Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c6lem2 Structured version   Visualization version   GIF version

Theorem aks6d1c6lem2 42204
Description: Every primitive root is root of G(u)-G(v). (Contributed by metakunt, 8-May-2025.)
Hypotheses
Ref Expression
aks6d1c6.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
aks6d1c6.2 𝑃 = (chr‘𝐾)
aks6d1c6.3 (𝜑𝐾 ∈ Field)
aks6d1c6.4 (𝜑𝑃 ∈ ℙ)
aks6d1c6.5 (𝜑𝑅 ∈ ℕ)
aks6d1c6.6 (𝜑𝑁 ∈ ℕ)
aks6d1c6.7 (𝜑𝑃𝑁)
aks6d1c6.8 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c6.9 (𝜑𝐴 < 𝑃)
aks6d1c6.10 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
aks6d1c6.11 (𝜑𝐴 ∈ ℕ0)
aks6d1c6.12 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
aks6d1c6.13 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
aks6d1c6.14 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
aks6d1c6.15 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
aks6d1c6.16 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
aks6d1c6.17 𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀))
aks6d1c6.18 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
aks6d1c6.19 𝑆 = {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)}
aks6d1c6lem2.1 (𝜑𝑈𝑆)
aks6d1c6lem2.2 (𝜑𝑉𝑆)
aks6d1c6lem2.3 (𝜑 → ((𝐻𝑆)‘𝑈) = ((𝐻𝑆)‘𝑉))
aks6d1c6lem2.4 (𝜑𝑈𝑉)
aks6d1c6lem2.5 𝐽 = (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀))
aks6d1c6lem2.6 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≤ (♯‘(𝐽 “ (ℕ0 × ℕ0))))
Assertion
Ref Expression
aks6d1c6lem2 (𝜑𝐷 ≤ (♯‘(((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)})))
Distinct variable groups:   ,𝑎   𝐴,𝑎   𝐴,𝑔,𝑖   𝐴,   𝐴,𝑠   𝑥,𝐴   𝑒,𝐸,𝑓,𝑦   𝑗,𝐸   𝑒,𝐺,𝑓,𝑦   ,𝐺   𝐾,𝑎   𝑒,𝐾,𝑓,𝑦   𝑔,𝐾,𝑖   ,𝐾   𝑗,𝐾   𝑥,𝐾   ,𝑀   𝑗,𝑀   𝑦,𝑀   𝑁,𝑎   𝑒,𝑁,𝑓   𝑘,𝑁,𝑙,𝑠   𝑥,𝑁   𝑃,𝑒,𝑓   𝑃,𝑘,𝑙,𝑠   𝑥,𝑃   𝑅,𝑒,𝑓,𝑦   𝑥,𝑅   𝑆,   𝑈,𝑒,𝑓,𝑦   𝑈,𝑔,𝑖   𝑈,   𝑒,𝑉,𝑓,𝑦   𝑔,𝑉,𝑖   ,𝑉   𝜑,𝑎   𝜑,𝑔,𝑖   𝜑,   𝜑,𝑗   𝜑,𝑠   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑡,𝑒,𝑓,𝑘,𝑙)   𝐴(𝑦,𝑡,𝑒,𝑓,𝑗,𝑘,𝑙)   𝐷(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑠,𝑎,𝑙)   𝑃(𝑦,𝑡,𝑔,,𝑖,𝑗,𝑎)   (𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑠,𝑙)   𝑅(𝑡,𝑔,,𝑖,𝑗,𝑘,𝑠,𝑎,𝑙)   𝑆(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,𝑖,𝑗,𝑘,𝑠,𝑎,𝑙)   𝑈(𝑥,𝑡,𝑗,𝑘,𝑠,𝑎,𝑙)   𝐸(𝑥,𝑡,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   𝐺(𝑥,𝑡,𝑔,𝑖,𝑗,𝑘,𝑠,𝑎,𝑙)   𝐻(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑠,𝑎,𝑙)   𝐽(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑠,𝑎,𝑙)   𝐾(𝑡,𝑘,𝑠,𝑙)   𝐿(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑠,𝑎,𝑙)   𝑀(𝑥,𝑡,𝑒,𝑓,𝑔,𝑖,𝑘,𝑠,𝑎,𝑙)   𝑁(𝑦,𝑡,𝑔,,𝑖,𝑗)   𝑉(𝑥,𝑡,𝑗,𝑘,𝑠,𝑎,𝑙)

Proof of Theorem aks6d1c6lem2
Dummy variables 𝑤 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aks6d1c6.18 . . 3 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
2 aks6d1c6.13 . . . . . 6 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
3 fvexd 6832 . . . . . 6 (𝜑 → (ℤRHom‘(ℤ/nℤ‘𝑅)) ∈ V)
42, 3eqeltrid 2835 . . . . 5 (𝜑𝐿 ∈ V)
54imaexd 7841 . . . 4 (𝜑 → (𝐿 “ (𝐸 “ (ℕ0 × ℕ0))) ∈ V)
6 hashxrcl 14259 . . . 4 ((𝐿 “ (𝐸 “ (ℕ0 × ℕ0))) ∈ V → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℝ*)
75, 6syl 17 . . 3 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℝ*)
81, 7eqeltrid 2835 . 2 (𝜑𝐷 ∈ ℝ*)
9 aks6d1c6lem2.5 . . . . . 6 𝐽 = (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀))
109a1i 11 . . . . 5 (𝜑𝐽 = (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)))
11 nn0ex 12382 . . . . . . . 8 0 ∈ V
1211a1i 11 . . . . . . 7 (𝜑 → ℕ0 ∈ V)
1312, 12xpexd 7679 . . . . . 6 (𝜑 → (ℕ0 × ℕ0) ∈ V)
1413mptexd 7153 . . . . 5 (𝜑 → (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)) ∈ V)
1510, 14eqeltrd 2831 . . . 4 (𝜑𝐽 ∈ V)
1615imaexd 7841 . . 3 (𝜑 → (𝐽 “ (ℕ0 × ℕ0)) ∈ V)
17 hashxrcl 14259 . . 3 ((𝐽 “ (ℕ0 × ℕ0)) ∈ V → (♯‘(𝐽 “ (ℕ0 × ℕ0))) ∈ ℝ*)
1816, 17syl 17 . 2 (𝜑 → (♯‘(𝐽 “ (ℕ0 × ℕ0))) ∈ ℝ*)
19 fvexd 6832 . . . . 5 (𝜑 → ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) ∈ V)
20 cnvexg 7849 . . . . 5 (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) ∈ V → ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) ∈ V)
