MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3dvds2dec Structured version   Visualization version   GIF version

Theorem 3dvds2dec 16052
Description: A decimal number is divisible by three iff the sum of its three "digits" is divisible by three. The term "digits" in its narrow sense is only correct if 𝐴, 𝐵 and 𝐶 actually are digits (i.e. nonnegative integers less than 10). However, this theorem holds for arbitrary nonnegative integers 𝐴, 𝐵 and 𝐶. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.)
Hypotheses
Ref Expression
3dvdsdec.a 𝐴 ∈ ℕ0
3dvdsdec.b 𝐵 ∈ ℕ0
3dvds2dec.c 𝐶 ∈ ℕ0
Assertion
Ref Expression
3dvds2dec (3 ∥ 𝐴𝐵𝐶 ↔ 3 ∥ ((𝐴 + 𝐵) + 𝐶))

Proof of Theorem 3dvds2dec
StepHypRef Expression
1 3dvdsdec.a . . . . 5 𝐴 ∈ ℕ0
2 3dvdsdec.b . . . . 5 𝐵 ∈ ℕ0
31, 23dec 13990 . . . 4 𝐴𝐵𝐶 = ((((10↑2) · 𝐴) + (10 · 𝐵)) + 𝐶)
4 sq10e99m1 13989 . . . . . . . 8 (10↑2) = (99 + 1)
54oveq1i 7277 . . . . . . 7 ((10↑2) · 𝐴) = ((99 + 1) · 𝐴)
6 9nn0 12267 . . . . . . . . . 10 9 ∈ ℕ0
76, 6deccl 12462 . . . . . . . . 9 99 ∈ ℕ0
87nn0cni 12255 . . . . . . . 8 99 ∈ ℂ
9 ax-1cn 10939 . . . . . . . 8 1 ∈ ℂ
101nn0cni 12255 . . . . . . . 8 𝐴 ∈ ℂ
118, 9, 10adddiri 10998 . . . . . . 7 ((99 + 1) · 𝐴) = ((99 · 𝐴) + (1 · 𝐴))
1210mulid2i 10990 . . . . . . . 8 (1 · 𝐴) = 𝐴
1312oveq2i 7278 . . . . . . 7 ((99 · 𝐴) + (1 · 𝐴)) = ((99 · 𝐴) + 𝐴)
145, 11, 133eqtri 2770 . . . . . 6 ((10↑2) · 𝐴) = ((99 · 𝐴) + 𝐴)
15 9p1e10 12449 . . . . . . . . 9 (9 + 1) = 10
1615eqcomi 2747 . . . . . . . 8 10 = (9 + 1)
1716oveq1i 7277 . . . . . . 7 (10 · 𝐵) = ((9 + 1) · 𝐵)
18 9cn 12083 . . . . . . . 8 9 ∈ ℂ
192nn0cni 12255 . . . . . . . 8 𝐵 ∈ ℂ
2018, 9, 19adddiri 10998 . . . . . . 7 ((9 + 1) · 𝐵) = ((9 · 𝐵) + (1 · 𝐵))
2119mulid2i 10990 . . . . . . . 8 (1 · 𝐵) = 𝐵
2221oveq2i 7278 . . . . . . 7 ((9 · 𝐵) + (1 · 𝐵)) = ((9 · 𝐵) + 𝐵)
2317, 20, 223eqtri 2770 . . . . . 6 (10 · 𝐵) = ((9 · 𝐵) + 𝐵)
2414, 23oveq12i 7279 . . . . 5 (((10↑2) · 𝐴) + (10 · 𝐵)) = (((99 · 𝐴) + 𝐴) + ((9 · 𝐵) + 𝐵))
2524oveq1i 7277 . . . 4 ((((10↑2) · 𝐴) + (10 · 𝐵)) + 𝐶) = ((((99 · 𝐴) + 𝐴) + ((9 · 𝐵) + 𝐵)) + 𝐶)
268, 10mulcli 10992 . . . . . 6 (99 · 𝐴) ∈ ℂ
2718, 19mulcli 10992 . . . . . 6 (9 · 𝐵) ∈ ℂ
28 add4 11205 . . . . . . 7 ((((99 · 𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ) ∧ ((9 · 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℂ)) → (((99 · 𝐴) + 𝐴) + ((9 · 𝐵) + 𝐵)) = (((99 · 𝐴) + (9 · 𝐵)) + (𝐴 + 𝐵)))
2928oveq1d 7282 . . . . . 6 ((((99 · 𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ) ∧ ((9 · 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℂ)) → ((((99 · 𝐴) + 𝐴) + ((9 · 𝐵) + 𝐵)) + 𝐶) = ((((99 · 𝐴) + (9 · 𝐵)) + (𝐴 + 𝐵)) + 𝐶))
3026, 10, 27, 19, 29mp4an 690 . . . . 5 ((((99 · 𝐴) + 𝐴) + ((9 · 𝐵) + 𝐵)) + 𝐶) = ((((99 · 𝐴) + (9 · 𝐵)) + (𝐴 + 𝐵)) + 𝐶)
