MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3dvds2dec Structured version   Visualization version   GIF version

Theorem 3dvds2dec 15674
Description: A decimal number is divisible by three iff the sum of its three "digits" is divisible by three. The term "digits" in its narrow sense is only correct if 𝐴, 𝐵 and 𝐶 actually are digits (i.e. nonnegative integers less than 10). However, this theorem holds for arbitrary nonnegative integers 𝐴, 𝐵 and 𝐶. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.)
Hypotheses
Ref Expression
3dvdsdec.a 𝐴 ∈ ℕ0
3dvdsdec.b 𝐵 ∈ ℕ0
3dvds2dec.c 𝐶 ∈ ℕ0
Assertion
Ref Expression
3dvds2dec (3 ∥ 𝐴𝐵𝐶 ↔ 3 ∥ ((𝐴 + 𝐵) + 𝐶))

Proof of Theorem 3dvds2dec
StepHypRef Expression
1 3dvdsdec.a . . . . 5 𝐴 ∈ ℕ0
2 3dvdsdec.b . . . . 5 𝐵 ∈ ℕ0
31, 23dec 13622 . . . 4 𝐴𝐵𝐶 = ((((10↑2) · 𝐴) + (10 · 𝐵)) + 𝐶)
4 sq10e99m1 13621 . . . . . . . 8 (10↑2) = (99 + 1)
54oveq1i 7145 . . . . . . 7 ((10↑2) · 𝐴) = ((99 + 1) · 𝐴)
6 9nn0 11909 . . . . . . . . . 10 9 ∈ ℕ0
76, 6deccl 12101 . . . . . . . . 9 99 ∈ ℕ0
87nn0cni 11897 . . . . . . . 8 99 ∈ ℂ
9 ax-1cn 10584 . . . . . . . 8 1 ∈ ℂ
101nn0cni 11897 . . . . . . . 8 𝐴 ∈ ℂ
118, 9, 10adddiri 10643 . . . . . . 7 ((99 + 1) · 𝐴) = ((99 · 𝐴) + (1 · 𝐴))
1210mulid2i 10635 . . . . . . . 8 (1 · 𝐴) = 𝐴
1312oveq2i 7146 . . . . . . 7 ((99 · 𝐴) + (1 · 𝐴)) = ((99 · 𝐴) + 𝐴)
145, 11, 133eqtri 2825 . . . . . 6 ((10↑2) · 𝐴) = ((99 · 𝐴) + 𝐴)
15 9p1e10 12088 . . . . . . . . 9 (9 + 1) = 10
1615eqcomi 2807 . . . . . . . 8 10 = (9 + 1)
1716oveq1i 7145 . . . . . . 7 (10 · 𝐵) = ((9 + 1) · 𝐵)
18 9cn 11725 . . . . . . . 8 9 ∈ ℂ
192nn0cni 11897 . . . . . . . 8 𝐵 ∈ ℂ
2018, 9, 19adddiri 10643 . . . . . . 7 ((9 + 1) · 𝐵) = ((9 · 𝐵) + (1 · 𝐵))
2119mulid2i 10635 . . . . . . . 8 (1 · 𝐵) = 𝐵
2221oveq2i 7146 . . . . . . 7 ((9 · 𝐵) + (1 · 𝐵)) = ((9 · 𝐵) + 𝐵)
2317, 20, 223eqtri 2825 . . . . . 6 (10 · 𝐵) = ((9 · 𝐵) + 𝐵)
2414, 23oveq12i 7147 . . . . 5 (((10↑2) · 𝐴) + (10 · 𝐵)) = (((99 · 𝐴) + 𝐴) + ((9 · 𝐵) + 𝐵))
2524oveq1i 7145 . . . 4 ((((10↑2) · 𝐴) + (10 · 𝐵)) + 𝐶) = ((((99 · 𝐴) + 𝐴) + ((9 · 𝐵) + 𝐵)) + 𝐶)
268, 10mulcli 10637 . . . . . 6 (99 · 𝐴) ∈ ℂ
2718, 19mulcli 10637 . . . . . 6 (9 · 𝐵) ∈ ℂ
28 add4 10849 . . . . . . 7 ((((99 · 𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ) ∧ ((9 · 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℂ)) → (((99 · 𝐴) + 𝐴) + ((9 · 𝐵) + 𝐵)) = (((99 · 𝐴) + (9 · 𝐵)) + (𝐴 + 𝐵)))
