Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c6lem2 Structured version   Visualization version   GIF version

Theorem aks6d1c6lem2 42128
Description: Every primitive root is root of G(u)-G(v). (Contributed by metakunt, 8-May-2025.)
Hypotheses
Ref Expression
aks6d1c6.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
aks6d1c6.2 𝑃 = (chr‘𝐾)
aks6d1c6.3 (𝜑𝐾 ∈ Field)
aks6d1c6.4 (𝜑𝑃 ∈ ℙ)
aks6d1c6.5 (𝜑𝑅 ∈ ℕ)
aks6d1c6.6 (𝜑𝑁 ∈ ℕ)
aks6d1c6.7 (𝜑𝑃𝑁)
aks6d1c6.8 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c6.9 (𝜑𝐴 < 𝑃)
aks6d1c6.10 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
aks6d1c6.11 (𝜑𝐴 ∈ ℕ0)
aks6d1c6.12 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
aks6d1c6.13 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
aks6d1c6.14 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
aks6d1c6.15 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
aks6d1c6.16 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
aks6d1c6.17 𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀))
aks6d1c6.18 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
aks6d1c6.19 𝑆 = {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)}
aks6d1c6lem2.1 (𝜑𝑈𝑆)
aks6d1c6lem2.2 (𝜑𝑉𝑆)
aks6d1c6lem2.3 (𝜑 → ((𝐻𝑆)‘𝑈) = ((𝐻𝑆)‘𝑉))
aks6d1c6lem2.4 (𝜑𝑈𝑉)
aks6d1c6lem2.5 𝐽 = (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀))
aks6d1c6lem2.6 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≤ (♯‘(𝐽 “ (ℕ0 × ℕ0))))
Assertion
Ref Expression
aks6d1c6lem2 (𝜑𝐷 ≤ (♯‘(((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)})))
Distinct variable groups:   ,𝑎   𝐴,𝑎   𝐴,𝑔,𝑖   𝐴,   𝐴,𝑠   𝑥,𝐴   𝑒,𝐸,𝑓,𝑦   𝑗,𝐸   𝑒,𝐺,𝑓,𝑦   ,𝐺   𝐾,𝑎   𝑒,𝐾,𝑓,𝑦   𝑔,𝐾,𝑖   ,𝐾   𝑗,𝐾   𝑥,𝐾   ,𝑀   𝑗,𝑀   𝑦,𝑀   𝑁,𝑎   𝑒,𝑁,𝑓   𝑘,𝑁,𝑙,𝑠   𝑥,𝑁   𝑃,𝑒,𝑓   𝑃,𝑘,𝑙,𝑠   𝑥,𝑃   𝑅,𝑒,𝑓,𝑦   𝑥,𝑅   𝑆,   𝑈,𝑒,𝑓,𝑦   𝑈,𝑔,𝑖   𝑈,   𝑒,𝑉,𝑓,𝑦   𝑔,𝑉,𝑖   ,𝑉   𝜑,𝑎   𝜑,𝑔,𝑖   𝜑,   𝜑,𝑗   𝜑,𝑠   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑡,𝑒,𝑓,𝑘,𝑙)   𝐴(𝑦,𝑡,𝑒,𝑓,𝑗,𝑘,𝑙)   𝐷(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑠,𝑎,𝑙)   𝑃(𝑦,𝑡,𝑔,,𝑖,𝑗,𝑎)   (𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑠,𝑙)   𝑅(𝑡,𝑔,,𝑖,𝑗,𝑘,𝑠,𝑎,𝑙)   𝑆(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,𝑖,𝑗,𝑘,𝑠,𝑎,𝑙)   𝑈(𝑥,𝑡,𝑗,𝑘,𝑠,𝑎,𝑙)   𝐸(𝑥,𝑡,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   𝐺(𝑥,𝑡,𝑔,𝑖,𝑗,𝑘,𝑠,𝑎,𝑙)   𝐻(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑠,𝑎,𝑙)   𝐽(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑠,𝑎,𝑙)   𝐾(𝑡,𝑘,𝑠,𝑙)   𝐿(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑠,𝑎,𝑙)   𝑀(𝑥,𝑡,𝑒,𝑓,𝑔,𝑖,𝑘,𝑠,𝑎,𝑙)   𝑁(𝑦,𝑡,𝑔,,𝑖,𝑗)   𝑉(𝑥,𝑡,𝑗,𝑘,𝑠,𝑎,𝑙)

Proof of Theorem aks6d1c6lem2
Dummy variables 𝑤 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aks6d1c6.18 . . 3 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
2 aks6d1c6.13 . . . . . 6 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
3 fvexd 6935 . . . . . 6 (𝜑 → (ℤRHom‘(ℤ/nℤ‘𝑅)) ∈ V)
42, 3eqeltrid 2848 . . . . 5 (𝜑𝐿 ∈ V)
54imaexd 7956 . . . 4 (𝜑 → (𝐿 “ (𝐸 “ (ℕ0 × ℕ0))) ∈ V)
6 hashxrcl 14406 . . . 4 ((𝐿 “ (𝐸 “ (ℕ0 × ℕ0))) ∈ V → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℝ*)
75, 6syl 17 . . 3 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℝ*)
81, 7eqeltrid 2848 . 2 (𝜑𝐷 ∈ ℝ*)
9 aks6d1c6lem2.5 . . . . . 6 𝐽 = (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀))