2119, 20syl 17 . . . 4 (𝜑((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) ∈ V)
2221imaexd 7841 . . 3 (𝜑 → (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)}) ∈ V)
23 hashxrcl 14259 . . 3 ((((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)}) ∈ V → (♯‘(((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)})) ∈ ℝ*)
2422, 23syl 17 . 2 (𝜑 → (♯‘(((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)})) ∈ ℝ*)
251a1i 11 . . 3 (𝜑𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))
26 aks6d1c6lem2.6 . . 3 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≤ (♯‘(𝐽 “ (ℕ0 × ℕ0))))
2725, 26eqbrtrd 5108 . 2 (𝜑𝐷 ≤ (♯‘(𝐽 “ (ℕ0 × ℕ0))))
2822elexd 3460 . . 3 (𝜑 → (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)}) ∈ V)
29 nfv 1915 . . . 4 𝑤𝜑
30 ovexd 7376 . . . . . 6 ((𝜑𝑗 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀) ∈ V)
3130, 9fmptd 7042 . . . . 5 (𝜑𝐽:(ℕ0 × ℕ0)⟶V)
32 ffun 6649 . . . . 5 (𝐽:(ℕ0 × ℕ0)⟶V → Fun 𝐽)
3331, 32syl 17 . . . 4 (𝜑 → Fun 𝐽)
349a1i 11 . . . . . 6 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝐽 = (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)))
35 simpr 484 . . . . . . . 8 (((𝜑𝑤 ∈ (ℕ0 × ℕ0)) ∧ 𝑗 = 𝑤) → 𝑗 = 𝑤)
3635fveq2d 6821 . . . . . . 7 (((𝜑𝑤 ∈ (ℕ0 × ℕ0)) ∧ 𝑗 = 𝑤) → (𝐸𝑗) = (𝐸𝑤))
3736oveq1d 7356 . . . . . 6 (((𝜑𝑤 ∈ (ℕ0 × ℕ0)) ∧ 𝑗 = 𝑤) → ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀) = ((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))
38 simpr 484 . . . . . 6 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝑤 ∈ (ℕ0 × ℕ0))
39 ovexd 7376 . . . . . 6 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀) ∈ V)
4034, 37, 38, 39fvmptd 6931 . . . . 5 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (𝐽𝑤) = ((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))
41 eqid 2731 . . . . . . . . . 10 (eval1𝐾) = (eval1𝐾)
42 eqid 2731 . . . . . . . . . 10 (Poly1𝐾) = (Poly1𝐾)
43 eqid 2731 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
44 eqid 2731 . . . . . . . . . 10 (Base‘(Poly1𝐾)) = (Base‘(Poly1𝐾))
45 aks6d1c6.3 . . . . . . . . . . . 12 (𝜑𝐾 ∈ Field)
4645fldcrngd 20652 . . . . . . . . . . 11 (𝜑𝐾 ∈ CRing)
4746adantr 480 . . . . . . . . . 10 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝐾 ∈ CRing)
48 eqid 2731 . . . . . . . . . . . 12 (mulGrp‘𝐾) = (mulGrp‘𝐾)
4948, 43mgpbas 20058 . . . . . . . . . . 11 (Base‘𝐾) = (Base‘(mulGrp‘𝐾))
50 eqid 2731 . . . . . . . . . . 11 (.g‘(mulGrp‘𝐾)) = (.g‘(mulGrp‘𝐾))
5146crngringd 20159 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ Ring)
5248ringmgp 20152 . . . . . . . . . . . . 13 (𝐾 ∈ Ring → (mulGrp‘𝐾) ∈ Mnd)
5351, 52syl 17 . . . . . . . . . . . 12 (𝜑 → (mulGrp‘𝐾) ∈ Mnd)
5453adantr 480 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (mulGrp‘𝐾) ∈ Mnd)
55 aks6d1c6.6 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ)
56 aks6d1c6.4 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℙ)
57 aks6d1c6.7 . . . . . . . . . . . . . 14 (𝜑𝑃𝑁)
58 aks6d1c6.12 . . . . . . . . . . . . . 14 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
5955, 56, 57, 58aks6d1c2p1 42151 . . . . . . . . . . . . 13 (𝜑𝐸:(ℕ0 × ℕ0)⟶ℕ)
6059ffvelcdmda 7012 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (𝐸𝑤) ∈ ℕ)
6160nnnn0d 12437 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (𝐸𝑤) ∈ ℕ0)
62 aks6d1c6.16 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
6348crngmgp 20154 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ CRing → (mulGrp‘𝐾) ∈ CMnd)
6446, 63syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (mulGrp‘𝐾) ∈ CMnd)
65 aks6d1c6.5 . . . . . . . . . . . . . . . . 17 (𝜑𝑅 ∈ ℕ)
6665nnnn0d 12437 . . . . . . . . . . . . . . . 16 (𝜑𝑅 ∈ ℕ0)
6764, 66, 50isprimroot 42126 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅) ↔ (𝑀 ∈ (Base‘(mulGrp‘𝐾)) ∧ (𝑅(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) ∧ ∀𝑜 ∈ ℕ0 ((𝑜(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) → 𝑅𝑜))))
