MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3dvds2dec Structured version   Visualization version   GIF version

Theorem 3dvds2dec 15685
Description: A decimal number is divisible by three iff the sum of its three "digits" is divisible by three. The term "digits" in its narrow sense is only correct if 𝐴, 𝐵 and 𝐶 actually are digits (i.e. nonnegative integers less than 10). However, this theorem holds for arbitrary nonnegative integers 𝐴, 𝐵 and 𝐶. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.)
Hypotheses
Ref Expression
3dvdsdec.a 𝐴 ∈ ℕ0
3dvdsdec.b 𝐵 ∈ ℕ0
3dvds2dec.c 𝐶 ∈ ℕ0
Assertion
Ref Expression
3dvds2dec (3 ∥ 𝐴𝐵𝐶 ↔ 3 ∥ ((𝐴 + 𝐵) + 𝐶))

Proof of Theorem 3dvds2dec
StepHypRef Expression
1 3dvdsdec.a . . . . 5 𝐴 ∈ ℕ0
2 3dvdsdec.b . . . . 5 𝐵 ∈ ℕ0
31, 23dec 13629 . . . 4 𝐴𝐵𝐶 = ((((10↑2) · 𝐴) + (10 · 𝐵)) + 𝐶)
4 sq10e99m1 13628 . . . . . . . 8 (10↑2) = (99 + 1)
54oveq1i 7169 . . . . . . 7 ((10↑2) · 𝐴) = ((99 + 1) · 𝐴)
6 9nn0 11924 . . . . . . . . . 10 9 ∈ ℕ0
76, 6deccl 12116 . . . . . . . . 9 99 ∈ ℕ0
87nn0cni 11912 . . . . . . . 8 99 ∈ ℂ
9 ax-1cn 10598 . . . . . . . 8 1 ∈ ℂ
101nn0cni 11912 . . . . . . . 8 𝐴 ∈ ℂ
118, 9, 10adddiri 10657 . . . . . . 7 ((99 + 1) · 𝐴) = ((99 · 𝐴) + (1 · 𝐴))
1210mulid2i 10649 . . . . . . . 8 (1 · 𝐴) = 𝐴
1312oveq2i 7170 . . . . . . 7 ((99 · 𝐴) + (1 · 𝐴)) = ((99 · 𝐴) + 𝐴)
145, 11, 133eqtri 2851 . . . . . 6 ((10↑2) · 𝐴) = ((99 · 𝐴) + 𝐴)
15 9p1e10 12103 . . . . . . . . 9 (9 + 1) = 10
1615eqcomi 2833 . . . . . . . 8 10 = (9 + 1)
1716oveq1i 7169 . . . . . . 7 (10 · 𝐵) = ((9 + 1) · 𝐵)
18 9cn 11740 . . . . . . . 8 9 ∈ ℂ
192nn0cni 11912 . . . . . . . 8 𝐵 ∈ ℂ
2018, 9, 19adddiri 10657 . . . . . . 7 ((9 + 1) · 𝐵) = ((9 · 𝐵) + (1 · 𝐵))
2119mulid2i 10649 . . . . . . . 8 (1 · 𝐵) = 𝐵
2221oveq2i 7170 . . . . . . 7 ((9 · 𝐵) + (1 · 𝐵)) = ((9 · 𝐵) + 𝐵)
2317, 20, 223eqtri 2851 . . . . . 6 (10 · 𝐵) = ((9 · 𝐵) + 𝐵)
2414, 23oveq12i 7171 . . . . 5 (((10↑2) · 𝐴) + (10 · 𝐵)) = (((99 · 𝐴) + 𝐴) + ((9 · 𝐵) + 𝐵))
2524oveq1i 7169 . . . 4 ((((10↑2) · 𝐴) + (10 · 𝐵)) + 𝐶) = ((((99 · 𝐴) + 𝐴) + ((9 · 𝐵) + 𝐵)) + 𝐶)
268, 10mulcli 10651 . . . . . 6 (99 · 𝐴) ∈ ℂ
2718, 19mulcli 10651 . . . . . 6 (9 · 𝐵) ∈ ℂ
28 add4 10863 . . . . . . 7 ((((99 · 𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ) ∧ ((9 · 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℂ)) → (((99 · 𝐴) + 𝐴) + ((9 · 𝐵) + 𝐵)) = (((99 · 𝐴) + (9 · 𝐵)) + (𝐴 + 𝐵)))