109a1i 11 . . . . 5 (𝜑𝐽 = (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)))
11 nn0ex 12559 . . . . . . . 8 0 ∈ V
1211a1i 11 . . . . . . 7 (𝜑 → ℕ0 ∈ V)
1312, 12xpexd 7786 . . . . . 6 (𝜑 → (ℕ0 × ℕ0) ∈ V)
1413mptexd 7261 . . . . 5 (𝜑 → (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)) ∈ V)
1510, 14eqeltrd 2844 . . . 4 (𝜑𝐽 ∈ V)
1615imaexd 7956 . . 3 (𝜑 → (𝐽 “ (ℕ0 × ℕ0)) ∈ V)
17 hashxrcl 14406 . . 3 ((𝐽 “ (ℕ0 × ℕ0)) ∈ V → (♯‘(𝐽 “ (ℕ0 × ℕ0))) ∈ ℝ*)
1816, 17syl 17 . 2 (𝜑 → (♯‘(𝐽 “ (ℕ0 × ℕ0))) ∈ ℝ*)
19 fvexd 6935 . . . . 5 (𝜑 → ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) ∈ V)
20 cnvexg 7964 . . . . 5 (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) ∈ V → ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) ∈ V)
2119, 20syl 17 . . . 4 (𝜑((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) ∈ V)
2221imaexd 7956 . . 3 (𝜑 → (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)}) ∈ V)
23 hashxrcl 14406 . . 3 ((((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)}) ∈ V → (♯‘(((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)})) ∈ ℝ*)
2422, 23syl 17 . 2 (𝜑 → (♯‘(((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)})) ∈ ℝ*)
251a1i 11 . . 3 (𝜑𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))
26 aks6d1c6lem2.6 . . 3 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≤ (♯‘(𝐽 “ (ℕ0 × ℕ0))))
2725, 26eqbrtrd 5188 . 2 (𝜑𝐷 ≤ (♯‘(𝐽 “ (ℕ0 × ℕ0))))
2822elexd 3512 . . 3 (𝜑 → (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)}) ∈ V)
29 nfv 1913 . . . 4 𝑤𝜑
30 ovexd 7483 . . . . . 6 ((𝜑𝑗 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀) ∈ V)
3130, 9fmptd 7148 . . . . 5 (𝜑𝐽:(ℕ0 × ℕ0)⟶V)
32 ffun 6750 . . . . 5 (𝐽:(ℕ0 × ℕ0)⟶V → Fun 𝐽)
3331, 32syl 17 . . . 4 (𝜑 → Fun 𝐽)
349a1i 11 . . . . . 6 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝐽 = (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)))
35 simpr 484 . . . . . . . 8 (((𝜑𝑤 ∈ (ℕ0 × ℕ0)) ∧ 𝑗 = 𝑤) → 𝑗 = 𝑤)
3635fveq2d 6924 . . . . . . 7 (((𝜑𝑤 ∈ (ℕ0 × ℕ0)) ∧ 𝑗 = 𝑤) → (𝐸𝑗) = (𝐸𝑤))
3736oveq1d 7463 . . . . . 6 (((𝜑𝑤 ∈ (ℕ0 × ℕ0)) ∧ 𝑗 = 𝑤) → ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀) = ((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))
38 simpr 484 . . . . . 6 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝑤 ∈ (ℕ0 × ℕ0))
39 ovexd 7483 . . . . . 6 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀) ∈ V)
4034, 37, 38, 39fvmptd 7036 . . . . 5 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (𝐽𝑤) = ((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))
41 eqid 2740 . . . . . . . . . 10 (eval1𝐾) = (eval1𝐾)
42 eqid 2740 . . . . . . . . . 10 (Poly1𝐾) = (Poly1𝐾)
43 eqid 2740 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
44 eqid 2740 . . . . . . . . . 10 (Base‘(Poly1𝐾)) = (Base‘(Poly1𝐾))
45 aks6d1c6.3 . . . . . . . . . . . 12 (𝜑𝐾 ∈ Field)
4645fldcrngd 20764 . . . . . . . . . . 11 (𝜑𝐾 ∈ CRing)
4746adantr 480 . . . . . . . . . 10 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝐾 ∈ CRing)
48 eqid 2740 . . . . . . . . . . . 12 (mulGrp‘𝐾) = (mulGrp‘𝐾)
4948, 43mgpbas 20167 . . . . . . . . . . 11 (Base‘𝐾) = (Base‘(mulGrp‘𝐾))
50 eqid 2740 . . . . . . . . . . 11 (.g‘(mulGrp‘𝐾)) = (.g‘(mulGrp‘𝐾))