6862, 67mpbid 232 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 ∈ (Base‘(mulGrp‘𝐾)) ∧ (𝑅(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) ∧ ∀𝑜 ∈ ℕ0 ((𝑜(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) → 𝑅𝑜)))
6968simp1d 1142 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ (Base‘(mulGrp‘𝐾)))
7069, 49eleqtrrdi 2842 . . . . . . . . . . . 12 (𝜑𝑀 ∈ (Base‘𝐾))
7170adantr 480 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝑀 ∈ (Base‘𝐾))
7249, 50, 54, 61, 71mulgnn0cld 19003 . . . . . . . . . 10 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀) ∈ (Base‘𝐾))
73 aks6d1c6.2 . . . . . . . . . . . . . 14 𝑃 = (chr‘𝐾)
74 aks6d1c6.11 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℕ0)
75 aks6d1c6.9 . . . . . . . . . . . . . 14 (𝜑𝐴 < 𝑃)
76 eqid 2731 . . . . . . . . . . . . . 14 (var1𝐾) = (var1𝐾)
77 eqid 2731 . . . . . . . . . . . . . 14 (.g‘(mulGrp‘(Poly1𝐾))) = (.g‘(mulGrp‘(Poly1𝐾)))
78 aks6d1c6.10 . . . . . . . . . . . . . 14 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
7945, 56, 73, 74, 75, 76, 77, 78aks6d1c5lem0 42168 . . . . . . . . . . . . 13 (𝜑𝐺:(ℕ0m (0...𝐴))⟶(Base‘(Poly1𝐾)))
80 aks6d1c6lem2.1 . . . . . . . . . . . . . . 15 (𝜑𝑈𝑆)
81 aks6d1c6.19 . . . . . . . . . . . . . . . 16 𝑆 = {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)}
8281eleq2i 2823 . . . . . . . . . . . . . . 15 (𝑈𝑆𝑈 ∈ {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)})
8380, 82sylib 218 . . . . . . . . . . . . . 14 (𝜑𝑈 ∈ {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)})
84 elrabi 3638 . . . . . . . . . . . . . . 15 (𝑈 ∈ {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)} → 𝑈 ∈ (ℕ0m (0...𝐴)))
8584a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (𝑈 ∈ {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)} → 𝑈 ∈ (ℕ0m (0...𝐴))))
8683, 85mpd 15 . . . . . . . . . . . . 13 (𝜑𝑈 ∈ (ℕ0m (0...𝐴)))
8779, 86ffvelcdmd 7013 . . . . . . . . . . . 12 (𝜑 → (𝐺𝑈) ∈ (Base‘(Poly1𝐾)))
8887adantr 480 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (𝐺𝑈) ∈ (Base‘(Poly1𝐾)))
89 eqidd 2732 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)))
9088, 89jca 511 . . . . . . . . . 10 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝐺𝑈) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))))
91 aks6d1c6lem2.2 . . . . . . . . . . . . . . 15 (𝜑𝑉𝑆)
9281eleq2i 2823 . . . . . . . . . . . . . . 15 (𝑉𝑆𝑉 ∈ {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)})
9391, 92sylib 218 . . . . . . . . . . . . . 14 (𝜑𝑉 ∈ {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)})
94 elrabi 3638 . . . . . . . . . . . . . . 15 (𝑉 ∈ {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)} → 𝑉 ∈ (ℕ0m (0...𝐴)))
9594a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (𝑉 ∈ {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)} → 𝑉 ∈ (ℕ0m (0...𝐴))))
9693, 95mpd 15 . . . . . . . . . . . . 13 (𝜑𝑉 ∈ (ℕ0m (0...𝐴)))
9779, 96ffvelcdmd 7013 . . . . . . . . . . . 12 (𝜑 → (𝐺𝑉) ∈ (Base‘(Poly1𝐾)))
9897adantr 480 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (𝐺𝑉) ∈ (Base‘(Poly1𝐾)))
99 eqidd 2732 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)))
10098, 99jca 511 . . . . . . . . . 10 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝐺𝑉) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))))
101 eqid 2731 . . . . . . . . . 10 (-g‘(Poly1𝐾)) = (-g‘(Poly1𝐾))
102 eqid 2731 . . . . . . . . . 10 (-g𝐾) = (-g𝐾)
10341, 42, 43, 44, 47, 72, 90, 100, 101, 102evl1subd 22252 . . . . . . . . 9 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = ((((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))(-g𝐾)(((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)))))
104103simprd 495 . . . . . . . 8 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = ((((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))(-g𝐾)(((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))))
105 fveq2 6817 . . . . . . . . . . . . . . 15 (𝑦 = 𝑀 → (((eval1𝐾)‘(𝐺𝑈))‘𝑦) = (((eval1𝐾)‘(𝐺𝑈))‘𝑀))
