Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c6lem2 Structured version   Visualization version   GIF version

Theorem aks6d1c6lem2 42337
Description: Every primitive root is root of G(u)-G(v). (Contributed by metakunt, 8-May-2025.)
Hypotheses
Ref Expression
aks6d1c6.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
aks6d1c6.2 𝑃 = (chr‘𝐾)
aks6d1c6.3 (𝜑𝐾 ∈ Field)
aks6d1c6.4 (𝜑𝑃 ∈ ℙ)
aks6d1c6.5 (𝜑𝑅 ∈ ℕ)
aks6d1c6.6 (𝜑𝑁 ∈ ℕ)
aks6d1c6.7 (𝜑𝑃𝑁)
aks6d1c6.8 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c6.9 (𝜑𝐴 < 𝑃)
aks6d1c6.10 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
aks6d1c6.11 (𝜑𝐴 ∈ ℕ0)
aks6d1c6.12 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
aks6d1c6.13 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
aks6d1c6.14 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
aks6d1c6.15 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
aks6d1c6.16 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
aks6d1c6.17 𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀))
aks6d1c6.18 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
aks6d1c6.19 𝑆 = {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)}
aks6d1c6lem2.1 (𝜑𝑈𝑆)
aks6d1c6lem2.2 (𝜑𝑉𝑆)
aks6d1c6lem2.3 (𝜑 → ((𝐻𝑆)‘𝑈) = ((𝐻𝑆)‘𝑉))
aks6d1c6lem2.4 (𝜑𝑈𝑉)
aks6d1c6lem2.5 𝐽 = (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀))
aks6d1c6lem2.6 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≤ (♯‘(𝐽 “ (ℕ0 × ℕ0))))
Assertion
Ref Expression
aks6d1c6lem2 (𝜑𝐷 ≤ (♯‘(((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)})))
Distinct variable groups:   ,𝑎   𝐴,𝑎   𝐴,𝑔,𝑖   𝐴,   𝐴,𝑠   𝑥,𝐴   𝑒,𝐸,𝑓,𝑦   𝑗,𝐸   𝑒,𝐺,𝑓,𝑦   ,𝐺   𝐾,𝑎   𝑒,𝐾,𝑓,𝑦   𝑔,𝐾,𝑖   ,𝐾   𝑗,𝐾   𝑥,𝐾   ,𝑀   𝑗,𝑀   𝑦,𝑀   𝑁,𝑎   𝑒,𝑁,𝑓   𝑘,𝑁,𝑙,𝑠   𝑥,𝑁   𝑃,𝑒,𝑓   𝑃,𝑘,𝑙,𝑠   𝑥,𝑃   𝑅,𝑒,𝑓,𝑦   𝑥,𝑅   𝑆,   𝑈,𝑒,𝑓,𝑦   𝑈,𝑔,𝑖   𝑈,   𝑒,𝑉,𝑓,𝑦   𝑔,𝑉,𝑖   ,𝑉   𝜑,𝑎   𝜑,𝑔,𝑖   𝜑,   𝜑,𝑗   𝜑,𝑠   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑡,𝑒,𝑓,𝑘,𝑙)   𝐴(𝑦,𝑡,𝑒,𝑓,𝑗,𝑘,𝑙)   𝐷(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑠,𝑎,𝑙)   𝑃(𝑦,𝑡,𝑔,,𝑖,𝑗,𝑎)   (𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑠,𝑙)   𝑅(𝑡,𝑔,,𝑖,𝑗,𝑘,𝑠,𝑎,𝑙)   𝑆(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,𝑖,𝑗,𝑘,𝑠,𝑎,𝑙)   𝑈(𝑥,𝑡,𝑗,𝑘,𝑠,𝑎,𝑙)   𝐸(𝑥,𝑡,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   𝐺(𝑥,𝑡,𝑔,𝑖,𝑗,𝑘,𝑠,𝑎,𝑙)   𝐻(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑠,𝑎,𝑙)   𝐽(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑠,𝑎,𝑙)   𝐾(𝑡,𝑘,𝑠,𝑙)   𝐿(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑠,𝑎,𝑙)   𝑀(𝑥,𝑡,𝑒,𝑓,𝑔,𝑖,𝑘,𝑠,𝑎,𝑙)   𝑁(𝑦,𝑡,𝑔,,𝑖,𝑗)   𝑉(𝑥,𝑡,𝑗,𝑘,𝑠,𝑎,𝑙)

Proof of Theorem aks6d1c6lem2
Dummy variables 𝑤 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aks6d1c6.18 . . 3 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
2 aks6d1c6.13 . . . . . 6 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
3 fvexd 6846 . . . . . 6 (𝜑 → (ℤRHom‘(ℤ/nℤ‘𝑅)) ∈ V)
42, 3eqeltrid 2837 . . . . 5 (𝜑𝐿 ∈ V)
54imaexd 7855 . . . 4 (𝜑 → (𝐿 “ (𝐸 “ (ℕ0 × ℕ0))) ∈ V)
6 hashxrcl 14271 . . . 4 ((𝐿 “ (𝐸 “ (ℕ0 × ℕ0))) ∈ V → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℝ*)
75, 6syl 17 . . 3 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℝ*)
81, 7eqeltrid 2837 . 2 (𝜑𝐷 ∈ ℝ*)
9 aks6d1c6lem2.5 . . . . . 6 𝐽 = (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀))
109a1i 11 . . . . 5 (𝜑𝐽 = (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)))
11 nn0ex 12398 . . . . . . . 8 0 ∈ V
1211a1i 11 . . . . . . 7 (𝜑 → ℕ0 ∈ V)
1312, 12xpexd 7693 . . . . . 6 (𝜑 → (ℕ0 × ℕ0) ∈ V)
1413mptexd 7167 . . . . 5 (𝜑 → (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)) ∈ V)
1510, 14eqeltrd 2833 . . . 4 (𝜑𝐽 ∈ V)
1615imaexd 7855 . . 3 (𝜑 → (𝐽 “ (ℕ0 × ℕ0)) ∈ V)
17 hashxrcl 14271 . . 3 ((𝐽 “ (ℕ0 × ℕ0)) ∈ V → (♯‘(𝐽 “ (ℕ0 × ℕ0))) ∈ ℝ*)
1816, 17syl 17 . 2 (𝜑 → (♯‘(𝐽 “ (ℕ0 × ℕ0))) ∈ ℝ*)
19 fvexd 6846 . . . . 5 (𝜑 → ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) ∈ V)
20 cnvexg 7863 . . . . 5 (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) ∈ V → ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) ∈ V)