5146crngringd 20273 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ Ring)
5248ringmgp 20266 . . . . . . . . . . . . 13 (𝐾 ∈ Ring → (mulGrp‘𝐾) ∈ Mnd)
5351, 52syl 17 . . . . . . . . . . . 12 (𝜑 → (mulGrp‘𝐾) ∈ Mnd)
5453adantr 480 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (mulGrp‘𝐾) ∈ Mnd)
55 aks6d1c6.6 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ)
56 aks6d1c6.4 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℙ)
57 aks6d1c6.7 . . . . . . . . . . . . . 14 (𝜑𝑃𝑁)
58 aks6d1c6.12 . . . . . . . . . . . . . 14 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
5955, 56, 57, 58aks6d1c2p1 42075 . . . . . . . . . . . . 13 (𝜑𝐸:(ℕ0 × ℕ0)⟶ℕ)
6059ffvelcdmda 7118 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (𝐸𝑤) ∈ ℕ)
6160nnnn0d 12613 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (𝐸𝑤) ∈ ℕ0)
62 aks6d1c6.16 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
6348crngmgp 20268 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ CRing → (mulGrp‘𝐾) ∈ CMnd)
6446, 63syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (mulGrp‘𝐾) ∈ CMnd)
65 aks6d1c6.5 . . . . . . . . . . . . . . . . 17 (𝜑𝑅 ∈ ℕ)
6665nnnn0d 12613 . . . . . . . . . . . . . . . 16 (𝜑𝑅 ∈ ℕ0)
6764, 66, 50isprimroot 42050 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅) ↔ (𝑀 ∈ (Base‘(mulGrp‘𝐾)) ∧ (𝑅(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) ∧ ∀𝑜 ∈ ℕ0 ((𝑜(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) → 𝑅𝑜))))
6862, 67mpbid 232 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 ∈ (Base‘(mulGrp‘𝐾)) ∧ (𝑅(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) ∧ ∀𝑜 ∈ ℕ0 ((𝑜(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) → 𝑅𝑜)))
6968simp1d 1142 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ (Base‘(mulGrp‘𝐾)))
7069, 49eleqtrrdi 2855 . . . . . . . . . . . 12 (𝜑𝑀 ∈ (Base‘𝐾))
7170adantr 480 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝑀 ∈ (Base‘𝐾))
7249, 50, 54, 61, 71mulgnn0cld 19135 . . . . . . . . . 10 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀) ∈ (Base‘𝐾))
73 aks6d1c6.2 . . . . . . . . . . . . . 14 𝑃 = (chr‘𝐾)
74 aks6d1c6.11 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℕ0)
75 aks6d1c6.9 . . . . . . . . . . . . . 14 (𝜑𝐴 < 𝑃)
76 eqid 2740 . . . . . . . . . . . . . 14 (var1𝐾) = (var1𝐾)
77 eqid 2740 . . . . . . . . . . . . . 14 (.g‘(mulGrp‘(Poly1𝐾))) = (.g‘(mulGrp‘(Poly1𝐾)))
78 aks6d1c6.10 . . . . . . . . . . . . . 14 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
7945, 56, 73, 74, 75, 76, 77, 78aks6d1c5lem0 42092 . . . . . . . . . . . . 13 (𝜑𝐺:(ℕ0m (0...𝐴))⟶(Base‘(Poly1𝐾)))
80 aks6d1c6lem2.1 . . . . . . . . . . . . . . 15 (𝜑𝑈𝑆)
81 aks6d1c6.19 . . . . . . . . . . . . . . . 16 𝑆 = {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)}
8281eleq2i 2836 . . . . . . . . . . . . . . 15 (𝑈𝑆𝑈 ∈ {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)})
8380, 82sylib 218 . . . . . . . . . . . . . 14 (𝜑𝑈 ∈ {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)})
84 elrabi 3703 . . . . . . . . . . . . . . 15 (𝑈 ∈ {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)} → 𝑈 ∈ (ℕ0m (0...𝐴)))
8584a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (𝑈 ∈ {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)} → 𝑈 ∈ (ℕ0m (0...𝐴))))
8683, 85mpd 15 . . . . . . . . . . . . 13 (𝜑𝑈 ∈ (ℕ0m (0...𝐴)))