106105oveq2d 7357 . . . . . . . . . . . . . 14 (𝑦 = 𝑀 → ((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑈))‘𝑦)) = ((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑈))‘𝑀)))
107 oveq2 7349 . . . . . . . . . . . . . . 15 (𝑦 = 𝑀 → ((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑦) = ((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))
108107fveq2d 6821 . . . . . . . . . . . . . 14 (𝑦 = 𝑀 → (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑦)) = (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)))
109106, 108eqeq12d 2747 . . . . . . . . . . . . 13 (𝑦 = 𝑀 → (((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑈))‘𝑦)) = (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑦)) ↔ ((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑈))‘𝑀)) = (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))))
110 vex 3440 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘 ∈ V
111 vex 3440 . . . . . . . . . . . . . . . . . . . . . . 23 𝑙 ∈ V
112110, 111op1std 7926 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = ⟨𝑘, 𝑙⟩ → (1st𝑠) = 𝑘)
113112oveq2d 7357 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = ⟨𝑘, 𝑙⟩ → (𝑃↑(1st𝑠)) = (𝑃𝑘))
114110, 111op2ndd 7927 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = ⟨𝑘, 𝑙⟩ → (2nd𝑠) = 𝑙)
115114oveq2d 7357 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = ⟨𝑘, 𝑙⟩ → ((𝑁 / 𝑃)↑(2nd𝑠)) = ((𝑁 / 𝑃)↑𝑙))
116113, 115oveq12d 7359 . . . . . . . . . . . . . . . . . . . 20 (𝑠 = ⟨𝑘, 𝑙⟩ → ((𝑃↑(1st𝑠)) · ((𝑁 / 𝑃)↑(2nd𝑠))) = ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
117116mpompt 7455 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑠)) · ((𝑁 / 𝑃)↑(2nd𝑠)))) = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
11858eqcomi 2740 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙))) = 𝐸
119117, 118eqtri 2754 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑠)) · ((𝑁 / 𝑃)↑(2nd𝑠)))) = 𝐸
120119eqcomi 2740 . . . . . . . . . . . . . . . . 17 𝐸 = (𝑠 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑠)) · ((𝑁 / 𝑃)↑(2nd𝑠))))
121120a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝐸 = (𝑠 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑠)) · ((𝑁 / 𝑃)↑(2nd𝑠)))))
122 simpr 484 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑤 ∈ (ℕ0 × ℕ0)) ∧ 𝑠 = 𝑤) → 𝑠 = 𝑤)
123122fveq2d 6821 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ (ℕ0 × ℕ0)) ∧ 𝑠 = 𝑤) → (1st𝑠) = (1st𝑤))
124123oveq2d 7357 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ (ℕ0 × ℕ0)) ∧ 𝑠 = 𝑤) → (𝑃↑(1st𝑠)) = (𝑃↑(1st𝑤)))
125122fveq2d 6821 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ (ℕ0 × ℕ0)) ∧ 𝑠 = 𝑤) → (2nd𝑠) = (2nd𝑤))
126125oveq2d 7357 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ (ℕ0 × ℕ0)) ∧ 𝑠 = 𝑤) → ((𝑁 / 𝑃)↑(2nd𝑠)) = ((𝑁 / 𝑃)↑(2nd𝑤)))
127124, 126oveq12d 7359 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ (ℕ0 × ℕ0)) ∧ 𝑠 = 𝑤) → ((𝑃↑(1st𝑠)) · ((𝑁 / 𝑃)↑(2nd𝑠))) = ((𝑃↑(1st𝑤)) · ((𝑁 / 𝑃)↑(2nd𝑤))))
128 ovexd 7376 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝑃↑(1st𝑤)) · ((𝑁 / 𝑃)↑(2nd𝑤))) ∈ V)
129121, 127, 38, 128fvmptd 6931 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (𝐸𝑤) = ((𝑃↑(1st𝑤)) · ((𝑁 / 𝑃)↑(2nd𝑤))))
130 aks6d1c6.1 . . . . . . . . . . . . . . . 16 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
13145adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝐾 ∈ Field)
13256adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝑃 ∈ ℙ)
13365adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝑅 ∈ ℕ)
13455adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝑁 ∈ ℕ)
13557adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝑃𝑁)
136 aks6d1c6.8 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑁 gcd 𝑅) = 1)
137136adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (𝑁 gcd 𝑅) = 1)
138 ovexd 7376 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (0...𝐴) ∈ V)
13912, 138elmapd 8759 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑈 ∈ (ℕ0m (0...𝐴)) ↔ 𝑈:(0...𝐴)⟶ℕ0))