2119, 20syl 17 . . . 4 (𝜑((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) ∈ V)
2221imaexd 7855 . . 3 (𝜑 → (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)}) ∈ V)
23 hashxrcl 14271 . . 3 ((((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)}) ∈ V → (♯‘(((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)})) ∈ ℝ*)
2422, 23syl 17 . 2 (𝜑 → (♯‘(((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)})) ∈ ℝ*)
251a1i 11 . . 3 (𝜑𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))
26 aks6d1c6lem2.6 . . 3 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≤ (♯‘(𝐽 “ (ℕ0 × ℕ0))))
2725, 26eqbrtrd 5117 . 2 (𝜑𝐷 ≤ (♯‘(𝐽 “ (ℕ0 × ℕ0))))
2822elexd 3461 . . 3 (𝜑 → (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)}) ∈ V)
29 nfv 1915 . . . 4 𝑤𝜑
30 ovexd 7390 . . . . . 6 ((𝜑𝑗 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀) ∈ V)
3130, 9fmptd 7056 . . . . 5 (𝜑𝐽:(ℕ0 × ℕ0)⟶V)
32 ffun 6662 . . . . 5 (𝐽:(ℕ0 × ℕ0)⟶V → Fun 𝐽)
3331, 32syl 17 . . . 4 (𝜑 → Fun 𝐽)
349a1i 11 . . . . . 6 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝐽 = (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)))
35 simpr 484 . . . . . . . 8 (((𝜑𝑤 ∈ (ℕ0 × ℕ0)) ∧ 𝑗 = 𝑤) → 𝑗 = 𝑤)
3635fveq2d 6835 . . . . . . 7 (((𝜑𝑤 ∈ (ℕ0 × ℕ0)) ∧ 𝑗 = 𝑤) → (𝐸𝑗) = (𝐸𝑤))
3736oveq1d 7370 . . . . . 6 (((𝜑𝑤 ∈ (ℕ0 × ℕ0)) ∧ 𝑗 = 𝑤) → ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀) = ((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))
38 simpr 484 . . . . . 6 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝑤 ∈ (ℕ0 × ℕ0))
39 ovexd 7390 . . . . . 6 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀) ∈ V)
4034, 37, 38, 39fvmptd 6945 . . . . 5 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (𝐽𝑤) = ((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))
41 eqid 2733 . . . . . . . . . 10 (eval1𝐾) = (eval1𝐾)
42 eqid 2733 . . . . . . . . . 10 (Poly1𝐾) = (Poly1𝐾)
43 eqid 2733 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
44 eqid 2733 . . . . . . . . . 10 (Base‘(Poly1𝐾)) = (Base‘(Poly1𝐾))
45 aks6d1c6.3 . . . . . . . . . . . 12 (𝜑𝐾 ∈ Field)
4645fldcrngd 20666 . . . . . . . . . . 11 (𝜑𝐾 ∈ CRing)
4746adantr 480 . . . . . . . . . 10 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝐾 ∈ CRing)
48 eqid 2733 . . . . . . . . . . . 12 (mulGrp‘𝐾) = (mulGrp‘𝐾)
4948, 43mgpbas 20071 . . . . . . . . . . 11 (Base‘𝐾) = (Base‘(mulGrp‘𝐾))
50 eqid 2733 . . . . . . . . . . 11 (.g‘(mulGrp‘𝐾)) = (.g‘(mulGrp‘𝐾))
5146crngringd 20172 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ Ring)
5248ringmgp 20165 . . . . . . . . . . . . 13 (𝐾 ∈ Ring → (mulGrp‘𝐾) ∈ Mnd)
5351, 52syl 17 . . . . . . . . . . . 12 (𝜑 → (mulGrp‘𝐾) ∈ Mnd)
5453adantr 480 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (mulGrp‘𝐾) ∈ Mnd)
55 aks6d1c6.6 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ)
56 aks6d1c6.4 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℙ)
57 aks6d1c6.7 . . . . . . . . . . . . . 14 (𝜑𝑃𝑁)
58 aks6d1c6.12 . . . . . . . . . . . . . 14 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
5955, 56, 57, 58aks6d1c2p1 42284 . . . . . . . . . . . . 13 (𝜑𝐸:(ℕ0 × ℕ0)⟶ℕ)
6059ffvelcdmda 7026 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (𝐸𝑤) ∈ ℕ)
6160nnnn0d 12453 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (𝐸𝑤) ∈ ℕ0)
62 aks6d1c6.16 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
6348crngmgp 20167 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ CRing → (mulGrp‘𝐾) ∈ CMnd)
6446, 63syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (mulGrp‘𝐾) ∈ CMnd)
65 aks6d1c6.5 . . . . . . . . . . . . . . . . 17 (𝜑𝑅 ∈ ℕ)
6665nnnn0d 12453 . . . . . . . . . . . . . . . 16 (𝜑𝑅 ∈ ℕ0)
6764, 66, 50isprimroot 42259 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅) ↔ (𝑀 ∈ (Base‘(mulGrp‘𝐾)) ∧ (𝑅(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) ∧ ∀𝑜 ∈ ℕ0 ((𝑜(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) → 𝑅𝑜))))