2928oveq1d 7174 . . . . . 6 ((((99 · 𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ) ∧ ((9 · 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℂ)) → ((((99 · 𝐴) + 𝐴) + ((9 · 𝐵) + 𝐵)) + 𝐶) = ((((99 · 𝐴) + (9 · 𝐵)) + (𝐴 + 𝐵)) + 𝐶))
3026, 10, 27, 19, 29mp4an 691 . . . . 5 ((((99 · 𝐴) + 𝐴) + ((9 · 𝐵) + 𝐵)) + 𝐶) = ((((99 · 𝐴) + (9 · 𝐵)) + (𝐴 + 𝐵)) + 𝐶)
3126, 27addcli 10650 . . . . . 6 ((99 · 𝐴) + (9 · 𝐵)) ∈ ℂ
3210, 19addcli 10650 . . . . . 6 (𝐴 + 𝐵) ∈ ℂ
33 3dvds2dec.c . . . . . . 7 𝐶 ∈ ℕ0
3433nn0cni 11912 . . . . . 6 𝐶 ∈ ℂ
3531, 32, 34addassi 10654 . . . . 5 ((((99 · 𝐴) + (9 · 𝐵)) + (𝐴 + 𝐵)) + 𝐶) = (((99 · 𝐴) + (9 · 𝐵)) + ((𝐴 + 𝐵) + 𝐶))
36 9t11e99 12231 . . . . . . . . . . 11 (9 · 11) = 99
3736eqcomi 2833 . . . . . . . . . 10 99 = (9 · 11)
3837oveq1i 7169 . . . . . . . . 9 (99 · 𝐴) = ((9 · 11) · 𝐴)
39 1nn0 11916 . . . . . . . . . . . 12 1 ∈ ℕ0
4039, 39deccl 12116 . . . . . . . . . . 11 11 ∈ ℕ0
4140nn0cni 11912 . . . . . . . . . 10 11 ∈ ℂ
4218, 41, 10mulassi 10655 . . . . . . . . 9 ((9 · 11) · 𝐴) = (9 · (11 · 𝐴))
4338, 42eqtri 2847 . . . . . . . 8 (99 · 𝐴) = (9 · (11 · 𝐴))
4443oveq1i 7169 . . . . . . 7 ((99 · 𝐴) + (9 · 𝐵)) = ((9 · (11 · 𝐴)) + (9 · 𝐵))
4541, 10mulcli 10651 . . . . . . . . 9 (11 · 𝐴) ∈ ℂ
4618, 45, 19adddii 10656 . . . . . . . 8 (9 · ((11 · 𝐴) + 𝐵)) = ((9 · (11 · 𝐴)) + (9 · 𝐵))
4746eqcomi 2833 . . . . . . 7 ((9 · (11 · 𝐴)) + (9 · 𝐵)) = (9 · ((11 · 𝐴) + 𝐵))
48 3t3e9 11807 . . . . . . . . . 10 (3 · 3) = 9
4948eqcomi 2833 . . . . . . . . 9 9 = (3 · 3)
5049oveq1i 7169 . . . . . . . 8 (9 · ((11 · 𝐴) + 𝐵)) = ((3 · 3) · ((11 · 𝐴) + 𝐵))
51 3cn 11721 . . . . . . . . 9 3 ∈ ℂ
5245, 19addcli 10650 . . . . . . . . 9 ((11 · 𝐴) + 𝐵) ∈ ℂ
5351, 51, 52mulassi 10655 . . . . . . . 8 ((3 · 3) · ((11 · 𝐴) + 𝐵)) = (3 · (3 · ((11 · 𝐴) + 𝐵)))
5450, 53eqtri 2847 . . . . . . 7 (9 · ((11 · 𝐴) + 𝐵)) = (3 · (3 · ((11 · 𝐴) + 𝐵)))
5544, 47, 543eqtri 2851 . . . . . 6 ((99 · 𝐴) + (9 · 𝐵)) = (3 · (3 · ((11 · 𝐴) + 𝐵)))
5655oveq1i 7169 . . . . 5 (((99 · 𝐴) + (9 · 𝐵)) + ((𝐴 + 𝐵) + 𝐶)) = ((3 · (3 · ((11 · 𝐴) + 𝐵))) + ((𝐴 + 𝐵) + 𝐶))
5730, 35, 563eqtri 2851 . . . 4 ((((99 · 𝐴) + 𝐴) + ((9 · 𝐵) + 𝐵)) + 𝐶) = ((3 · (3 · ((11 · 𝐴) + 𝐵))) + ((𝐴 + 𝐵) + 𝐶))