8779, 86ffvelcdmd 7119 . . . . . . . . . . . 12 (𝜑 → (𝐺𝑈) ∈ (Base‘(Poly1𝐾)))
8887adantr 480 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (𝐺𝑈) ∈ (Base‘(Poly1𝐾)))
89 eqidd 2741 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)))
9088, 89jca 511 . . . . . . . . . 10 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝐺𝑈) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))))
91 aks6d1c6lem2.2 . . . . . . . . . . . . . . 15 (𝜑𝑉𝑆)
9281eleq2i 2836 . . . . . . . . . . . . . . 15 (𝑉𝑆𝑉 ∈ {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)})
9391, 92sylib 218 . . . . . . . . . . . . . 14 (𝜑𝑉 ∈ {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)})
94 elrabi 3703 . . . . . . . . . . . . . . 15 (𝑉 ∈ {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)} → 𝑉 ∈ (ℕ0m (0...𝐴)))
9594a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (𝑉 ∈ {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)} → 𝑉 ∈ (ℕ0m (0...𝐴))))
9693, 95mpd 15 . . . . . . . . . . . . 13 (𝜑𝑉 ∈ (ℕ0m (0...𝐴)))
9779, 96ffvelcdmd 7119 . . . . . . . . . . . 12 (𝜑 → (𝐺𝑉) ∈ (Base‘(Poly1𝐾)))
9897adantr 480 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (𝐺𝑉) ∈ (Base‘(Poly1𝐾)))
99 eqidd 2741 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)))
10098, 99jca 511 . . . . . . . . . 10 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝐺𝑉) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))))
101 eqid 2740 . . . . . . . . . 10 (-g‘(Poly1𝐾)) = (-g‘(Poly1𝐾))
102 eqid 2740 . . . . . . . . . 10 (-g𝐾) = (-g𝐾)
10341, 42, 43, 44, 47, 72, 90, 100, 101, 102evl1subd 22367 . . . . . . . . 9 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = ((((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))(-g𝐾)(((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)))))
104103simprd 495 . . . . . . . 8 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = ((((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))(-g𝐾)(((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))))
105 fveq2 6920 . . . . . . . . . . . . . . 15 (𝑦 = 𝑀 → (((eval1𝐾)‘(𝐺𝑈))‘𝑦) = (((eval1𝐾)‘(𝐺𝑈))‘𝑀))
106105oveq2d 7464 . . . . . . . . . . . . . 14 (𝑦 = 𝑀 → ((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑈))‘𝑦)) = ((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑈))‘𝑀)))
107 oveq2 7456 . . . . . . . . . . . . . . 15 (𝑦 = 𝑀 → ((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑦) = ((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))
108107fveq2d 6924 . . . . . . . . . . . . . 14 (𝑦 = 𝑀 → (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑦)) = (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)))
109106, 108eqeq12d 2756 . . . . . . . . . . . . 13 (𝑦 = 𝑀 → (((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑈))‘𝑦)) = (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑦)) ↔ ((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑈))‘𝑀)) = (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))))
110 vex 3492 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘 ∈ V
111 vex 3492 . . . . . . . . . . . . . . . . . . . . . . 23 𝑙 ∈ V
112110, 111op1std 8040 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = ⟨𝑘, 𝑙⟩ → (1st𝑠) = 𝑘)