6862, 67mpbid 232 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 ∈ (Base‘(mulGrp‘𝐾)) ∧ (𝑅(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) ∧ ∀𝑜 ∈ ℕ0 ((𝑜(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) → 𝑅𝑜)))
6968simp1d 1142 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ (Base‘(mulGrp‘𝐾)))
7069, 49eleqtrrdi 2844 . . . . . . . . . . . 12 (𝜑𝑀 ∈ (Base‘𝐾))
7170adantr 480 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝑀 ∈ (Base‘𝐾))
7249, 50, 54, 61, 71mulgnn0cld 19016 . . . . . . . . . 10 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀) ∈ (Base‘𝐾))
73 aks6d1c6.2 . . . . . . . . . . . . . 14 𝑃 = (chr‘𝐾)
74 aks6d1c6.11 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℕ0)
75 aks6d1c6.9 . . . . . . . . . . . . . 14 (𝜑𝐴 < 𝑃)
76 eqid 2733 . . . . . . . . . . . . . 14 (var1𝐾) = (var1𝐾)
77 eqid 2733 . . . . . . . . . . . . . 14 (.g‘(mulGrp‘(Poly1𝐾))) = (.g‘(mulGrp‘(Poly1𝐾)))
78 aks6d1c6.10 . . . . . . . . . . . . . 14 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
7945, 56, 73, 74, 75, 76, 77, 78aks6d1c5lem0 42301 . . . . . . . . . . . . 13 (𝜑𝐺:(ℕ0m (0...𝐴))⟶(Base‘(Poly1𝐾)))
80 aks6d1c6lem2.1 . . . . . . . . . . . . . . 15 (𝜑𝑈𝑆)
81 aks6d1c6.19 . . . . . . . . . . . . . . . 16 𝑆 = {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)}
8281eleq2i 2825 . . . . . . . . . . . . . . 15 (𝑈𝑆𝑈 ∈ {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)})
8380, 82sylib 218 . . . . . . . . . . . . . 14 (𝜑𝑈 ∈ {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)})
84 elrabi 3639 . . . . . . . . . . . . . . 15 (𝑈 ∈ {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)} → 𝑈 ∈ (ℕ0m (0...𝐴)))
8584a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (𝑈 ∈ {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)} → 𝑈 ∈ (ℕ0m (0...𝐴))))
8683, 85mpd 15 . . . . . . . . . . . . 13 (𝜑𝑈 ∈ (ℕ0m (0...𝐴)))
8779, 86ffvelcdmd 7027 . . . . . . . . . . . 12 (𝜑 → (𝐺𝑈) ∈ (Base‘(Poly1𝐾)))
8887adantr 480 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (𝐺𝑈) ∈ (Base‘(Poly1𝐾)))
89 eqidd 2734 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)))
9088, 89jca 511 . . . . . . . . . 10 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝐺𝑈) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))))
91 aks6d1c6lem2.2 . . . . . . . . . . . . . . 15 (𝜑𝑉𝑆)
9281eleq2i 2825 . . . . . . . . . . . . . . 15 (𝑉𝑆𝑉 ∈ {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)})
9391, 92sylib 218 . . . . . . . . . . . . . 14 (𝜑𝑉 ∈ {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)})
94 elrabi 3639 . . . . . . . . . . . . . . 15 (𝑉 ∈ {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)} → 𝑉 ∈ (ℕ0m (0...𝐴)))
9594a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (𝑉 ∈ {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)} → 𝑉 ∈ (ℕ0m (0...𝐴))))
9693, 95mpd 15 . . . . . . . . . . . . 13 (𝜑𝑉 ∈ (ℕ0m (0...𝐴)))
9779, 96ffvelcdmd 7027 . . . . . . . . . . . 12 (𝜑 → (𝐺𝑉) ∈ (Base‘(Poly1𝐾)))
9897adantr 480 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (𝐺𝑉) ∈ (Base‘(Poly1𝐾)))
99 eqidd 2734 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)))
10098, 99jca 511 . . . . . . . . . 10 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝐺𝑉) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))))
101 eqid 2733 . . . . . . . . . 10 (-g‘(Poly1𝐾)) = (-g‘(Poly1𝐾))
102 eqid 2733 . . . . . . . . . 10 (-g𝐾) = (-g𝐾)
10341, 42, 43, 44, 47, 72, 90, 100, 101, 102evl1subd 22277 . . . . . . . . 9 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = ((((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))(-g𝐾)(((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)))))
104103simprd 495 . . . . . . . 8 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = ((((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))(-g𝐾)(((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))))
105 fveq2 6831 . . . . . . . . . . . . . . 15 (𝑦 = 𝑀 → (((eval1𝐾)‘(𝐺𝑈))‘𝑦) = (((eval1𝐾)‘(𝐺𝑈))‘𝑀))
106105oveq2d 7371 . . . . . . . . . . . . . 14 (𝑦 = 𝑀 → ((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑈))‘𝑦)) = ((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑈))‘𝑀)))