3126, 27addcli 10991 . . . . . 6 ((99 · 𝐴) + (9 · 𝐵)) ∈ ℂ
3210, 19addcli 10991 . . . . . 6 (𝐴 + 𝐵) ∈ ℂ
33 3dvds2dec.c . . . . . . 7 𝐶 ∈ ℕ0
3433nn0cni 12255 . . . . . 6 𝐶 ∈ ℂ
3531, 32, 34addassi 10995 . . . . 5 ((((99 · 𝐴) + (9 · 𝐵)) + (𝐴 + 𝐵)) + 𝐶) = (((99 · 𝐴) + (9 · 𝐵)) + ((𝐴 + 𝐵) + 𝐶))
36 9t11e99 12577 . . . . . . . . . . 11 (9 · 11) = 99
3736eqcomi 2747 . . . . . . . . . 10 99 = (9 · 11)
3837oveq1i 7277 . . . . . . . . 9 (99 · 𝐴) = ((9 · 11) · 𝐴)
39 1nn0 12259 . . . . . . . . . . . 12 1 ∈ ℕ0
4039, 39deccl 12462 . . . . . . . . . . 11 11 ∈ ℕ0
4140nn0cni 12255 . . . . . . . . . 10 11 ∈ ℂ
4218, 41, 10mulassi 10996 . . . . . . . . 9 ((9 · 11) · 𝐴) = (9 · (11 · 𝐴))
4338, 42eqtri 2766 . . . . . . . 8 (99 · 𝐴) = (9 · (11 · 𝐴))
4443oveq1i 7277 . . . . . . 7 ((99 · 𝐴) + (9 · 𝐵)) = ((9 · (11 · 𝐴)) + (9 · 𝐵))
4541, 10mulcli 10992 . . . . . . . . 9 (11 · 𝐴) ∈ ℂ
4618, 45, 19adddii 10997 . . . . . . . 8 (9 · ((11 · 𝐴) + 𝐵)) = ((9 · (11 · 𝐴)) + (9 · 𝐵))
4746eqcomi 2747 . . . . . . 7 ((9 · (11 · 𝐴)) + (9 · 𝐵)) = (9 · ((11 · 𝐴) + 𝐵))
48 3t3e9 12150 . . . . . . . . . 10 (3 · 3) = 9
4948eqcomi 2747 . . . . . . . . 9 9 = (3 · 3)
5049oveq1i 7277 . . . . . . . 8 (9 · ((11 · 𝐴) + 𝐵)) = ((3 · 3) · ((11 · 𝐴) + 𝐵))
51 3cn 12064 . . . . . . . . 9 3 ∈ ℂ
5245, 19addcli 10991 . . . . . . . . 9 ((11 · 𝐴) + 𝐵) ∈ ℂ
5351, 51, 52mulassi 10996 . . . . . . . 8 ((3 · 3) · ((11 · 𝐴) + 𝐵)) = (3 · (3 · ((11 · 𝐴) + 𝐵)))
5450, 53eqtri 2766 . . . . . . 7 (9 · ((11 · 𝐴) + 𝐵)) = (3 · (3 · ((11 · 𝐴) + 𝐵)))
5544, 47, 543eqtri 2770 . . . . . 6 ((99 · 𝐴) + (9 · 𝐵)) = (3 · (3 · ((11 · 𝐴) + 𝐵)))
5655oveq1i 7277 . . . . 5 (((99 · 𝐴) + (9 · 𝐵)) + ((𝐴 + 𝐵) + 𝐶)) = ((3 · (3 · ((11 · 𝐴) + 𝐵))) + ((𝐴 + 𝐵) + 𝐶))
5730, 35, 563eqtri 2770 . . . 4 ((((99 · 𝐴) + 𝐴) + ((9 · 𝐵) + 𝐵)) + 𝐶) = ((3 · (3 · ((11 · 𝐴) + 𝐵))) + ((𝐴 + 𝐵) + 𝐶))
583, 25, 573eqtri 2770 . . 3 𝐴𝐵𝐶 = ((3 · (3 · ((11 · 𝐴) + 𝐵))) + ((𝐴 + 𝐵) + 𝐶))
5958breq2i 5081 . 2 (3 ∥ 𝐴𝐵𝐶 ↔ 3 ∥ ((3 · (3 · ((11 · 𝐴) + 𝐵))) + ((𝐴 + 𝐵) + 𝐶)))
60 3z 12363 . . 3 3 ∈ ℤ
611nn0zi 12355 . . . . 5 𝐴 ∈ ℤ
622nn0zi 12355 . . . . 5 𝐵 ∈ ℤ
63 zaddcl 12370 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ)
6461, 62, 63mp2an 689 . . . 4 (𝐴 + 𝐵) ∈ ℤ
6533nn0zi 12355 . . . 4 𝐶 ∈ ℤ
66 zaddcl 12370 . . . 4 (((𝐴 + 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 + 𝐵) + 𝐶) ∈ ℤ)
6764, 65, 66mp2an 689 . . 3 ((𝐴 + 𝐵) + 𝐶) ∈ ℤ
6840nn0zi 12355 . . . . . . . 8 11 ∈ ℤ
69 zmulcl 12379 . . . . . . . 8 ((11 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (11 · 𝐴) ∈ ℤ)
7068, 61, 69mp2an 689 . . . . . . 7 (11 · 𝐴) ∈ ℤ
71 zaddcl 12370 . . . . . . 7 (((11 · 𝐴) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((11 · 𝐴) + 𝐵) ∈ ℤ)