113112oveq2d 7464 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = ⟨𝑘, 𝑙⟩ → (𝑃↑(1st𝑠)) = (𝑃𝑘))
114110, 111op2ndd 8041 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = ⟨𝑘, 𝑙⟩ → (2nd𝑠) = 𝑙)
115114oveq2d 7464 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = ⟨𝑘, 𝑙⟩ → ((𝑁 / 𝑃)↑(2nd𝑠)) = ((𝑁 / 𝑃)↑𝑙))
116113, 115oveq12d 7466 . . . . . . . . . . . . . . . . . . . 20 (𝑠 = ⟨𝑘, 𝑙⟩ → ((𝑃↑(1st𝑠)) · ((𝑁 / 𝑃)↑(2nd𝑠))) = ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
117116mpompt 7564 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑠)) · ((𝑁 / 𝑃)↑(2nd𝑠)))) = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
11858eqcomi 2749 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙))) = 𝐸
119117, 118eqtri 2768 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑠)) · ((𝑁 / 𝑃)↑(2nd𝑠)))) = 𝐸
120119eqcomi 2749 . . . . . . . . . . . . . . . . 17 𝐸 = (𝑠 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑠)) · ((𝑁 / 𝑃)↑(2nd𝑠))))
121120a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝐸 = (𝑠 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑠)) · ((𝑁 / 𝑃)↑(2nd𝑠)))))
122 simpr 484 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑤 ∈ (ℕ0 × ℕ0)) ∧ 𝑠 = 𝑤) → 𝑠 = 𝑤)
123122fveq2d 6924 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ (ℕ0 × ℕ0)) ∧ 𝑠 = 𝑤) → (1st𝑠) = (1st𝑤))
124123oveq2d 7464 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ (ℕ0 × ℕ0)) ∧ 𝑠 = 𝑤) → (𝑃↑(1st𝑠)) = (𝑃↑(1st𝑤)))
125122fveq2d 6924 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ (ℕ0 × ℕ0)) ∧ 𝑠 = 𝑤) → (2nd𝑠) = (2nd𝑤))
126125oveq2d 7464 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ (ℕ0 × ℕ0)) ∧ 𝑠 = 𝑤) → ((𝑁 / 𝑃)↑(2nd𝑠)) = ((𝑁 / 𝑃)↑(2nd𝑤)))
127124, 126oveq12d 7466 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ (ℕ0 × ℕ0)) ∧ 𝑠 = 𝑤) → ((𝑃↑(1st𝑠)) · ((𝑁 / 𝑃)↑(2nd𝑠))) = ((𝑃↑(1st𝑤)) · ((𝑁 / 𝑃)↑(2nd𝑤))))
128 ovexd 7483 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝑃↑(1st𝑤)) · ((𝑁 / 𝑃)↑(2nd𝑤))) ∈ V)
129121, 127, 38, 128fvmptd 7036 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (𝐸𝑤) = ((𝑃↑(1st𝑤)) · ((𝑁 / 𝑃)↑(2nd𝑤))))
130 aks6d1c6.1 . . . . . . . . . . . . . . . 16 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
13145adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝐾 ∈ Field)
13256adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝑃 ∈ ℙ)
13365adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝑅 ∈ ℕ)
13455adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝑁 ∈ ℕ)
13557adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝑃𝑁)
136 aks6d1c6.8 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑁 gcd 𝑅) = 1)
137136adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (𝑁 gcd 𝑅) = 1)
138 ovexd 7483 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (0...𝐴) ∈ V)
13912, 138elmapd 8898 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑈 ∈ (ℕ0m (0...𝐴)) ↔ 𝑈:(0...𝐴)⟶ℕ0))
14086, 139mpbid 232 . . . . . . . . . . . . . . . . 17 (𝜑𝑈:(0...𝐴)⟶ℕ0)
141140adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝑈:(0...𝐴)⟶ℕ0)
14274adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝐴 ∈ ℕ0)
143 xp1st 8062 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ (ℕ0 × ℕ0) → (1st𝑤) ∈ ℕ0)
144143adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (1st𝑤) ∈ ℕ0)