107 oveq2 7363 . . . . . . . . . . . . . . 15 (𝑦 = 𝑀 → ((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑦) = ((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))
108107fveq2d 6835 . . . . . . . . . . . . . 14 (𝑦 = 𝑀 → (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑦)) = (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)))
109106, 108eqeq12d 2749 . . . . . . . . . . . . 13 (𝑦 = 𝑀 → (((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑈))‘𝑦)) = (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑦)) ↔ ((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑈))‘𝑀)) = (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))))
110 vex 3441 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘 ∈ V
111 vex 3441 . . . . . . . . . . . . . . . . . . . . . . 23 𝑙 ∈ V
112110, 111op1std 7940 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = ⟨𝑘, 𝑙⟩ → (1st𝑠) = 𝑘)
113112oveq2d 7371 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = ⟨𝑘, 𝑙⟩ → (𝑃↑(1st𝑠)) = (𝑃𝑘))
114110, 111op2ndd 7941 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = ⟨𝑘, 𝑙⟩ → (2nd𝑠) = 𝑙)
115114oveq2d 7371 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = ⟨𝑘, 𝑙⟩ → ((𝑁 / 𝑃)↑(2nd𝑠)) = ((𝑁 / 𝑃)↑𝑙))
116113, 115oveq12d 7373 . . . . . . . . . . . . . . . . . . . 20 (𝑠 = ⟨𝑘, 𝑙⟩ → ((𝑃↑(1st𝑠)) · ((𝑁 / 𝑃)↑(2nd𝑠))) = ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
117116mpompt 7469 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑠)) · ((𝑁 / 𝑃)↑(2nd𝑠)))) = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
11858eqcomi 2742 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙))) = 𝐸
119117, 118eqtri 2756 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑠)) · ((𝑁 / 𝑃)↑(2nd𝑠)))) = 𝐸
120119eqcomi 2742 . . . . . . . . . . . . . . . . 17 𝐸 = (𝑠 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑠)) · ((𝑁 / 𝑃)↑(2nd𝑠))))
121120a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝐸 = (𝑠 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑠)) · ((𝑁 / 𝑃)↑(2nd𝑠)))))
122 simpr 484 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑤 ∈ (ℕ0 × ℕ0)) ∧ 𝑠 = 𝑤) → 𝑠 = 𝑤)
123122fveq2d 6835 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ (ℕ0 × ℕ0)) ∧ 𝑠 = 𝑤) → (1st𝑠) = (1st𝑤))
124123oveq2d 7371 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ (ℕ0 × ℕ0)) ∧ 𝑠 = 𝑤) → (𝑃↑(1st𝑠)) = (𝑃↑(1st𝑤)))
125122fveq2d 6835 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ (ℕ0 × ℕ0)) ∧ 𝑠 = 𝑤) → (2nd𝑠) = (2nd𝑤))
126125oveq2d 7371 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ (ℕ0 × ℕ0)) ∧ 𝑠 = 𝑤) → ((𝑁 / 𝑃)↑(2nd𝑠)) = ((𝑁 / 𝑃)↑(2nd𝑤)))
127124, 126oveq12d 7373 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ (ℕ0 × ℕ0)) ∧ 𝑠 = 𝑤) → ((𝑃↑(1st𝑠)) · ((𝑁 / 𝑃)↑(2nd𝑠))) = ((𝑃↑(1st𝑤)) · ((𝑁 / 𝑃)↑(2nd𝑤))))
128 ovexd 7390 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝑃↑(1st𝑤)) · ((𝑁 / 𝑃)↑(2nd𝑤))) ∈ V)
129121, 127, 38, 128fvmptd 6945 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (𝐸𝑤) = ((𝑃↑(1st𝑤)) · ((𝑁 / 𝑃)↑(2nd𝑤))))
130 aks6d1c6.1 . . . . . . . . . . . . . . . 16 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
13145adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝐾 ∈ Field)
13256adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝑃 ∈ ℙ)
13365adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝑅 ∈ ℕ)
13455adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝑁 ∈ ℕ)
13557adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝑃𝑁)
136 aks6d1c6.8 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑁 gcd 𝑅) = 1)
137136adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (𝑁 gcd 𝑅) = 1)
138 ovexd 7390 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (0...𝐴) ∈ V)
13912, 138elmapd 8773 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑈 ∈ (ℕ0m (0...𝐴)) ↔ 𝑈:(0...𝐴)⟶ℕ0))
14086, 139mpbid 232 . . . . . . . . . . . . . . . . 17 (𝜑𝑈:(0...𝐴)⟶ℕ0)
141140adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝑈:(0...𝐴)⟶ℕ0)
14274adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝐴 ∈ ℕ0)