14086, 139mpbid 232 . . . . . . . . . . . . . . . . 17 (𝜑𝑈:(0...𝐴)⟶ℕ0)
141140adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝑈:(0...𝐴)⟶ℕ0)
14274adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝐴 ∈ ℕ0)
143 xp1st 7948 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ (ℕ0 × ℕ0) → (1st𝑤) ∈ ℕ0)
144143adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (1st𝑤) ∈ ℕ0)
145 xp2nd 7949 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ (ℕ0 × ℕ0) → (2nd𝑤) ∈ ℕ0)
146145adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (2nd𝑤) ∈ ℕ0)
147 eqid 2731 . . . . . . . . . . . . . . . 16 ((𝑃↑(1st𝑤)) · ((𝑁 / 𝑃)↑(2nd𝑤))) = ((𝑃↑(1st𝑤)) · ((𝑁 / 𝑃)↑(2nd𝑤)))
148 aks6d1c6.14 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
149148adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
150 aks6d1c6.15 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
151150adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
152130, 73, 131, 132, 133, 134, 135, 137, 141, 78, 142, 144, 146, 147, 149, 151aks6d1c1rh 42158 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝑃↑(1st𝑤)) · ((𝑁 / 𝑃)↑(2nd𝑤))) (𝐺𝑈))
153129, 152eqbrtrd 5108 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (𝐸𝑤) (𝐺𝑈))
154130, 88, 60aks6d1c1p1 42140 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑤) (𝐺𝑈) ↔ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑈))‘𝑦)) = (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑦))))
155153, 154mpbid 232 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑈))‘𝑦)) = (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑦)))
15662adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
157109, 155, 156rspcdva 3573 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑈))‘𝑀)) = (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)))
158157eqcomd 2737 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = ((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑈))‘𝑀)))
159 aks6d1c6.17 . . . . . . . . . . . . . . . . . . 19 𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀))
160159a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀)))
161160reseq1d 5922 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐻𝑆) = (( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀)) ↾ 𝑆))
16281a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑆 = {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)})
163 ssrab2 4025 . . . . . . . . . . . . . . . . . . . 20 {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)} ⊆ (ℕ0m (0...𝐴))
164163a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)} ⊆ (ℕ0m (0...𝐴)))
165162, 164eqsstrd 3964 . . . . . . . . . . . . . . . . . 18 (𝜑𝑆 ⊆ (ℕ0m (0...𝐴)))
166165resmptd 5984 . . . . . . . . . . . . . . . . 17 (𝜑 → (( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀)) ↾ 𝑆) = (𝑆 ↦ (((eval1𝐾)‘(𝐺))‘𝑀)))
167161, 166eqtrd 2766 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐻𝑆) = (𝑆 ↦ (((eval1𝐾)‘(𝐺))‘𝑀)))
168 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑 = 𝑈) → = 𝑈)
169168fveq2d 6821 . . . . . . . . . . . . . . . . . 18 ((𝜑 = 𝑈) → (𝐺) = (𝐺𝑈))
170169fveq2d 6821 . . . . . . . . . . . . . . . . 17 ((𝜑 = 𝑈) → ((eval1𝐾)‘(𝐺)) = ((eval1𝐾)‘(𝐺𝑈)))
171170fveq1d 6819 . . . . . . . . . . . . . . . 16 ((𝜑 = 𝑈) → (((eval1𝐾)‘(𝐺))‘𝑀) = (((eval1𝐾)‘(𝐺𝑈))‘𝑀))
172 fvexd 6832 . . . . . . . . . . . . . . . 16 (𝜑 → (((eval1𝐾)‘(𝐺𝑈))‘𝑀) ∈ V)
173167, 171, 80, 172fvmptd 6931 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐻𝑆)‘𝑈) = (((eval1𝐾)‘(𝐺𝑈))‘𝑀))
174173eqcomd 2737 . . . . . . . . . . . . . 14 (𝜑 → (((eval1𝐾)‘(𝐺𝑈))‘𝑀) = ((𝐻𝑆)‘𝑈))
175 aks6d1c6lem2.3 . . . . . . . . . . . . . 14 (𝜑 → ((𝐻𝑆)‘𝑈) = ((𝐻𝑆)‘𝑉))
176 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑 = 𝑉) → = 𝑉)
177176fveq2d 6821 . . . . . . . . . . . . . . . . 17 ((𝜑 = 𝑉) → (𝐺) = (𝐺𝑉))
178177fveq2d 6821 . . . . . . . . . . . . . . . 16 ((𝜑 = 𝑉) → ((eval1𝐾)‘(𝐺)) = ((eval1𝐾)‘(𝐺𝑉)))
179178fveq1d 6819 . . . . . . . . . . . . . . 15 ((𝜑 = 𝑉) → (((eval1𝐾)‘(𝐺))‘𝑀) = (((eval1𝐾)‘(𝐺𝑉))‘𝑀))
