Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dpmul10 | Structured version Visualization version GIF version |
Description: Multiply by 10 a decimal expansion. (Contributed by Thierry Arnoux, 25-Dec-2021.) |
Ref | Expression |
---|---|
dpval2.a | ⊢ 𝐴 ∈ ℕ0 |
dpval2.b | ⊢ 𝐵 ∈ ℝ |
Ref | Expression |
---|---|
dpmul10 | ⊢ ((𝐴.𝐵) · ;10) = ;𝐴𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dpval2.b | . . . . 5 ⊢ 𝐵 ∈ ℝ | |
2 | 1 | recni 11090 | . . . 4 ⊢ 𝐵 ∈ ℂ |
3 | 10nn 12554 | . . . . 5 ⊢ ;10 ∈ ℕ | |
4 | 3 | nncni 12084 | . . . 4 ⊢ ;10 ∈ ℂ |
5 | 3 | nnne0i 12114 | . . . 4 ⊢ ;10 ≠ 0 |
6 | 2, 4, 5 | divcan2i 11819 | . . 3 ⊢ (;10 · (𝐵 / ;10)) = 𝐵 |
7 | 6 | oveq2i 7348 | . 2 ⊢ ((;10 · 𝐴) + (;10 · (𝐵 / ;10))) = ((;10 · 𝐴) + 𝐵) |
8 | dpval2.a | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
9 | 8, 1 | dpval2 31454 | . . . 4 ⊢ (𝐴.𝐵) = (𝐴 + (𝐵 / ;10)) |
10 | 9 | oveq2i 7348 | . . 3 ⊢ (;10 · (𝐴.𝐵)) = (;10 · (𝐴 + (𝐵 / ;10))) |
11 | dpcl 31452 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ) → (𝐴.𝐵) ∈ ℝ) | |
12 | 8, 1, 11 | mp2an 689 | . . . . 5 ⊢ (𝐴.𝐵) ∈ ℝ |
13 | 12 | recni 11090 | . . . 4 ⊢ (𝐴.𝐵) ∈ ℂ |
14 | 4, 13 | mulcomi 11084 | . . 3 ⊢ (;10 · (𝐴.𝐵)) = ((𝐴.𝐵) · ;10) |
15 | 8 | nn0cni 12346 | . . . 4 ⊢ 𝐴 ∈ ℂ |
16 | 2, 4, 5 | divcli 11818 | . . . 4 ⊢ (𝐵 / ;10) ∈ ℂ |
17 | 4, 15, 16 | adddii 11088 | . . 3 ⊢ (;10 · (𝐴 + (𝐵 / ;10))) = ((;10 · 𝐴) + (;10 · (𝐵 / ;10))) |
18 | 10, 14, 17 | 3eqtr3i 2772 | . 2 ⊢ ((𝐴.𝐵) · ;10) = ((;10 · 𝐴) + (;10 · (𝐵 / ;10))) |
19 | dfdec10 12541 | . 2 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
20 | 7, 18, 19 | 3eqtr4i 2774 | 1 ⊢ ((𝐴.𝐵) · ;10) = ;𝐴𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 (class class class)co 7337 ℝcr 10971 0cc0 10972 1c1 10973 + caddc 10975 · cmul 10977 / cdiv 11733 ℕ0cn0 12334 ;cdc 12538 .cdp 31449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-div 11734 df-nn 12075 df-2 12137 df-3 12138 df-4 12139 df-5 12140 df-6 12141 df-7 12142 df-8 12143 df-9 12144 df-n0 12335 df-dec 12539 df-dp2 31433 df-dp 31450 |
This theorem is referenced by: decdiv10 31457 dpmul100 31458 dp3mul10 31459 dpmul1000 31460 dpmul 31474 dpmul4 31475 |
Copyright terms: Public domain | W3C validator |