143 xp1st 7962 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ (ℕ0 × ℕ0) → (1st𝑤) ∈ ℕ0)
144143adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (1st𝑤) ∈ ℕ0)
145 xp2nd 7963 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ (ℕ0 × ℕ0) → (2nd𝑤) ∈ ℕ0)
146145adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (2nd𝑤) ∈ ℕ0)
147 eqid 2733 . . . . . . . . . . . . . . . 16 ((𝑃↑(1st𝑤)) · ((𝑁 / 𝑃)↑(2nd𝑤))) = ((𝑃↑(1st𝑤)) · ((𝑁 / 𝑃)↑(2nd𝑤)))
148 aks6d1c6.14 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
149148adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
150 aks6d1c6.15 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
151150adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
152130, 73, 131, 132, 133, 134, 135, 137, 141, 78, 142, 144, 146, 147, 149, 151aks6d1c1rh 42291 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝑃↑(1st𝑤)) · ((𝑁 / 𝑃)↑(2nd𝑤))) (𝐺𝑈))
153129, 152eqbrtrd 5117 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (𝐸𝑤) (𝐺𝑈))
154130, 88, 60aks6d1c1p1 42273 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑤) (𝐺𝑈) ↔ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑈))‘𝑦)) = (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑦))))
155153, 154mpbid 232 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑈))‘𝑦)) = (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑦)))
15662adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
157109, 155, 156rspcdva 3574 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑈))‘𝑀)) = (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)))
158157eqcomd 2739 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = ((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑈))‘𝑀)))
159 aks6d1c6.17 . . . . . . . . . . . . . . . . . . 19 𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀))
160159a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀)))
161160reseq1d 5934 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐻𝑆) = (( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀)) ↾ 𝑆))
16281a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑆 = {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)})
163 ssrab2 4029 . . . . . . . . . . . . . . . . . . . 20 {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)} ⊆ (ℕ0m (0...𝐴))
164163a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)} ⊆ (ℕ0m (0...𝐴)))
165162, 164eqsstrd 3965 . . . . . . . . . . . . . . . . . 18 (𝜑𝑆 ⊆ (ℕ0m (0...𝐴)))
166165resmptd 5996 . . . . . . . . . . . . . . . . 17 (𝜑 → (( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀)) ↾ 𝑆) = (𝑆 ↦ (((eval1𝐾)‘(𝐺))‘𝑀)))
167161, 166eqtrd 2768 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐻𝑆) = (𝑆 ↦ (((eval1𝐾)‘(𝐺))‘𝑀)))
168 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑 = 𝑈) → = 𝑈)
169168fveq2d 6835 . . . . . . . . . . . . . . . . . 18 ((𝜑 = 𝑈) → (𝐺) = (𝐺𝑈))
170169fveq2d 6835 . . . . . . . . . . . . . . . . 17 ((𝜑 = 𝑈) → ((eval1𝐾)‘(𝐺)) = ((eval1𝐾)‘(𝐺𝑈)))
171170fveq1d 6833 . . . . . . . . . . . . . . . 16 ((𝜑 = 𝑈) → (((eval1𝐾)‘(𝐺))‘𝑀) = (((eval1𝐾)‘(𝐺𝑈))‘𝑀))
172 fvexd 6846 . . . . . . . . . . . . . . . 16 (𝜑 → (((eval1𝐾)‘(𝐺𝑈))‘𝑀) ∈ V)
173167, 171, 80, 172fvmptd 6945 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐻𝑆)‘𝑈) = (((eval1𝐾)‘(𝐺𝑈))‘𝑀))
174173eqcomd 2739 . . . . . . . . . . . . . 14 (𝜑 → (((eval1𝐾)‘(𝐺𝑈))‘𝑀) = ((𝐻𝑆)‘𝑈))
175 aks6d1c6lem2.3 . . . . . . . . . . . . . 14 (𝜑 → ((𝐻𝑆)‘𝑈) = ((𝐻𝑆)‘𝑉))
176 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑 = 𝑉) → = 𝑉)
177176fveq2d 6835 . . . . . . . . . . . . . . . . 17 ((𝜑 = 𝑉) → (𝐺) = (𝐺𝑉))
178177fveq2d 6835 . . . . . . . . . . . . . . . 16 ((𝜑 = 𝑉) → ((eval1𝐾)‘(𝐺)) = ((eval1𝐾)‘(𝐺𝑉)))
179178fveq1d 6833 . . . . . . . . . . . . . . 15 ((𝜑 = 𝑉) → (((eval1𝐾)‘(𝐺))‘𝑀) = (((eval1𝐾)‘(𝐺𝑉))‘𝑀))
180 fvexd 6846 . . . . . . . . . . . . . . 15 (𝜑 → (((eval1𝐾)‘(𝐺𝑉))‘𝑀) ∈ V)
181167, 179, 91, 180fvmptd 6945 . . . . . . . . . . . . . 14 (𝜑 → ((𝐻𝑆)‘𝑉) = (((eval1𝐾)‘(𝐺𝑉))‘𝑀))
182174, 175, 1813eqtrd 2772 . . . . . . . . . . . . 13 (𝜑 → (((eval1𝐾)‘(𝐺𝑈))‘𝑀) = (((eval1𝐾)‘(𝐺𝑉))‘𝑀))