2928oveq1d 7150 . . . . . 6 ((((99 · 𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ) ∧ ((9 · 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℂ)) → ((((99 · 𝐴) + 𝐴) + ((9 · 𝐵) + 𝐵)) + 𝐶) = ((((99 · 𝐴) + (9 · 𝐵)) + (𝐴 + 𝐵)) + 𝐶))
3026, 10, 27, 19, 29mp4an 692 . . . . 5 ((((99 · 𝐴) + 𝐴) + ((9 · 𝐵) + 𝐵)) + 𝐶) = ((((99 · 𝐴) + (9 · 𝐵)) + (𝐴 + 𝐵)) + 𝐶)
3126, 27addcli 10636 . . . . . 6 ((99 · 𝐴) + (9 · 𝐵)) ∈ ℂ
3210, 19addcli 10636 . . . . . 6 (𝐴 + 𝐵) ∈ ℂ
33 3dvds2dec.c . . . . . . 7 𝐶 ∈ ℕ0
3433nn0cni 11897 . . . . . 6 𝐶 ∈ ℂ
3531, 32, 34addassi 10640 . . . . 5 ((((99 · 𝐴) + (9 · 𝐵)) + (𝐴 + 𝐵)) + 𝐶) = (((99 · 𝐴) + (9 · 𝐵)) + ((𝐴 + 𝐵) + 𝐶))
36 9t11e99 12216 . . . . . . . . . . 11 (9 · 11) = 99
3736eqcomi 2807 . . . . . . . . . 10 99 = (9 · 11)
3837oveq1i 7145 . . . . . . . . 9 (99 · 𝐴) = ((9 · 11) · 𝐴)
39 1nn0 11901 . . . . . . . . . . . 12 1 ∈ ℕ0
4039, 39deccl 12101 . . . . . . . . . . 11 11 ∈ ℕ0
4140nn0cni 11897 . . . . . . . . . 10 11 ∈ ℂ
4218, 41, 10mulassi 10641 . . . . . . . . 9 ((9 · 11) · 𝐴) = (9 · (11 · 𝐴))
4338, 42eqtri 2821 . . . . . . . 8 (99 · 𝐴) = (9 · (11 · 𝐴))
4443oveq1i 7145 . . . . . . 7 ((99 · 𝐴) + (9 · 𝐵)) = ((9 · (11 · 𝐴)) + (9 · 𝐵))
4541, 10mulcli 10637 . . . . . . . . 9 (11 · 𝐴) ∈ ℂ
4618, 45, 19adddii 10642 . . . . . . . 8 (9 · ((11 · 𝐴) + 𝐵)) = ((9 · (11 · 𝐴)) + (9 · 𝐵))
4746eqcomi 2807 . . . . . . 7 ((9 · (11 · 𝐴)) + (9 · 𝐵)) = (9 · ((11 · 𝐴) + 𝐵))
48 3t3e9 11792 . . . . . . . . . 10 (3 · 3) = 9
4948eqcomi 2807 . . . . . . . . 9 9 = (3 · 3)
5049oveq1i 7145 . . . . . . . 8 (9 · ((11 · 𝐴) + 𝐵)) = ((3 · 3) · ((11 · 𝐴) + 𝐵))
51 3cn 11706 . . . . . . . . 9 3 ∈ ℂ
5245, 19addcli 10636 . . . . . . . . 9 ((11 · 𝐴) + 𝐵) ∈ ℂ
5351, 51, 52mulassi 10641 . . . . . . . 8 ((3 · 3) · ((11 · 𝐴) + 𝐵)) = (3 · (3 · ((11 · 𝐴) + 𝐵)))
5450, 53eqtri 2821 . . . . . . 7 (9 · ((11 · 𝐴) + 𝐵)) = (3 · (3 · ((11 · 𝐴) + 𝐵)))
5544, 47, 543eqtri 2825 . . . . . 6 ((99 · 𝐴) + (9 · 𝐵)) = (3 · (3 · ((11 · 𝐴) + 𝐵)))
5655oveq1i 7145 . . . . 5 (((99 · 𝐴) + (9 · 𝐵)) + ((𝐴 + 𝐵) + 𝐶)) = ((3 · (3 · ((11 · 𝐴) + 𝐵))) + ((𝐴 + 𝐵) + 𝐶))
5730, 35, 563eqtri 2825 . . . 4 ((((99 · 𝐴) + 𝐴) + ((9 · 𝐵) + 𝐵)) + 𝐶) = ((3 · (3 · ((11 · 𝐴) + 𝐵))) + ((𝐴 + 𝐵) + 𝐶))