7270, 62, 71mp2an 689 . . . . . 6 ((11 · 𝐴) + 𝐵) ∈ ℤ
73 zmulcl 12379 . . . . . 6 ((3 ∈ ℤ ∧ ((11 · 𝐴) + 𝐵) ∈ ℤ) → (3 · ((11 · 𝐴) + 𝐵)) ∈ ℤ)
7460, 72, 73mp2an 689 . . . . 5 (3 · ((11 · 𝐴) + 𝐵)) ∈ ℤ
75 zmulcl 12379 . . . . 5 ((3 ∈ ℤ ∧ (3 · ((11 · 𝐴) + 𝐵)) ∈ ℤ) → (3 · (3 · ((11 · 𝐴) + 𝐵))) ∈ ℤ)
7660, 74, 75mp2an 689 . . . 4 (3 · (3 · ((11 · 𝐴) + 𝐵))) ∈ ℤ
77 dvdsmul1 15997 . . . . 5 ((3 ∈ ℤ ∧ (3 · ((11 · 𝐴) + 𝐵)) ∈ ℤ) → 3 ∥ (3 · (3 · ((11 · 𝐴) + 𝐵))))
7860, 74, 77mp2an 689 . . . 4 3 ∥ (3 · (3 · ((11 · 𝐴) + 𝐵)))
7976, 78pm3.2i 471 . . 3 ((3 · (3 · ((11 · 𝐴) + 𝐵))) ∈ ℤ ∧ 3 ∥ (3 · (3 · ((11 · 𝐴) + 𝐵))))
80 dvdsadd2b 16025 . . 3 ((3 ∈ ℤ ∧ ((𝐴 + 𝐵) + 𝐶) ∈ ℤ ∧ ((3 · (3 · ((11 · 𝐴) + 𝐵))) ∈ ℤ ∧ 3 ∥ (3 · (3 · ((11 · 𝐴) + 𝐵))))) → (3 ∥ ((𝐴 + 𝐵) + 𝐶) ↔ 3 ∥ ((3 · (3 · ((11 · 𝐴) + 𝐵))) + ((𝐴 + 𝐵) + 𝐶))))
8160, 67, 79, 80mp3an 1460 . 2 (3 ∥ ((𝐴 + 𝐵) + 𝐶) ↔ 3 ∥ ((3 · (3 · ((11 · 𝐴) + 𝐵))) + ((𝐴 + 𝐵) + 𝐶)))
8259, 81bitr4i 277 1 (3 ∥ 𝐴𝐵𝐶 ↔ 3 ∥ ((𝐴 + 𝐵) + 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wcel 2106   class class class wbr 5073  (class class class)co 7267  cc 10879  0cc0 10881  1c1 10882   + caddc 10884   · cmul 10886  2c2 12038  3c3 12039  9c9 12045  0cn0 12243  cz 12329  cdc 12447  cexp 13792  cdvds 15973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578  ax-cnex 10937  ax-resscn 10938  ax-1cn 10939  ax-icn 10940  ax-addcl 10941  ax-addrcl 10942  ax-mulcl 10943  ax-mulrcl 10944  ax-mulcom 10945  ax-addass 10946  ax-mulass 10947  ax-distr 10948  ax-i2m1 10949  ax-1ne0 10950  ax-1rid 10951  ax-rnegex 10952  ax-rrecex 10953  ax-cnre 10954  ax-pre-lttri 10955  ax-pre-lttrn 10956  ax-pre-ltadd 10957  ax-pre-mulgt0 10958
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-pss 3905  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5074  df-opab 5136  df-mpt 5157  df-tr 5191  df-id 5484  df-eprel 5490  df-po 5498  df-so 5499  df-fr 5539  df-we 5541  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-pred 6195  df-ord 6262  df-on 6263  df-lim 6264  df-suc 6265  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-riota 7224  df-ov 7270  df-oprab 7271  df-mpo 7272  df-om 7703  df-2nd 7821  df-frecs 8084  df-wrecs 8115  df-recs 8189  df-rdg 8228  df-er 8485  df-en 8721  df-dom 8722  df-sdom 8723  df-pnf 11021  df-mnf 11022  df-xr 11023  df-ltxr 11024  df-le 11025  df-sub 11217  df-neg 11218  df-nn 11984  df-2 12046  df-3 12047  df-4 12048  df-5 12049  df-6 12050  df-7 12051  df-8 12052  df-9 12053  df-n0 12244  df-z 12330  df-dec 12448  df-uz 12593  df-seq 13732  df-exp 13793  df-dvds 15974
This theorem is referenced by:  257prm  44991  139prmALT  45026  127prm  45029
  Copyright terms: Public domain W3C validator