| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dpmul10 | Structured version Visualization version GIF version | ||
| Description: Multiply by 10 a decimal expansion. (Contributed by Thierry Arnoux, 25-Dec-2021.) |
| Ref | Expression |
|---|---|
| dpval2.a | ⊢ 𝐴 ∈ ℕ0 |
| dpval2.b | ⊢ 𝐵 ∈ ℝ |
| Ref | Expression |
|---|---|
| dpmul10 | ⊢ ((𝐴.𝐵) · ;10) = ;𝐴𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dpval2.b | . . . . 5 ⊢ 𝐵 ∈ ℝ | |
| 2 | 1 | recni 11254 | . . . 4 ⊢ 𝐵 ∈ ℂ |
| 3 | 10nn 12729 | . . . . 5 ⊢ ;10 ∈ ℕ | |
| 4 | 3 | nncni 12255 | . . . 4 ⊢ ;10 ∈ ℂ |
| 5 | 3 | nnne0i 12285 | . . . 4 ⊢ ;10 ≠ 0 |
| 6 | 2, 4, 5 | divcan2i 11989 | . . 3 ⊢ (;10 · (𝐵 / ;10)) = 𝐵 |
| 7 | 6 | oveq2i 7421 | . 2 ⊢ ((;10 · 𝐴) + (;10 · (𝐵 / ;10))) = ((;10 · 𝐴) + 𝐵) |
| 8 | dpval2.a | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
| 9 | 8, 1 | dpval2 32872 | . . . 4 ⊢ (𝐴.𝐵) = (𝐴 + (𝐵 / ;10)) |
| 10 | 9 | oveq2i 7421 | . . 3 ⊢ (;10 · (𝐴.𝐵)) = (;10 · (𝐴 + (𝐵 / ;10))) |
| 11 | dpcl 32870 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ) → (𝐴.𝐵) ∈ ℝ) | |
| 12 | 8, 1, 11 | mp2an 692 | . . . . 5 ⊢ (𝐴.𝐵) ∈ ℝ |
| 13 | 12 | recni 11254 | . . . 4 ⊢ (𝐴.𝐵) ∈ ℂ |
| 14 | 4, 13 | mulcomi 11248 | . . 3 ⊢ (;10 · (𝐴.𝐵)) = ((𝐴.𝐵) · ;10) |
| 15 | 8 | nn0cni 12518 | . . . 4 ⊢ 𝐴 ∈ ℂ |
| 16 | 2, 4, 5 | divcli 11988 | . . . 4 ⊢ (𝐵 / ;10) ∈ ℂ |
| 17 | 4, 15, 16 | adddii 11252 | . . 3 ⊢ (;10 · (𝐴 + (𝐵 / ;10))) = ((;10 · 𝐴) + (;10 · (𝐵 / ;10))) |
| 18 | 10, 14, 17 | 3eqtr3i 2767 | . 2 ⊢ ((𝐴.𝐵) · ;10) = ((;10 · 𝐴) + (;10 · (𝐵 / ;10))) |
| 19 | dfdec10 12716 | . 2 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
| 20 | 7, 18, 19 | 3eqtr4i 2769 | 1 ⊢ ((𝐴.𝐵) · ;10) = ;𝐴𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7410 ℝcr 11133 0cc0 11134 1c1 11135 + caddc 11137 · cmul 11139 / cdiv 11899 ℕ0cn0 12506 ;cdc 12713 .cdp 32867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-dec 12714 df-dp2 32851 df-dp 32868 |
| This theorem is referenced by: decdiv10 32875 dpmul100 32876 dp3mul10 32877 dpmul1000 32878 dpmul 32892 dpmul4 32893 |
| Copyright terms: Public domain | W3C validator |