| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aks6d1c1p7 | Structured version Visualization version GIF version | ||
| Description: 𝑋 is introspective to all positive integers. (Contributed by metakunt, 30-Apr-2025.) |
| Ref | Expression |
|---|---|
| aks6d1c1p7.1 | ⊢ ∼ = {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ 𝐵 ∧ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑒 ↑ ((𝑂‘𝑓)‘𝑦)) = ((𝑂‘𝑓)‘(𝑒 ↑ 𝑦)))} |
| aks6d1c1p7.2 | ⊢ 𝑆 = (Poly1‘𝐾) |
| aks6d1c1p7.3 | ⊢ 𝐵 = (Base‘𝑆) |
| aks6d1c1p7.4 | ⊢ 𝑋 = (var1‘𝐾) |
| aks6d1c1p7.5 | ⊢ 𝑉 = (mulGrp‘𝐾) |
| aks6d1c1p7.6 | ⊢ ↑ = (.g‘𝑉) |
| aks6d1c1p7.7 | ⊢ 𝑃 = (chr‘𝐾) |
| aks6d1c1p7.8 | ⊢ 𝑂 = (eval1‘𝐾) |
| aks6d1c1p7.9 | ⊢ (𝜑 → 𝐾 ∈ Field) |
| aks6d1c1p7.10 | ⊢ (𝜑 → 𝑃 ∈ ℙ) |
| aks6d1c1p7.11 | ⊢ (𝜑 → 𝑅 ∈ ℕ) |
| aks6d1c1p7.12 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| aks6d1c1p7.13 | ⊢ (𝜑 → 𝑃 ∥ 𝑁) |
| aks6d1c1p7.14 | ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) |
| aks6d1c1p7.15 | ⊢ (𝜑 → 𝐿 ∈ ℕ) |
| Ref | Expression |
|---|---|
| aks6d1c1p7 | ⊢ (𝜑 → 𝐿 ∼ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aks6d1c1p7.8 | . . . . . . 7 ⊢ 𝑂 = (eval1‘𝐾) | |
| 2 | aks6d1c1p7.4 | . . . . . . 7 ⊢ 𝑋 = (var1‘𝐾) | |
| 3 | eqid 2735 | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 4 | aks6d1c1p7.2 | . . . . . . 7 ⊢ 𝑆 = (Poly1‘𝐾) | |
| 5 | aks6d1c1p7.3 | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑆) | |
| 6 | aks6d1c1p7.9 | . . . . . . . . 9 ⊢ (𝜑 → 𝐾 ∈ Field) | |
| 7 | 6 | fldcrngd 20700 | . . . . . . . 8 ⊢ (𝜑 → 𝐾 ∈ CRing) |
| 8 | 7 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐾 ∈ CRing) |
| 9 | aks6d1c1p7.5 | . . . . . . . . . . . . . 14 ⊢ 𝑉 = (mulGrp‘𝐾) | |
| 10 | 9 | crngmgp 20199 | . . . . . . . . . . . . 13 ⊢ (𝐾 ∈ CRing → 𝑉 ∈ CMnd) |
| 11 | 7, 10 | syl 17 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑉 ∈ CMnd) |
| 12 | aks6d1c1p7.11 | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝑅 ∈ ℕ) | |
| 13 | 12 | nnnn0d 12560 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑅 ∈ ℕ0) |
| 14 | aks6d1c1p7.6 | . . . . . . . . . . . 12 ⊢ ↑ = (.g‘𝑉) | |
| 15 | 11, 13, 14 | isprimroot 42052 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) ↔ (𝑦 ∈ (Base‘𝑉) ∧ (𝑅 ↑ 𝑦) = (0g‘𝑉) ∧ ∀𝑙 ∈ ℕ0 ((𝑙 ↑ 𝑦) = (0g‘𝑉) → 𝑅 ∥ 𝑙)))) |
| 16 | 15 | biimpd 229 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑦 ∈ (𝑉 PrimRoots 𝑅) → (𝑦 ∈ (Base‘𝑉) ∧ (𝑅 ↑ 𝑦) = (0g‘𝑉) ∧ ∀𝑙 ∈ ℕ0 ((𝑙 ↑ 𝑦) = (0g‘𝑉) → 𝑅 ∥ 𝑙)))) |
| 17 | 16 | imp 406 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑦 ∈ (Base‘𝑉) ∧ (𝑅 ↑ 𝑦) = (0g‘𝑉) ∧ ∀𝑙 ∈ ℕ0 ((𝑙 ↑ 𝑦) = (0g‘𝑉) → 𝑅 ∥ 𝑙))) |
| 18 | 17 | simp1d 1142 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (Base‘𝑉)) |
| 19 | 9, 3 | mgpbas 20103 | . . . . . . . 8 ⊢ (Base‘𝐾) = (Base‘𝑉) |
| 20 | 18, 19 | eleqtrrdi 2845 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (Base‘𝐾)) |
| 21 | 1, 2, 3, 4, 5, 8, 20 | evl1vard 22273 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑋 ∈ 𝐵 ∧ ((𝑂‘𝑋)‘𝑦) = 𝑦)) |
| 22 | 21 | simprd 495 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘𝑋)‘𝑦) = 𝑦) |
| 23 | 22 | oveq2d 7419 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐿 ↑ ((𝑂‘𝑋)‘𝑦)) = (𝐿 ↑ 𝑦)) |
| 24 | 11 | cmnmndd 19783 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑉 ∈ Mnd) |
| 25 | 24 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑉 ∈ Mnd) |
| 26 | aks6d1c1p7.15 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐿 ∈ ℕ) | |
| 27 | 26 | nnnn0d 12560 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐿 ∈ ℕ0) |
| 28 | 27 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝐿 ∈ ℕ0) |
| 29 | 20, 19 | eleqtrdi 2844 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → 𝑦 ∈ (Base‘𝑉)) |
| 30 | eqid 2735 | . . . . . . . . . 10 ⊢ (Base‘𝑉) = (Base‘𝑉) | |