180 fvexd 6832 . . . . . . . . . . . . . . 15 (𝜑 → (((eval1𝐾)‘(𝐺𝑉))‘𝑀) ∈ V)
181167, 179, 91, 180fvmptd 6931 . . . . . . . . . . . . . 14 (𝜑 → ((𝐻𝑆)‘𝑉) = (((eval1𝐾)‘(𝐺𝑉))‘𝑀))
182174, 175, 1813eqtrd 2770 . . . . . . . . . . . . 13 (𝜑 → (((eval1𝐾)‘(𝐺𝑈))‘𝑀) = (((eval1𝐾)‘(𝐺𝑉))‘𝑀))
183182adantr 480 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((eval1𝐾)‘(𝐺𝑈))‘𝑀) = (((eval1𝐾)‘(𝐺𝑉))‘𝑀))
184183oveq2d 7357 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑈))‘𝑀)) = ((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑉))‘𝑀)))
185158, 184eqtrd 2766 . . . . . . . . . 10 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = ((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑉))‘𝑀)))
186 fveq2 6817 . . . . . . . . . . . . 13 (𝑦 = 𝑀 → (((eval1𝐾)‘(𝐺𝑉))‘𝑦) = (((eval1𝐾)‘(𝐺𝑉))‘𝑀))
187186oveq2d 7357 . . . . . . . . . . . 12 (𝑦 = 𝑀 → ((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑉))‘𝑦)) = ((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑉))‘𝑀)))
188107fveq2d 6821 . . . . . . . . . . . 12 (𝑦 = 𝑀 → (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑦)) = (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)))
189187, 188eqeq12d 2747 . . . . . . . . . . 11 (𝑦 = 𝑀 → (((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑉))‘𝑦)) = (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑦)) ↔ ((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑉))‘𝑀)) = (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))))
19012, 138elmapd 8759 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑉 ∈ (ℕ0m (0...𝐴)) ↔ 𝑉:(0...𝐴)⟶ℕ0))
19196, 190mpbid 232 . . . . . . . . . . . . . . 15 (𝜑𝑉:(0...𝐴)⟶ℕ0)
192191adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝑉:(0...𝐴)⟶ℕ0)
193130, 73, 131, 132, 133, 134, 135, 137, 192, 78, 142, 144, 146, 147, 149, 151aks6d1c1rh 42158 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝑃↑(1st𝑤)) · ((𝑁 / 𝑃)↑(2nd𝑤))) (𝐺𝑉))
194129, 193eqbrtrd 5108 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (𝐸𝑤) (𝐺𝑉))
195130, 98, 60aks6d1c1p1 42140 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑤) (𝐺𝑉) ↔ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑉))‘𝑦)) = (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑦))))
196194, 195mpbid 232 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑉))‘𝑦)) = (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑦)))
197189, 196, 156rspcdva 3573 . . . . . . . . . 10 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑉))‘𝑀)) = (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)))
198185, 197eqtrd 2766 . . . . . . . . 9 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)))
19946crnggrpd 20160 . . . . . . . . . . 11 (𝜑𝐾 ∈ Grp)
200199adantr 480 . . . . . . . . . 10 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝐾 ∈ Grp)
20141, 42, 43, 44, 47, 72, 88fveval1fvcl 22243 . . . . . . . . . 10 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) ∈ (Base‘𝐾))
20241, 42, 43, 44, 47, 72, 98fveval1fvcl 22243 . . . . . . . . . 10 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) ∈ (Base‘𝐾))
203 eqid 2731 . . . . . . . . . . 11 (0g𝐾) = (0g𝐾)
20443, 203, 102grpsubeq0 18934 . . . . . . . . . 10 ((𝐾 ∈ Grp ∧ (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) ∈ (Base‘𝐾) ∧ (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) ∈ (Base‘𝐾)) → (((((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))(-g𝐾)(((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))) = (0g𝐾) ↔ (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))))
205200, 201, 202, 204syl3anc 1373 . . . . . . . . 9 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))(-g𝐾)(((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))) = (0g𝐾) ↔ (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))))
206198, 205mpbird 257 . . . . . . . 8 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))(-g𝐾)(((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))) = (0g𝐾))
207104, 206eqtrd 2766 . . . . . . 7 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = (0g𝐾))