583, 25, 573eqtri 2851 . . 3 𝐴𝐵𝐶 = ((3 · (3 · ((11 · 𝐴) + 𝐵))) + ((𝐴 + 𝐵) + 𝐶))
5958breq2i 5077 . 2 (3 ∥ 𝐴𝐵𝐶 ↔ 3 ∥ ((3 · (3 · ((11 · 𝐴) + 𝐵))) + ((𝐴 + 𝐵) + 𝐶)))
60 3z 12018 . . 3 3 ∈ ℤ
611nn0zi 12010 . . . . 5 𝐴 ∈ ℤ
622nn0zi 12010 . . . . 5 𝐵 ∈ ℤ
63 zaddcl 12025 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ)
6461, 62, 63mp2an 690 . . . 4 (𝐴 + 𝐵) ∈ ℤ
6533nn0zi 12010 . . . 4 𝐶 ∈ ℤ
66 zaddcl 12025 . . . 4 (((𝐴 + 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 + 𝐵) + 𝐶) ∈ ℤ)
6764, 65, 66mp2an 690 . . 3 ((𝐴 + 𝐵) + 𝐶) ∈ ℤ
6840nn0zi 12010 . . . . . . . 8 11 ∈ ℤ
69 zmulcl 12034 . . . . . . . 8 ((11 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (11 · 𝐴) ∈ ℤ)
7068, 61, 69mp2an 690 . . . . . . 7 (11 · 𝐴) ∈ ℤ
71 zaddcl 12025 . . . . . . 7 (((11 · 𝐴) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((11 · 𝐴) + 𝐵) ∈ ℤ)
7270, 62, 71mp2an 690 . . . . . 6 ((11 · 𝐴) + 𝐵) ∈ ℤ
73 zmulcl 12034 . . . . . 6 ((3 ∈ ℤ ∧ ((11 · 𝐴) + 𝐵) ∈ ℤ) → (3 · ((11 · 𝐴) + 𝐵)) ∈ ℤ)
7460, 72, 73mp2an 690 . . . . 5 (3 · ((11 · 𝐴) + 𝐵)) ∈ ℤ
75 zmulcl 12034 . . . . 5 ((3 ∈ ℤ ∧ (3 · ((11 · 𝐴) + 𝐵)) ∈ ℤ) → (3 · (3 · ((11 · 𝐴) + 𝐵))) ∈ ℤ)
7660, 74, 75mp2an 690 . . . 4 (3 · (3 · ((11 · 𝐴) + 𝐵))) ∈ ℤ
77 dvdsmul1 15634 . . . . 5 ((3 ∈ ℤ ∧ (3 · ((11 · 𝐴) + 𝐵)) ∈ ℤ) → 3 ∥ (3 · (3 · ((11 · 𝐴) + 𝐵))))
7860, 74, 77mp2an 690 . . . 4 3 ∥ (3 · (3 · ((11 · 𝐴) + 𝐵)))
7976, 78pm3.2i 473 . . 3 ((3 · (3 · ((11 · 𝐴) + 𝐵))) ∈ ℤ ∧ 3 ∥ (3 · (3 · ((11 · 𝐴) + 𝐵))))
80 dvdsadd2b 15659 . . 3 ((3 ∈ ℤ ∧ ((𝐴 + 𝐵) + 𝐶) ∈ ℤ ∧ ((3 · (3 · ((11 · 𝐴) + 𝐵))) ∈ ℤ ∧ 3 ∥ (3 · (3 · ((11 · 𝐴) + 𝐵))))) → (3 ∥ ((𝐴 + 𝐵) + 𝐶) ↔ 3 ∥ ((3 · (3 · ((11 · 𝐴) + 𝐵))) + ((𝐴 + 𝐵) + 𝐶))))
8160, 67, 79, 80mp3an 1457 . 2 (3 ∥ ((𝐴 + 𝐵) + 𝐶) ↔ 3 ∥ ((3 · (3 · ((11 · 𝐴) + 𝐵))) + ((𝐴 + 𝐵) + 𝐶)))
8259, 81bitr4i 280 1 (3 ∥ 𝐴𝐵𝐶 ↔ 3 ∥ ((𝐴 + 𝐵) + 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1536  wcel 2113   class class class wbr 5069  (class class class)co 7159  cc 10538  0cc0 10540  1c1 10541   + caddc 10543   · cmul 10545  2c2 11695  3c3 11696  9c9 11702  0cn0 11900  cz 11984  cdc 12101  cexp 13432  cdvds 15610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-seq 13373  df-exp 13433  df-dvds 15611
This theorem is referenced by:  257prm  43730  139prmALT  43766  127prm  43770
  Copyright terms: Public domain W3C validator