145 xp2nd 8063 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ (ℕ0 × ℕ0) → (2nd𝑤) ∈ ℕ0)
146145adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (2nd𝑤) ∈ ℕ0)
147 eqid 2740 . . . . . . . . . . . . . . . 16 ((𝑃↑(1st𝑤)) · ((𝑁 / 𝑃)↑(2nd𝑤))) = ((𝑃↑(1st𝑤)) · ((𝑁 / 𝑃)↑(2nd𝑤)))
148 aks6d1c6.14 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
149148adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
150 aks6d1c6.15 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
151150adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
152130, 73, 131, 132, 133, 134, 135, 137, 141, 78, 142, 144, 146, 147, 149, 151aks6d1c1rh 42082 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝑃↑(1st𝑤)) · ((𝑁 / 𝑃)↑(2nd𝑤))) (𝐺𝑈))
153129, 152eqbrtrd 5188 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (𝐸𝑤) (𝐺𝑈))
154130, 88, 60aks6d1c1p1 42064 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑤) (𝐺𝑈) ↔ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑈))‘𝑦)) = (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑦))))
155153, 154mpbid 232 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑈))‘𝑦)) = (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑦)))
15662adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
157109, 155, 156rspcdva 3636 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑈))‘𝑀)) = (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)))
158157eqcomd 2746 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = ((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑈))‘𝑀)))
159 aks6d1c6.17 . . . . . . . . . . . . . . . . . . 19 𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀))
160159a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀)))
161160reseq1d 6008 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐻𝑆) = (( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀)) ↾ 𝑆))
16281a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑆 = {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)})
163 ssrab2 4103 . . . . . . . . . . . . . . . . . . . 20 {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)} ⊆ (ℕ0m (0...𝐴))
164163a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)} ⊆ (ℕ0m (0...𝐴)))
165162, 164eqsstrd 4047 . . . . . . . . . . . . . . . . . 18 (𝜑𝑆 ⊆ (ℕ0m (0...𝐴)))
166165resmptd 6069 . . . . . . . . . . . . . . . . 17 (𝜑 → (( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀)) ↾ 𝑆) = (𝑆 ↦ (((eval1𝐾)‘(𝐺))‘𝑀)))
167161, 166eqtrd 2780 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐻𝑆) = (𝑆 ↦ (((eval1𝐾)‘(𝐺))‘𝑀)))
168 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑 = 𝑈) → = 𝑈)
169168fveq2d 6924 . . . . . . . . . . . . . . . . . 18 ((𝜑 = 𝑈) → (𝐺) = (𝐺𝑈))
170169fveq2d 6924 . . . . . . . . . . . . . . . . 17 ((𝜑 = 𝑈) → ((eval1𝐾)‘(𝐺)) = ((eval1𝐾)‘(𝐺𝑈)))
171170fveq1d 6922 . . . . . . . . . . . . . . . 16 ((𝜑 = 𝑈) → (((eval1𝐾)‘(𝐺))‘𝑀) = (((eval1𝐾)‘(𝐺𝑈))‘𝑀))
172 fvexd 6935 . . . . . . . . . . . . . . . 16 (𝜑 → (((eval1𝐾)‘(𝐺𝑈))‘𝑀) ∈ V)
173167, 171, 80, 172fvmptd 7036 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐻𝑆)‘𝑈) = (((eval1𝐾)‘(𝐺𝑈))‘𝑀))
174173eqcomd 2746 . . . . . . . . . . . . . 14 (𝜑 → (((eval1𝐾)‘(𝐺𝑈))‘𝑀) = ((𝐻𝑆)‘𝑈))
175 aks6d1c6lem2.3 . . . . . . . . . . . . . 14 (𝜑 → ((𝐻𝑆)‘𝑈) = ((𝐻𝑆)‘𝑉))