183182adantr 480 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((eval1𝐾)‘(𝐺𝑈))‘𝑀) = (((eval1𝐾)‘(𝐺𝑉))‘𝑀))
184183oveq2d 7371 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑈))‘𝑀)) = ((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑉))‘𝑀)))
185158, 184eqtrd 2768 . . . . . . . . . 10 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = ((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑉))‘𝑀)))
186 fveq2 6831 . . . . . . . . . . . . 13 (𝑦 = 𝑀 → (((eval1𝐾)‘(𝐺𝑉))‘𝑦) = (((eval1𝐾)‘(𝐺𝑉))‘𝑀))
187186oveq2d 7371 . . . . . . . . . . . 12 (𝑦 = 𝑀 → ((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑉))‘𝑦)) = ((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑉))‘𝑀)))
188107fveq2d 6835 . . . . . . . . . . . 12 (𝑦 = 𝑀 → (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑦)) = (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)))
189187, 188eqeq12d 2749 . . . . . . . . . . 11 (𝑦 = 𝑀 → (((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑉))‘𝑦)) = (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑦)) ↔ ((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑉))‘𝑀)) = (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))))
19012, 138elmapd 8773 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑉 ∈ (ℕ0m (0...𝐴)) ↔ 𝑉:(0...𝐴)⟶ℕ0))
19196, 190mpbid 232 . . . . . . . . . . . . . . 15 (𝜑𝑉:(0...𝐴)⟶ℕ0)
192191adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝑉:(0...𝐴)⟶ℕ0)
193130, 73, 131, 132, 133, 134, 135, 137, 192, 78, 142, 144, 146, 147, 149, 151aks6d1c1rh 42291 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝑃↑(1st𝑤)) · ((𝑁 / 𝑃)↑(2nd𝑤))) (𝐺𝑉))
194129, 193eqbrtrd 5117 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (𝐸𝑤) (𝐺𝑉))
195130, 98, 60aks6d1c1p1 42273 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑤) (𝐺𝑉) ↔ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑉))‘𝑦)) = (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑦))))
196194, 195mpbid 232 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑉))‘𝑦)) = (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑦)))
197189, 196, 156rspcdva 3574 . . . . . . . . . 10 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑉))‘𝑀)) = (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)))
198185, 197eqtrd 2768 . . . . . . . . 9 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)))
19946crnggrpd 20173 . . . . . . . . . . 11 (𝜑𝐾 ∈ Grp)
200199adantr 480 . . . . . . . . . 10 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝐾 ∈ Grp)
20141, 42, 43, 44, 47, 72, 88fveval1fvcl 22268 . . . . . . . . . 10 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) ∈ (Base‘𝐾))
20241, 42, 43, 44, 47, 72, 98fveval1fvcl 22268 . . . . . . . . . 10 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) ∈ (Base‘𝐾))
203 eqid 2733 . . . . . . . . . . 11 (0g𝐾) = (0g𝐾)
20443, 203, 102grpsubeq0 18947 . . . . . . . . . 10 ((𝐾 ∈ Grp ∧ (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) ∈ (Base‘𝐾) ∧ (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) ∈ (Base‘𝐾)) → (((((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))(-g𝐾)(((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))) = (0g𝐾) ↔ (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))))
205200, 201, 202, 204syl3anc 1373 . . . . . . . . 9 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))(-g𝐾)(((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))) = (0g𝐾) ↔ (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))))
206198, 205mpbird 257 . . . . . . . 8 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))(-g𝐾)(((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))) = (0g𝐾))
207104, 206eqtrd 2768 . . . . . . 7 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = (0g𝐾))
208 fvexd 6846 . . . . . . . 8 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) ∈ V)
209 elsng 4591 . . . . . . . 8 ((((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) ∈ V → ((((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) ∈ {(0g𝐾)} ↔ (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = (0g𝐾)))