| 31 | 30, 14 | mulgnn0cl 19071 | . . . . . . . . 9 ⊢ ((𝑉 ∈ Mnd ∧ 𝐿 ∈ ℕ0 ∧ 𝑦 ∈ (Base‘𝑉)) → (𝐿 ↑ 𝑦) ∈ (Base‘𝑉)) |
| 32 | 25, 28, 29, 31 | syl3anc 1373 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐿 ↑ 𝑦) ∈ (Base‘𝑉)) |
| 33 | 32, 19 | eleqtrrdi 2845 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐿 ↑ 𝑦) ∈ (Base‘𝐾)) |
| 34 | 1, 2, 3, 4, 5, 8, 33 | evl1vard 22273 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝑋 ∈ 𝐵 ∧ ((𝑂‘𝑋)‘(𝐿 ↑ 𝑦)) = (𝐿 ↑ 𝑦))) |
| 35 | 34 | simprd 495 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → ((𝑂‘𝑋)‘(𝐿 ↑ 𝑦)) = (𝐿 ↑ 𝑦)) |
| 36 | eqidd 2736 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐿 ↑ 𝑦) = (𝐿 ↑ 𝑦)) | |
| 37 | 35, 36 | eqtr2d 2771 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐿 ↑ 𝑦) = ((𝑂‘𝑋)‘(𝐿 ↑ 𝑦))) |
| 38 | 23, 37 | eqtrd 2770 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝑉 PrimRoots 𝑅)) → (𝐿 ↑ ((𝑂‘𝑋)‘𝑦)) = ((𝑂‘𝑋)‘(𝐿 ↑ 𝑦))) |
| 39 | 38 | ralrimiva 3132 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐿 ↑ ((𝑂‘𝑋)‘𝑦)) = ((𝑂‘𝑋)‘(𝐿 ↑ 𝑦))) |
| 40 | aks6d1c1p7.1 | . . 3 ⊢ ∼ = {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ 𝐵 ∧ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝑒 ↑ ((𝑂‘𝑓)‘𝑦)) = ((𝑂‘𝑓)‘(𝑒 ↑ 𝑦)))} | |
| 41 | crngring 20203 | . . . . . 6 ⊢ (𝐾 ∈ CRing → 𝐾 ∈ Ring) | |
| 42 | 7, 41 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Ring) |
| 43 | eqid 2735 | . . . . . 6 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 44 | 2, 4, 43 | vr1cl 22151 | . . . . 5 ⊢ (𝐾 ∈ Ring → 𝑋 ∈ (Base‘𝑆)) |
| 45 | 42, 44 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑆)) |
| 46 | 45, 5 | eleqtrrdi 2845 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 47 | 40, 46, 26 | aks6d1c1p1 42066 | . 2 ⊢ (𝜑 → (𝐿 ∼ 𝑋 ↔ ∀𝑦 ∈ (𝑉 PrimRoots 𝑅)(𝐿 ↑ ((𝑂‘𝑋)‘𝑦)) = ((𝑂‘𝑋)‘(𝐿 ↑ 𝑦)))) |
| 48 | 39, 47 | mpbird 257 | 1 ⊢ (𝜑 → 𝐿 ∼ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∀wral 3051 class class class wbr 5119 {copab 5181 ‘cfv 6530 (class class class)co 7403 1c1 11128 ℕcn 12238 ℕ0cn0 12499 ∥ cdvds 16270 gcd cgcd 16511 ℙcprime 16688 Basecbs 17226 0gc0g 17451 Mndcmnd 18710 .gcmg 19048 CMndccmn 19759 mulGrpcmgp 20098 Ringcrg 20191 CRingccrg 20192 Fieldcfield 20688 chrcchr 21460 var1cv1 22109 Poly1cpl1 22110 eval1ce1 22250 PrimRoots cprimroots 42050 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-isom 6539 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-of 7669 df-ofr 7670 df-om 7860 df-1st 7986 df-2nd 7987 df-supp 8158 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-er 8717 df-map 8840 df-pm 8841 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9372 df-sup 9452 df-oi 9522 df-card 9951 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-fz 13523 df-fzo 13670 df-seq 14018 df-hash 14347 df-struct 17164 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-mulr 17283 df-sca 17285 df-vsca 17286 df-ip 17287 df-tset 17288 df-ple 17289 df-ds 17291 df-hom 17293 df-cco 17294 df-0g 17453 df-gsum 17454 df-prds 17459 df-pws 17461 df-mre 17596 df-mrc 17597 df-acs 17599 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-mhm 18759 df-submnd 18760 df-grp 18917 df-minusg 18918 df-sbg 18919 df-mulg 19049 df-subg 19104 df-ghm 19194 df-cntz 19298 df-cmn 19761 df-abl 19762 df-mgp 20099 df-rng 20111 df-ur 20140 df-srg 20145 df-ring 20193 df-cring 20194 df-rhm 20430 df-subrng 20504 df-subrg 20528 df-field 20690 df-lmod 20817 df-lss 20887 df-lsp 20927 df-assa 21811 df-asp 21812 df-ascl 21813 df-psr 21867 df-mvr 21868 df-mpl 21869 df-opsr 21871 df-evls 22030 df-evl 22031 df-psr1 22113 df-vr1 22114 df-ply1 22115 df-evl1 22252 df-primroots 42051 |
| This theorem is referenced by: aks6d1c1 42075 |
| Copyright terms: Public domain | W3C validator |