176 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑 = 𝑉) → = 𝑉)
177176fveq2d 6924 . . . . . . . . . . . . . . . . 17 ((𝜑 = 𝑉) → (𝐺) = (𝐺𝑉))
178177fveq2d 6924 . . . . . . . . . . . . . . . 16 ((𝜑 = 𝑉) → ((eval1𝐾)‘(𝐺)) = ((eval1𝐾)‘(𝐺𝑉)))
179178fveq1d 6922 . . . . . . . . . . . . . . 15 ((𝜑 = 𝑉) → (((eval1𝐾)‘(𝐺))‘𝑀) = (((eval1𝐾)‘(𝐺𝑉))‘𝑀))
180 fvexd 6935 . . . . . . . . . . . . . . 15 (𝜑 → (((eval1𝐾)‘(𝐺𝑉))‘𝑀) ∈ V)
181167, 179, 91, 180fvmptd 7036 . . . . . . . . . . . . . 14 (𝜑 → ((𝐻𝑆)‘𝑉) = (((eval1𝐾)‘(𝐺𝑉))‘𝑀))
182174, 175, 1813eqtrd 2784 . . . . . . . . . . . . 13 (𝜑 → (((eval1𝐾)‘(𝐺𝑈))‘𝑀) = (((eval1𝐾)‘(𝐺𝑉))‘𝑀))
183182adantr 480 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((eval1𝐾)‘(𝐺𝑈))‘𝑀) = (((eval1𝐾)‘(𝐺𝑉))‘𝑀))
184183oveq2d 7464 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑈))‘𝑀)) = ((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑉))‘𝑀)))
185158, 184eqtrd 2780 . . . . . . . . . 10 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = ((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑉))‘𝑀)))
186 fveq2 6920 . . . . . . . . . . . . 13 (𝑦 = 𝑀 → (((eval1𝐾)‘(𝐺𝑉))‘𝑦) = (((eval1𝐾)‘(𝐺𝑉))‘𝑀))
187186oveq2d 7464 . . . . . . . . . . . 12 (𝑦 = 𝑀 → ((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑉))‘𝑦)) = ((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑉))‘𝑀)))
188107fveq2d 6924 . . . . . . . . . . . 12 (𝑦 = 𝑀 → (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑦)) = (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)))
189187, 188eqeq12d 2756 . . . . . . . . . . 11 (𝑦 = 𝑀 → (((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑉))‘𝑦)) = (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑦)) ↔ ((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑉))‘𝑀)) = (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))))
19012, 138elmapd 8898 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑉 ∈ (ℕ0m (0...𝐴)) ↔ 𝑉:(0...𝐴)⟶ℕ0))
19196, 190mpbid 232 . . . . . . . . . . . . . . 15 (𝜑𝑉:(0...𝐴)⟶ℕ0)
192191adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝑉:(0...𝐴)⟶ℕ0)
193130, 73, 131, 132, 133, 134, 135, 137, 192, 78, 142, 144, 146, 147, 149, 151aks6d1c1rh 42082 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝑃↑(1st𝑤)) · ((𝑁 / 𝑃)↑(2nd𝑤))) (𝐺𝑉))
194129, 193eqbrtrd 5188 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (𝐸𝑤) (𝐺𝑉))
195130, 98, 60aks6d1c1p1 42064 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑤) (𝐺𝑉) ↔ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑉))‘𝑦)) = (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑦))))
196194, 195mpbid 232 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑉))‘𝑦)) = (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑦)))
197189, 196, 156rspcdva 3636 . . . . . . . . . 10 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑉))‘𝑀)) = (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)))
198185, 197eqtrd 2780 . . . . . . . . 9 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)))
19946crnggrpd 20274 . . . . . . . . . . 11 (𝜑𝐾 ∈ Grp)
200199adantr 480 . . . . . . . . . 10 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝐾 ∈ Grp)
20141, 42, 43, 44, 47, 72, 88fveval1fvcl 22358 . . . . . . . . . 10 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) ∈ (Base‘𝐾))