210208, 209syl 17 . . . . . . 7 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) ∈ {(0g𝐾)} ↔ (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = (0g𝐾)))
211207, 210mpbird 257 . . . . . 6 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) ∈ {(0g𝐾)})
212 eqid 2733 . . . . . . . . . . . . . . 15 (𝐾s (Base‘𝐾)) = (𝐾s (Base‘𝐾))
21341, 42, 212, 43evl1rhm 22267 . . . . . . . . . . . . . 14 (𝐾 ∈ CRing → (eval1𝐾) ∈ ((Poly1𝐾) RingHom (𝐾s (Base‘𝐾))))
21446, 213syl 17 . . . . . . . . . . . . 13 (𝜑 → (eval1𝐾) ∈ ((Poly1𝐾) RingHom (𝐾s (Base‘𝐾))))
215 eqid 2733 . . . . . . . . . . . . . 14 (Base‘(𝐾s (Base‘𝐾))) = (Base‘(𝐾s (Base‘𝐾)))
21644, 215rhmf 20411 . . . . . . . . . . . . 13 ((eval1𝐾) ∈ ((Poly1𝐾) RingHom (𝐾s (Base‘𝐾))) → (eval1𝐾):(Base‘(Poly1𝐾))⟶(Base‘(𝐾s (Base‘𝐾))))
217214, 216syl 17 . . . . . . . . . . . 12 (𝜑 → (eval1𝐾):(Base‘(Poly1𝐾))⟶(Base‘(𝐾s (Base‘𝐾))))
218 fvexd 6846 . . . . . . . . . . . . . 14 (𝜑 → (Base‘𝐾) ∈ V)
219212, 43pwsbas 17398 . . . . . . . . . . . . . 14 ((𝐾 ∈ Field ∧ (Base‘𝐾) ∈ V) → ((Base‘𝐾) ↑m (Base‘𝐾)) = (Base‘(𝐾s (Base‘𝐾))))
22045, 218, 219syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ((Base‘𝐾) ↑m (Base‘𝐾)) = (Base‘(𝐾s (Base‘𝐾))))
221220feq3d 6644 . . . . . . . . . . . 12 (𝜑 → ((eval1𝐾):(Base‘(Poly1𝐾))⟶((Base‘𝐾) ↑m (Base‘𝐾)) ↔ (eval1𝐾):(Base‘(Poly1𝐾))⟶(Base‘(𝐾s (Base‘𝐾)))))
222217, 221mpbird 257 . . . . . . . . . . 11 (𝜑 → (eval1𝐾):(Base‘(Poly1𝐾))⟶((Base‘𝐾) ↑m (Base‘𝐾)))
22342ply1ring 22179 . . . . . . . . . . . . . 14 (𝐾 ∈ Ring → (Poly1𝐾) ∈ Ring)
22451, 223syl 17 . . . . . . . . . . . . 13 (𝜑 → (Poly1𝐾) ∈ Ring)
225 ringgrp 20164 . . . . . . . . . . . . 13 ((Poly1𝐾) ∈ Ring → (Poly1𝐾) ∈ Grp)
226224, 225syl 17 . . . . . . . . . . . 12 (𝜑 → (Poly1𝐾) ∈ Grp)
22744, 101grpsubcl 18941 . . . . . . . . . . . 12 (((Poly1𝐾) ∈ Grp ∧ (𝐺𝑈) ∈ (Base‘(Poly1𝐾)) ∧ (𝐺𝑉) ∈ (Base‘(Poly1𝐾))) → ((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)) ∈ (Base‘(Poly1𝐾)))
228226, 87, 97, 227syl3anc 1373 . . . . . . . . . . 11 (𝜑 → ((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)) ∈ (Base‘(Poly1𝐾)))
229222, 228ffvelcdmd 7027 . . . . . . . . . 10 (𝜑 → ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) ∈ ((Base‘𝐾) ↑m (Base‘𝐾)))
230218, 218elmapd 8773 . . . . . . . . . 10 (𝜑 → (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) ∈ ((Base‘𝐾) ↑m (Base‘𝐾)) ↔ ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))):(Base‘𝐾)⟶(Base‘𝐾)))
231229, 230mpbid 232 . . . . . . . . 9 (𝜑 → ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))):(Base‘𝐾)⟶(Base‘𝐾))
232231ffund 6663 . . . . . . . 8 (𝜑 → Fun ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))))
233232adantr 480 . . . . . . 7 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → Fun ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))))
234231ffnd 6660 . . . . . . . . . . 11 (𝜑 → ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) Fn (Base‘𝐾))
235234adantr 480 . . . . . . . . . 10 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) Fn (Base‘𝐾))
236235fndmd 6594 . . . . . . . . 9 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → dom ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) = (Base‘𝐾))
237236eqcomd 2739 . . . . . . . 8 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (Base‘𝐾) = dom ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))))
23872, 237eleqtrd 2835 . . . . . . 7 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀) ∈ dom ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))))
239 fvimacnv 6995 . . . . . . 7 ((Fun ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) ∧ ((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀) ∈ dom ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)))) → ((((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) ∈ {(0g𝐾)} ↔ ((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀) ∈ (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)})))
