MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3dvds2dec Structured version   Visualization version   GIF version

Theorem 3dvds2dec 16381
Description: A decimal number is divisible by three iff the sum of its three "digits" is divisible by three. The term "digits" in its narrow sense is only correct if 𝐴, 𝐵 and 𝐶 actually are digits (i.e. nonnegative integers less than 10). However, this theorem holds for arbitrary nonnegative integers 𝐴, 𝐵 and 𝐶. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.)
Hypotheses
Ref Expression
3dvdsdec.a 𝐴 ∈ ℕ0
3dvdsdec.b 𝐵 ∈ ℕ0
3dvds2dec.c 𝐶 ∈ ℕ0
Assertion
Ref Expression
3dvds2dec (3 ∥ 𝐴𝐵𝐶 ↔ 3 ∥ ((𝐴 + 𝐵) + 𝐶))

Proof of Theorem 3dvds2dec
StepHypRef Expression
1 3dvdsdec.a . . . . 5 𝐴 ∈ ℕ0
2 3dvdsdec.b . . . . 5 𝐵 ∈ ℕ0
31, 23dec 14315 . . . 4 𝐴𝐵𝐶 = ((((10↑2) · 𝐴) + (10 · 𝐵)) + 𝐶)
4 sq10e99m1 14314 . . . . . . . 8 (10↑2) = (99 + 1)
54oveq1i 7458 . . . . . . 7 ((10↑2) · 𝐴) = ((99 + 1) · 𝐴)
6 9nn0 12577 . . . . . . . . . 10 9 ∈ ℕ0
76, 6deccl 12773 . . . . . . . . 9 99 ∈ ℕ0
87nn0cni 12565 . . . . . . . 8 99 ∈ ℂ
9 ax-1cn 11242 . . . . . . . 8 1 ∈ ℂ
101nn0cni 12565 . . . . . . . 8 𝐴 ∈ ℂ
118, 9, 10adddiri 11303 . . . . . . 7 ((99 + 1) · 𝐴) = ((99 · 𝐴) + (1 · 𝐴))
1210mullidi 11295 . . . . . . . 8 (1 · 𝐴) = 𝐴
1312oveq2i 7459 . . . . . . 7 ((99 · 𝐴) + (1 · 𝐴)) = ((99 · 𝐴) + 𝐴)
145, 11, 133eqtri 2772 . . . . . 6 ((10↑2) · 𝐴) = ((99 · 𝐴) + 𝐴)
15 9p1e10 12760 . . . . . . . . 9 (9 + 1) = 10
1615eqcomi 2749 . . . . . . . 8 10 = (9 + 1)
1716oveq1i 7458 . . . . . . 7 (10 · 𝐵) = ((9 + 1) · 𝐵)
18 9cn 12393 . . . . . . . 8 9 ∈ ℂ
192nn0cni 12565 . . . . . . . 8 𝐵 ∈ ℂ
2018, 9, 19adddiri 11303 . . . . . . 7 ((9 + 1) · 𝐵) = ((9 · 𝐵) + (1 · 𝐵))
2119mullidi 11295 . . . . . . . 8 (1 · 𝐵) = 𝐵
2221oveq2i 7459 . . . . . . 7 ((9 · 𝐵) + (1 · 𝐵)) = ((9 · 𝐵) + 𝐵)
2317, 20, 223eqtri 2772 . . . . . 6 (10 · 𝐵) = ((9 · 𝐵) + 𝐵)
2414, 23oveq12i 7460 . . . . 5 (((10↑2) · 𝐴) + (10 · 𝐵)) = (((99 · 𝐴) + 𝐴) + ((9 · 𝐵) + 𝐵))
2524oveq1i 7458 . . . 4 ((((10↑2) · 𝐴) + (10 · 𝐵)) + 𝐶) = ((((99 · 𝐴) + 𝐴) + ((9 · 𝐵) + 𝐵)) + 𝐶)
268, 10mulcli 11297 . . . . . 6 (99 · 𝐴) ∈ ℂ
2718, 19mulcli 11297 . . . . . 6 (9 · 𝐵) ∈ ℂ
28 add4 11510 . . . . . . 7 ((((99 · 𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ) ∧ ((9 · 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℂ)) → (((99 · 𝐴) + 𝐴) + ((9 · 𝐵) + 𝐵)) = (((99 · 𝐴) + (9 · 𝐵)) + (𝐴 + 𝐵)))
