![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > binom2i | Structured version Visualization version GIF version |
Description: The square of a binomial. (Contributed by NM, 11-Aug-1999.) |
Ref | Expression |
---|---|
binom2.1 | ⊢ 𝐴 ∈ ℂ |
binom2.2 | ⊢ 𝐵 ∈ ℂ |
Ref | Expression |
---|---|
binom2i | ⊢ ((𝐴 + 𝐵)↑2) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | binom2.1 | . . . . 5 ⊢ 𝐴 ∈ ℂ | |
2 | binom2.2 | . . . . 5 ⊢ 𝐵 ∈ ℂ | |
3 | 1, 2 | addcli 11251 | . . . 4 ⊢ (𝐴 + 𝐵) ∈ ℂ |
4 | 3, 1, 2 | adddii 11257 | . . 3 ⊢ ((𝐴 + 𝐵) · (𝐴 + 𝐵)) = (((𝐴 + 𝐵) · 𝐴) + ((𝐴 + 𝐵) · 𝐵)) |
5 | 1, 2, 1 | adddiri 11258 | . . . . . 6 ⊢ ((𝐴 + 𝐵) · 𝐴) = ((𝐴 · 𝐴) + (𝐵 · 𝐴)) |
6 | 2, 1 | mulcomi 11253 | . . . . . . 7 ⊢ (𝐵 · 𝐴) = (𝐴 · 𝐵) |
7 | 6 | oveq2i 7431 | . . . . . 6 ⊢ ((𝐴 · 𝐴) + (𝐵 · 𝐴)) = ((𝐴 · 𝐴) + (𝐴 · 𝐵)) |
8 | 5, 7 | eqtri 2756 | . . . . 5 ⊢ ((𝐴 + 𝐵) · 𝐴) = ((𝐴 · 𝐴) + (𝐴 · 𝐵)) |
9 | 1, 2, 2 | adddiri 11258 | . . . . 5 ⊢ ((𝐴 + 𝐵) · 𝐵) = ((𝐴 · 𝐵) + (𝐵 · 𝐵)) |
10 | 8, 9 | oveq12i 7432 | . . . 4 ⊢ (((𝐴 + 𝐵) · 𝐴) + ((𝐴 + 𝐵) · 𝐵)) = (((𝐴 · 𝐴) + (𝐴 · 𝐵)) + ((𝐴 · 𝐵) + (𝐵 · 𝐵))) |
11 | 1, 1 | mulcli 11252 | . . . . . 6 ⊢ (𝐴 · 𝐴) ∈ ℂ |
12 | 1, 2 | mulcli 11252 | . . . . . 6 ⊢ (𝐴 · 𝐵) ∈ ℂ |
13 | 11, 12 | addcli 11251 | . . . . 5 ⊢ ((𝐴 · 𝐴) + (𝐴 · 𝐵)) ∈ ℂ |
14 | 2, 2 | mulcli 11252 | . . . . 5 ⊢ (𝐵 · 𝐵) ∈ ℂ |
15 | 13, 12, 14 | addassi 11255 | . . . 4 ⊢ ((((𝐴 · 𝐴) + (𝐴 · 𝐵)) + (𝐴 · 𝐵)) + (𝐵 · 𝐵)) = (((𝐴 · 𝐴) + (𝐴 · 𝐵)) + ((𝐴 · 𝐵) + (𝐵 · 𝐵))) |
16 | 11, 12, 12 | addassi 11255 | . . . . 5 ⊢ (((𝐴 · 𝐴) + (𝐴 · 𝐵)) + (𝐴 · 𝐵)) = ((𝐴 · 𝐴) + ((𝐴 · 𝐵) + (𝐴 · 𝐵))) |
17 | 16 | oveq1i 7430 | . . . 4 ⊢ ((((𝐴 · 𝐴) + (𝐴 · 𝐵)) + (𝐴 · 𝐵)) + (𝐵 · 𝐵)) = (((𝐴 · 𝐴) + ((𝐴 · 𝐵) + (𝐴 · 𝐵))) + (𝐵 · 𝐵)) |
18 | 10, 15, 17 | 3eqtr2i 2762 | . . 3 ⊢ (((𝐴 + 𝐵) · 𝐴) + ((𝐴 + 𝐵) · 𝐵)) = (((𝐴 · 𝐴) + ((𝐴 · 𝐵) + (𝐴 · 𝐵))) + (𝐵 · 𝐵)) |
19 | 4, 18 | eqtri 2756 | . 2 ⊢ ((𝐴 + 𝐵) · (𝐴 + 𝐵)) = (((𝐴 · 𝐴) + ((𝐴 · 𝐵) + (𝐴 · 𝐵))) + (𝐵 · 𝐵)) |
20 | 3 | sqvali 14176 | . 2 ⊢ ((𝐴 + 𝐵)↑2) = ((𝐴 + 𝐵) · (𝐴 + 𝐵)) |
21 | 1 | sqvali 14176 | . . . 4 ⊢ (𝐴↑2) = (𝐴 · 𝐴) |
22 | 12 | 2timesi 12381 | . . . 4 ⊢ (2 · (𝐴 · 𝐵)) = ((𝐴 · 𝐵) + (𝐴 · 𝐵)) |
23 | 21, 22 | oveq12i 7432 | . . 3 ⊢ ((𝐴↑2) + (2 · (𝐴 · 𝐵))) = ((𝐴 · 𝐴) + ((𝐴 · 𝐵) + (𝐴 · 𝐵))) |
24 | 2 | sqvali 14176 | . . 3 ⊢ (𝐵↑2) = (𝐵 · 𝐵) |
25 | 23, 24 | oveq12i 7432 | . 2 ⊢ (((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) = (((𝐴 · 𝐴) + ((𝐴 · 𝐵) + (𝐴 · 𝐵))) + (𝐵 · 𝐵)) |
26 | 19, 20, 25 | 3eqtr4i 2766 | 1 ⊢ ((𝐴 + 𝐵)↑2) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 (class class class)co 7420 ℂcc 11137 + caddc 11142 · cmul 11144 2c2 12298 ↑cexp 14059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-2 12306 df-n0 12504 df-z 12590 df-uz 12854 df-seq 14000 df-exp 14060 |
This theorem is referenced by: binom2 14213 nn0opthlem1 14260 2lgsoddprmlem3d 27359 ax5seglem7 28759 norm-ii-i 30960 quad3 35274 |
Copyright terms: Public domain | W3C validator |