240233, 238, 239syl2anc 584 . . . . . 6 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) ∈ {(0g𝐾)} ↔ ((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀) ∈ (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)})))
241211, 240mpbid 232 . . . . 5 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀) ∈ (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)}))
24240, 241eqeltrd 2833 . . . 4 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (𝐽𝑤) ∈ (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)}))
24329, 33, 242funimassd 6897 . . 3 (𝜑 → (𝐽 “ (ℕ0 × ℕ0)) ⊆ (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)}))
244 hashss 14323 . . 3 (((((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)}) ∈ V ∧ (𝐽 “ (ℕ0 × ℕ0)) ⊆ (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)})) → (♯‘(𝐽 “ (ℕ0 × ℕ0))) ≤ (♯‘(((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)})))
24528, 243, 244syl2anc 584 . 2 (𝜑 → (♯‘(𝐽 “ (ℕ0 × ℕ0))) ≤ (♯‘(((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)})))
2468, 18, 24, 27, 245xrletrd 13067 1 (𝜑𝐷 ≤ (♯‘(((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wral 3048  {crab 3396  Vcvv 3437  wss 3898  {csn 4577  cop 4583   class class class wbr 5095  {copab 5157  cmpt 5176   × cxp 5619  ccnv 5620  dom cdm 5621  cres 5623  cima 5624  Fun wfun 6483   Fn wfn 6484  wf 6485  cfv 6489  (class class class)co 7355  cmpo 7357  1st c1st 7928  2nd c2nd 7929  m cmap 8759  0cc0 11017  1c1 11018   · cmul 11022  *cxr 11156   < clt 11157  cle 11158  cmin 11355   / cdiv 11785  cn 12136  0cn0 12392  ...cfz 13414  cexp 13975  chash 14244  Σcsu 15600  cdvds 16170   gcd cgcd 16412  cprime 16589  Basecbs 17127  +gcplusg 17168  0gc0g 17350   Σg cgsu 17351  s cpws 17357  Mndcmnd 18650  Grpcgrp 18854  -gcsg 18856  .gcmg 18988  CMndccmn 19700  mulGrpcmgp 20066  Ringcrg 20159  CRingccrg 20160   RingHom crh 20396   RingIso crs 20397  Fieldcfield 20654  ℤRHomczrh 21445  chrcchr 21447  ℤ/nczn 21448  algSccascl 21798  var1cv1 22107  Poly1cpl1 22108  eval1ce1 22249   PrimRoots cprimroots 42257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095  ax-addf 11096  ax-mulf 11097
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-ofr 7620  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-tpos 8165  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-oadd 8398  df-er 8631  df-map 8761  df-pm 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9257  df-sup 9337  df-inf 9338  df-oi 9407  df-dju 9805  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-xnn0 12466  df-z 12480  df-dec 12599  df-uz 12743  df-rp 12897  df-fz 13415  df-fzo 13562  df-fl 13703  df-mod 13781  df-seq 13916  df-exp 13976  df-fac 14188  df-bc 14217  df-hash 14245  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-dvds 16171  df-gcd 16413  df-prm 16590  df-phi 16684  df-struct 17065  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-mulr 17182  df-starv 17183  df-sca 17184  df-vsca 17185  df-ip 17186  df-tset 17187  df-ple 17188  df-ds 17190  df-unif 17191  df-hom 17192  df-cco 17193  df-0g 17352  df-gsum 17353  df-prds 17358  df-pws 17360  df-mre 17496  df-mrc 17497  df-acs 17499  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-mhm 18699  df-submnd 18700  df-grp 18857  df-minusg 18858  df-sbg 18859  df-mulg 18989  df-subg 19044  df-ghm 19133  df-cntz 19237  df-od 19448  df-cmn 19702  df-abl 19703  df-mgp 20067  df-rng 20079  df-ur 20108  df-srg 20113  df-ring 20161  df-cring 20162  df-oppr 20264  df-dvdsr 20284  df-unit 20285  df-invr 20315  df-dvr 20328  df-rhm 20399  df-rim 20400  df-subrng 20470  df-subrg 20494  df-drng 20655  df-field 20656  df-lmod 20804  df-lss 20874  df-lsp 20914  df-cnfld 21301  df-zring 21393  df-zrh 21449  df-chr 21451  df-assa 21799  df-asp 21800  df-ascl 21801  df-psr 21856  df-mvr 21857  df-mpl 21858  df-opsr 21860  df-evls 22020  df-evl 22021  df-psr1 22111  df-vr1 22112  df-ply1 22113  df-coe1 22114  df-evl1 22251  df-primroots 42258
This theorem is referenced by:  aks6d1c6lem3  42338
  Copyright terms: Public domain W3C validator