208 fvexd 6832 . . . . . . . 8 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) ∈ V)
209 elsng 4585 . . . . . . . 8 ((((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) ∈ V → ((((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) ∈ {(0g𝐾)} ↔ (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = (0g𝐾)))
210208, 209syl 17 . . . . . . 7 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) ∈ {(0g𝐾)} ↔ (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = (0g𝐾)))
211207, 210mpbird 257 . . . . . 6 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) ∈ {(0g𝐾)})
212 eqid 2731 . . . . . . . . . . . . . . 15 (𝐾s (Base‘𝐾)) = (𝐾s (Base‘𝐾))
21341, 42, 212, 43evl1rhm 22242 . . . . . . . . . . . . . 14 (𝐾 ∈ CRing → (eval1𝐾) ∈ ((Poly1𝐾) RingHom (𝐾s (Base‘𝐾))))
21446, 213syl 17 . . . . . . . . . . . . 13 (𝜑 → (eval1𝐾) ∈ ((Poly1𝐾) RingHom (𝐾s (Base‘𝐾))))
215 eqid 2731 . . . . . . . . . . . . . 14 (Base‘(𝐾s (Base‘𝐾))) = (Base‘(𝐾s (Base‘𝐾)))
21644, 215rhmf 20397 . . . . . . . . . . . . 13 ((eval1𝐾) ∈ ((Poly1𝐾) RingHom (𝐾s (Base‘𝐾))) → (eval1𝐾):(Base‘(Poly1𝐾))⟶(Base‘(𝐾s (Base‘𝐾))))
217214, 216syl 17 . . . . . . . . . . . 12 (𝜑 → (eval1𝐾):(Base‘(Poly1𝐾))⟶(Base‘(𝐾s (Base‘𝐾))))
218 fvexd 6832 . . . . . . . . . . . . . 14 (𝜑 → (Base‘𝐾) ∈ V)
219212, 43pwsbas 17386 . . . . . . . . . . . . . 14 ((𝐾 ∈ Field ∧ (Base‘𝐾) ∈ V) → ((Base‘𝐾) ↑m (Base‘𝐾)) = (Base‘(𝐾s (Base‘𝐾))))
22045, 218, 219syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ((Base‘𝐾) ↑m (Base‘𝐾)) = (Base‘(𝐾s (Base‘𝐾))))
221220feq3d 6631 . . . . . . . . . . . 12 (𝜑 → ((eval1𝐾):(Base‘(Poly1𝐾))⟶((Base‘𝐾) ↑m (Base‘𝐾)) ↔ (eval1𝐾):(Base‘(Poly1𝐾))⟶(Base‘(𝐾s (Base‘𝐾)))))
222217, 221mpbird 257 . . . . . . . . . . 11 (𝜑 → (eval1𝐾):(Base‘(Poly1𝐾))⟶((Base‘𝐾) ↑m (Base‘𝐾)))
22342ply1ring 22155 . . . . . . . . . . . . . 14 (𝐾 ∈ Ring → (Poly1𝐾) ∈ Ring)
22451, 223syl 17 . . . . . . . . . . . . 13 (𝜑 → (Poly1𝐾) ∈ Ring)
225 ringgrp 20151 . . . . . . . . . . . . 13 ((Poly1𝐾) ∈ Ring → (Poly1𝐾) ∈ Grp)
226224, 225syl 17 . . . . . . . . . . . 12 (𝜑 → (Poly1𝐾) ∈ Grp)
22744, 101grpsubcl 18928 . . . . . . . . . . . 12 (((Poly1𝐾) ∈ Grp ∧ (𝐺𝑈) ∈ (Base‘(Poly1𝐾)) ∧ (𝐺𝑉) ∈ (Base‘(Poly1𝐾))) → ((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)) ∈ (Base‘(Poly1𝐾)))
228226, 87, 97, 227syl3anc 1373 . . . . . . . . . . 11 (𝜑 → ((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)) ∈ (Base‘(Poly1𝐾)))
229222, 228ffvelcdmd 7013 . . . . . . . . . 10 (𝜑 → ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) ∈ ((Base‘𝐾) ↑m (Base‘𝐾)))
230218, 218elmapd 8759 . . . . . . . . . 10 (𝜑 → (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) ∈ ((Base‘𝐾) ↑m (Base‘𝐾)) ↔ ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))):(Base‘𝐾)⟶(Base‘𝐾)))
231229, 230mpbid 232 . . . . . . . . 9 (𝜑 → ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))):(Base‘𝐾)⟶(Base‘𝐾))
232231ffund 6650 . . . . . . . 8 (𝜑 → Fun ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))))
233232adantr 480 . . . . . . 7 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → Fun ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))))
234231ffnd 6647 . . . . . . . . . . 11 (𝜑 → ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) Fn (Base‘𝐾))
235234adantr 480 . . . . . . . . . 10 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) Fn (Base‘𝐾))
236235fndmd 6581 . . . . . . . . 9 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → dom ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) = (Base‘𝐾))
237236eqcomd 2737 . . . . . . . 8 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (Base‘𝐾) = dom ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))))
23872, 237eleqtrd 2833 . . . . . . 7 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀) ∈ dom ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))))