583, 25, 573eqtri 2825 . . 3 𝐴𝐵𝐶 = ((3 · (3 · ((11 · 𝐴) + 𝐵))) + ((𝐴 + 𝐵) + 𝐶))
5958breq2i 5038 . 2 (3 ∥ 𝐴𝐵𝐶 ↔ 3 ∥ ((3 · (3 · ((11 · 𝐴) + 𝐵))) + ((𝐴 + 𝐵) + 𝐶)))
60 3z 12003 . . 3 3 ∈ ℤ
611nn0zi 11995 . . . . 5 𝐴 ∈ ℤ
622nn0zi 11995 . . . . 5 𝐵 ∈ ℤ
63 zaddcl 12010 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ)
6461, 62, 63mp2an 691 . . . 4 (𝐴 + 𝐵) ∈ ℤ
6533nn0zi 11995 . . . 4 𝐶 ∈ ℤ
66 zaddcl 12010 . . . 4 (((𝐴 + 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 + 𝐵) + 𝐶) ∈ ℤ)
6764, 65, 66mp2an 691 . . 3 ((𝐴 + 𝐵) + 𝐶) ∈ ℤ
6840nn0zi 11995 . . . . . . . 8 11 ∈ ℤ
69 zmulcl 12019 . . . . . . . 8 ((11 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (11 · 𝐴) ∈ ℤ)
7068, 61, 69mp2an 691 . . . . . . 7 (11 · 𝐴) ∈ ℤ
71 zaddcl 12010 . . . . . . 7 (((11 · 𝐴) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((11 · 𝐴) + 𝐵) ∈ ℤ)
7270, 62, 71mp2an 691 . . . . . 6 ((11 · 𝐴) + 𝐵) ∈ ℤ
73 zmulcl 12019 . . . . . 6 ((3 ∈ ℤ ∧ ((11 · 𝐴) + 𝐵) ∈ ℤ) → (3 · ((11 · 𝐴) + 𝐵)) ∈ ℤ)
7460, 72, 73mp2an 691 . . . . 5 (3 · ((11 · 𝐴) + 𝐵)) ∈ ℤ
75 zmulcl 12019 . . . . 5 ((3 ∈ ℤ ∧ (3 · ((11 · 𝐴) + 𝐵)) ∈ ℤ) → (3 · (3 · ((11 · 𝐴) + 𝐵))) ∈ ℤ)
7660, 74, 75mp2an 691 . . . 4 (3 · (3 · ((11 · 𝐴) + 𝐵))) ∈ ℤ
77 dvdsmul1 15623 . . . . 5 ((3 ∈ ℤ ∧ (3 · ((11 · 𝐴) + 𝐵)) ∈ ℤ) → 3 ∥ (3 · (3 · ((11 · 𝐴) + 𝐵))))
7860, 74, 77mp2an 691 . . . 4 3 ∥ (3 · (3 · ((11 · 𝐴) + 𝐵)))
7976, 78pm3.2i 474 . . 3 ((3 · (3 · ((11 · 𝐴) + 𝐵))) ∈ ℤ ∧ 3 ∥ (3 · (3 · ((11 · 𝐴) + 𝐵))))
80 dvdsadd2b 15648 . . 3 ((3 ∈ ℤ ∧ ((𝐴 + 𝐵) + 𝐶) ∈ ℤ ∧ ((3 · (3 · ((11 · 𝐴) + 𝐵))) ∈ ℤ ∧ 3 ∥ (3 · (3 · ((11 · 𝐴) + 𝐵))))) → (3 ∥ ((𝐴 + 𝐵) + 𝐶) ↔ 3 ∥ ((3 · (3 · ((11 · 𝐴) + 𝐵))) + ((𝐴 + 𝐵) + 𝐶))))
8160, 67, 79, 80mp3an 1458 . 2 (3 ∥ ((𝐴 + 𝐵) + 𝐶) ↔ 3 ∥ ((3 · (3 · ((11 · 𝐴) + 𝐵))) + ((𝐴 + 𝐵) + 𝐶)))
8259, 81bitr4i 281 1 (3 ∥ 𝐴𝐵𝐶 ↔ 3 ∥ ((𝐴 + 𝐵) + 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1538  wcel 2111   class class class wbr 5030  (class class class)co 7135  cc 10524  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  2c2 11680  3c3 11681  9c9 11687  0cn0 11885  cz 11969  cdc 12086  cexp 13425  cdvds 15599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-seq 13365  df-exp 13426  df-dvds 15600
This theorem is referenced by:  257prm  44078  139prmALT  44113  127prm  44116
  Copyright terms: Public domain W3C validator