2928oveq1d 7463 . . . . . 6 ((((99 · 𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ) ∧ ((9 · 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℂ)) → ((((99 · 𝐴) + 𝐴) + ((9 · 𝐵) + 𝐵)) + 𝐶) = ((((99 · 𝐴) + (9 · 𝐵)) + (𝐴 + 𝐵)) + 𝐶))
3026, 10, 27, 19, 29mp4an 692 . . . . 5 ((((99 · 𝐴) + 𝐴) + ((9 · 𝐵) + 𝐵)) + 𝐶) = ((((99 · 𝐴) + (9 · 𝐵)) + (𝐴 + 𝐵)) + 𝐶)
3126, 27addcli 11296 . . . . . 6 ((99 · 𝐴) + (9 · 𝐵)) ∈ ℂ
3210, 19addcli 11296 . . . . . 6 (𝐴 + 𝐵) ∈ ℂ
33 3dvds2dec.c . . . . . . 7 𝐶 ∈ ℕ0
3433nn0cni 12565 . . . . . 6 𝐶 ∈ ℂ
3531, 32, 34addassi 11300 . . . . 5 ((((99 · 𝐴) + (9 · 𝐵)) + (𝐴 + 𝐵)) + 𝐶) = (((99 · 𝐴) + (9 · 𝐵)) + ((𝐴 + 𝐵) + 𝐶))
36 9t11e99 12888 . . . . . . . . . . 11 (9 · 11) = 99
3736eqcomi 2749 . . . . . . . . . 10 99 = (9 · 11)
3837oveq1i 7458 . . . . . . . . 9 (99 · 𝐴) = ((9 · 11) · 𝐴)
39 1nn0 12569 . . . . . . . . . . . 12 1 ∈ ℕ0
4039, 39deccl 12773 . . . . . . . . . . 11 11 ∈ ℕ0
4140nn0cni 12565 . . . . . . . . . 10 11 ∈ ℂ
4218, 41, 10mulassi 11301 . . . . . . . . 9 ((9 · 11) · 𝐴) = (9 · (11 · 𝐴))
4338, 42eqtri 2768 . . . . . . . 8 (99 · 𝐴) = (9 · (11 · 𝐴))
4443oveq1i 7458 . . . . . . 7 ((99 · 𝐴) + (9 · 𝐵)) = ((9 · (11 · 𝐴)) + (9 · 𝐵))
4541, 10mulcli 11297 . . . . . . . . 9 (11 · 𝐴) ∈ ℂ
4618, 45, 19adddii 11302 . . . . . . . 8 (9 · ((11 · 𝐴) + 𝐵)) = ((9 · (11 · 𝐴)) + (9 · 𝐵))
4746eqcomi 2749 . . . . . . 7 ((9 · (11 · 𝐴)) + (9 · 𝐵)) = (9 · ((11 · 𝐴) + 𝐵))
48 3t3e9 12460 . . . . . . . . . 10 (3 · 3) = 9
4948eqcomi 2749 . . . . . . . . 9 9 = (3 · 3)
5049oveq1i 7458 . . . . . . . 8 (9 · ((11 · 𝐴) + 𝐵)) = ((3 · 3) · ((11 · 𝐴) + 𝐵))
51 3cn 12374 . . . . . . . . 9 3 ∈ ℂ
5245, 19addcli 11296 . . . . . . . . 9 ((11 · 𝐴) + 𝐵) ∈ ℂ
5351, 51, 52mulassi 11301 . . . . . . . 8 ((3 · 3) · ((11 · 𝐴) + 𝐵)) = (3 · (3 · ((11 · 𝐴) + 𝐵)))
5450, 53eqtri 2768 . . . . . . 7 (9 · ((11 · 𝐴) + 𝐵)) = (3 · (3 · ((11 · 𝐴) + 𝐵)))
5544, 47, 543eqtri 2772 . . . . . 6 ((99 · 𝐴) + (9 · 𝐵)) = (3 · (3 · ((11 · 𝐴) + 𝐵)))
5655oveq1i 7458 . . . . 5 (((99 · 𝐴) + (9 · 𝐵)) + ((𝐴 + 𝐵) + 𝐶)) = ((3 · (3 · ((11 · 𝐴) + 𝐵))) + ((𝐴 + 𝐵) + 𝐶))
5730, 35, 563eqtri 2772 . . . 4 ((((99 · 𝐴) + 𝐴) + ((9 · 𝐵) + 𝐵)) + 𝐶) = ((3 · (3 · ((11 · 𝐴) + 𝐵))) + ((𝐴 + 𝐵) + 𝐶))
