁 · 𝐾))) = (𝐿 · 𝐿)
5345, 52eqtr3i 2851 . . 3 ((((𝑁 + 𝐷) · 𝑁) + 𝑀) − ((𝐾 + 𝐾) · 𝑁)) = (𝐿 · 𝐿)
5428, 32, 533eqtr2i 2855 . 2 ((((𝑁 + 𝐷) − (𝐾 + 𝐾)) · 𝑁) + 𝑀) = (𝐿 · 𝐿)
556, 7, 8, 17, 2, 18, 19, 20, 54mod2xi 16144 1 ((𝐴𝐸) mod 𝑁) = (𝑀 mod 𝑁)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1656  wcel 2164  (class class class)co 6905  cc 10250   + caddc 10255   · cmul 10257  cmin 10585  cn 11350  2c2 11406  0cn0 11618  cz 11704   mod cmo 12963  cexp 13154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-sup 8617  df-inf 8618  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-n0 11619  df-z 11705  df-uz 11969  df-rp 12113  df-fl 12888  df-mod 12964  df-seq 13096  df-exp 13155
This theorem is referenced by:  1259lem4  16206  2503lem2  16210
  Copyright terms: Public domain W3C validator