239 fvimacnv 6981 . . . . . . 7 ((Fun ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) ∧ ((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀) ∈ dom ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)))) → ((((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) ∈ {(0g𝐾)} ↔ ((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀) ∈ (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)})))
240233, 238, 239syl2anc 584 . . . . . 6 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) ∈ {(0g𝐾)} ↔ ((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀) ∈ (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)})))
241211, 240mpbid 232 . . . . 5 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀) ∈ (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)}))
24240, 241eqeltrd 2831 . . . 4 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (𝐽𝑤) ∈ (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)}))
24329, 33, 242funimassd 6883 . . 3 (𝜑 → (𝐽 “ (ℕ0 × ℕ0)) ⊆ (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)}))
244 hashss 14311 . . 3 (((((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)}) ∈ V ∧ (𝐽 “ (ℕ0 × ℕ0)) ⊆ (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)})) → (♯‘(𝐽 “ (ℕ0 × ℕ0))) ≤ (♯‘(((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)})))
24528, 243, 244syl2anc 584 . 2 (𝜑 → (♯‘(𝐽 “ (ℕ0 × ℕ0))) ≤ (♯‘(((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)})))
2468, 18, 24, 27, 245xrletrd 13056 1 (𝜑𝐷 ≤ (♯‘(((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  {crab 3395  Vcvv 3436  wss 3897  {csn 4571  cop 4577   class class class wbr 5086  {copab 5148  cmpt 5167   × cxp 5609  ccnv 5610  dom cdm 5611  cres 5613  cima 5614  Fun wfun 6470   Fn wfn 6471  wf 6472  cfv 6476  (class class class)co 7341  cmpo 7343  1st c1st 7914  2nd c2nd 7915  m cmap 8745  0cc0 11001  1c1 11002   · cmul 11006  *cxr 11140   < clt 11141  cle 11142  cmin 11339   / cdiv 11769  cn 12120  0cn0 12376  ...cfz 13402  cexp 13963  chash 14232  Σcsu 15588  cdvds 16158   gcd cgcd 16400  cprime 16577  Basecbs 17115  +gcplusg 17156  0gc0g 17338   Σg cgsu 17339  s cpws 17345  Mndcmnd 18637  Grpcgrp 18841  -gcsg 18843  .gcmg 18975  CMndccmn 19687  mulGrpcmgp 20053  Ringcrg 20146  CRingccrg 20147   RingHom crh 20382   RingIso crs 20383  Fieldcfield 20640  ℤRHomczrh 21431  chrcchr 21433  ℤ/nczn 21434  algSccascl 21784  var1cv1 22083  Poly1cpl1 22084  eval1ce1 22224   PrimRoots cprimroots 42124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079  ax-addf 11080  ax-mulf 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-ofr 7606  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-sup 9321  df-inf 9322  df-oi 9391  df-dju 9789  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-xnn0 12450  df-z 12464  df-dec 12584  df-uz 12728  df-rp 12886  df-fz 13403  df-fzo 13550  df-fl 13691  df-mod 13769  df-seq 13904  df-exp 13964  df-fac 14176  df-bc 14205  df-hash 14233  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-dvds 16159  df-gcd 16401  df-prm 16578  df-phi 16672  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-starv 17171  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-unif 17179  df-hom 17180  df-cco 17181  df-0g 17340  df-gsum 17341  df-prds 17346  df-pws 17348  df-mre 17483  df-mrc 17484  df-acs 17486  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-ghm 19120  df-cntz 19224  df-od 19435  df-cmn 19689  df-abl 19690  df-mgp 20054  df-rng 20066  df-ur 20095  df-srg 20100  df-ring 20148  df-cring 20149  df-oppr 20250  df-dvdsr 20270  df-unit 20271  df-invr 20301  df-dvr 20314  df-rhm 20385  df-rim 20386  df-subrng 20456  df-subrg 20480  df-drng 20641  df-field 20642  df-lmod 20790  df-lss 20860  df-lsp 20900  df-cnfld 21287  df-zring 21379  df-zrh 21435  df-chr 21437  df-assa 21785  df-asp 21786  df-ascl 21787  df-psr 21841  df-mvr 21842  df-mpl 21843  df-opsr 21845  df-evls 22004  df-evl 22005  df-psr1 22087  df-vr1 22088  df-ply1 22089  df-coe1 22090  df-evl1 22226  df-primroots 42125
This theorem is referenced by:  aks6d1c6lem3  42205
  Copyright terms: Public domain W3C validator