583, 25, 573eqtri 2772 . . 3 𝐴𝐵𝐶 = ((3 · (3 · ((11 · 𝐴) + 𝐵))) + ((𝐴 + 𝐵) + 𝐶))
5958breq2i 5174 . 2 (3 ∥ 𝐴𝐵𝐶 ↔ 3 ∥ ((3 · (3 · ((11 · 𝐴) + 𝐵))) + ((𝐴 + 𝐵) + 𝐶)))
60 3z 12676 . . 3 3 ∈ ℤ
611nn0zi 12668 . . . . 5 𝐴 ∈ ℤ
622nn0zi 12668 . . . . 5 𝐵 ∈ ℤ
63 zaddcl 12683 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ)
6461, 62, 63mp2an 691 . . . 4 (𝐴 + 𝐵) ∈ ℤ
6533nn0zi 12668 . . . 4 𝐶 ∈ ℤ
66 zaddcl 12683 . . . 4 (((𝐴 + 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 + 𝐵) + 𝐶) ∈ ℤ)
6764, 65, 66mp2an 691 . . 3 ((𝐴 + 𝐵) + 𝐶) ∈ ℤ
6840nn0zi 12668 . . . . . . . 8 11 ∈ ℤ
69 zmulcl 12692 . . . . . . . 8 ((11 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (11 · 𝐴) ∈ ℤ)
7068, 61, 69mp2an 691 . . . . . . 7 (11 · 𝐴) ∈ ℤ
71 zaddcl 12683 . . . . . . 7 (((11 · 𝐴) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((11 · 𝐴) + 𝐵) ∈ ℤ)
7270, 62, 71mp2an 691 . . . . . 6 ((11 · 𝐴) + 𝐵) ∈ ℤ
73 zmulcl 12692 . . . . . 6 ((3 ∈ ℤ ∧ ((11 · 𝐴) + 𝐵) ∈ ℤ) → (3 · ((11 · 𝐴) + 𝐵)) ∈ ℤ)
7460, 72, 73mp2an 691 . . . . 5 (3 · ((11 · 𝐴) + 𝐵)) ∈ ℤ
75 zmulcl 12692 . . . . 5 ((3 ∈ ℤ ∧ (3 · ((11 · 𝐴) + 𝐵)) ∈ ℤ) → (3 · (3 · ((11 · 𝐴) + 𝐵))) ∈ ℤ)
7660, 74, 75mp2an 691 . . . 4 (3 · (3 · ((11 · 𝐴) + 𝐵))) ∈ ℤ
77 dvdsmul1 16326 . . . . 5 ((3 ∈ ℤ ∧ (3 · ((11 · 𝐴) + 𝐵)) ∈ ℤ) → 3 ∥ (3 · (3 · ((11 · 𝐴) + 𝐵))))
7860, 74, 77mp2an 691 . . . 4 3 ∥ (3 · (3 · ((11 · 𝐴) + 𝐵)))
7976, 78pm3.2i 470 . . 3 ((3 · (3 · ((11 · 𝐴) + 𝐵))) ∈ ℤ ∧ 3 ∥ (3 · (3 · ((11 · 𝐴) + 𝐵))))
80 dvdsadd2b 16354 . . 3 ((3 ∈ ℤ ∧ ((𝐴 + 𝐵) + 𝐶) ∈ ℤ ∧ ((3 · (3 · ((11 · 𝐴) + 𝐵))) ∈ ℤ ∧ 3 ∥ (3 · (3 · ((11 · 𝐴) + 𝐵))))) → (3 ∥ ((𝐴 + 𝐵) + 𝐶) ↔ 3 ∥ ((3 · (3 · ((11 · 𝐴) + 𝐵))) + ((𝐴 + 𝐵) + 𝐶))))
8160, 67, 79, 80mp3an 1461 . 2 (3 ∥ ((𝐴 + 𝐵) + 𝐶) ↔ 3 ∥ ((3 · (3 · ((11 · 𝐴) + 𝐵))) + ((𝐴 + 𝐵) + 𝐶)))
8259, 81bitr4i 278 1 (3 ∥ 𝐴𝐵𝐶 ↔ 3 ∥ ((𝐴 + 𝐵) + 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2108   class class class wbr 5166  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  2c2 12348  3c3 12349  9c9 12355  0cn0 12553  cz 12639  cdc 12758  cexp 14112  cdvds 16302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-seq 14053  df-exp 14113  df-dvds 16303
This theorem is referenced by:  257prm  47435  139prmALT  47470  127prm  47473
  Copyright terms: Public domain W3C validator