20241, 42, 43, 44, 47, 72, 98fveval1fvcl 22358 . . . . . . . . . 10 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) ∈ (Base‘𝐾))
203 eqid 2740 . . . . . . . . . . 11 (0g𝐾) = (0g𝐾)
20443, 203, 102grpsubeq0 19066 . . . . . . . . . 10 ((𝐾 ∈ Grp ∧ (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) ∈ (Base‘𝐾) ∧ (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) ∈ (Base‘𝐾)) → (((((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))(-g𝐾)(((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))) = (0g𝐾) ↔ (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))))
205200, 201, 202, 204syl3anc 1371 . . . . . . . . 9 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))(-g𝐾)(((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))) = (0g𝐾) ↔ (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))))
206198, 205mpbird 257 . . . . . . . 8 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))(-g𝐾)(((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))) = (0g𝐾))
207104, 206eqtrd 2780 . . . . . . 7 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = (0g𝐾))
208 fvexd 6935 . . . . . . . 8 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) ∈ V)
209 elsng 4662 . . . . . . . 8 ((((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) ∈ V → ((((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) ∈ {(0g𝐾)} ↔ (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = (0g𝐾)))
210208, 209syl 17 . . . . . . 7 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) ∈ {(0g𝐾)} ↔ (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = (0g𝐾)))
211207, 210mpbird 257 . . . . . 6 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) ∈ {(0g𝐾)})
212 eqid 2740 . . . . . . . . . . . . . . 15 (𝐾s (Base‘𝐾)) = (𝐾s (Base‘𝐾))
21341, 42, 212, 43evl1rhm 22357 . . . . . . . . . . . . . 14 (𝐾 ∈ CRing → (eval1𝐾) ∈ ((Poly1𝐾) RingHom (𝐾s (Base‘𝐾))))
21446, 213syl 17 . . . . . . . . . . . . 13 (𝜑 → (eval1𝐾) ∈ ((Poly1𝐾) RingHom (𝐾s (Base‘𝐾))))
215 eqid 2740 . . . . . . . . . . . . . 14 (Base‘(𝐾s (Base‘𝐾))) = (Base‘(𝐾s (Base‘𝐾)))
21644, 215rhmf 20511 . . . . . . . . . . . . 13 ((eval1𝐾) ∈ ((Poly1𝐾) RingHom (𝐾s (Base‘𝐾))) → (eval1𝐾):(Base‘(Poly1𝐾))⟶(Base‘(𝐾s (Base‘𝐾))))
217214, 216syl 17 . . . . . . . . . . . 12 (𝜑 → (eval1𝐾):(Base‘(Poly1𝐾))⟶(Base‘(𝐾s (Base‘𝐾))))
218 fvexd 6935 . . . . . . . . . . . . . 14 (𝜑 → (Base‘𝐾) ∈ V)
219212, 43pwsbas 17547 . . . . . . . . . . . . . 14 ((𝐾 ∈ Field ∧ (Base‘𝐾) ∈ V) → ((Base‘𝐾) ↑m (Base‘𝐾)) = (Base‘(𝐾s (Base‘𝐾))))
22045, 218, 219syl2anc 583 . . . . . . . . . . . . 13 (𝜑 → ((Base‘𝐾) ↑m (Base‘𝐾)) = (Base‘(𝐾s (Base‘𝐾))))
221220feq3d 6734 . . . . . . . . . . . 12 (𝜑 → ((eval1𝐾):(Base‘(Poly1𝐾))⟶((Base‘𝐾) ↑m (Base‘𝐾)) ↔ (eval1𝐾):(Base‘(Poly1𝐾))⟶(Base‘(𝐾s (Base‘𝐾)))))
222217, 221mpbird 257 . . . . . . . . . . 11 (𝜑 → (eval1𝐾):(Base‘(Poly1𝐾))⟶((Base‘𝐾) ↑m (Base‘𝐾)))
22342ply1ring 22270 . . . . . . . . . . . . . 14 (𝐾 ∈ Ring → (Poly1𝐾) ∈ Ring)
22451, 223syl 17 . . . . . . . . . . . . 13 (𝜑 → (Poly1𝐾) ∈ Ring)
225 ringgrp 20265 . . . . . . . . . . . . 13 ((Poly1𝐾) ∈ Ring → (Poly1𝐾) ∈ Grp)
226224, 225syl 17 . . . . . . . . . . . 12 (𝜑 → (Poly1𝐾) ∈ Grp)
22744, 101grpsubcl 19060 . . . . . . . . . . . 12 (((Poly1𝐾) ∈ Grp ∧ (𝐺𝑈) ∈ (Base‘(Poly1𝐾)) ∧ (𝐺𝑉) ∈ (Base‘(Poly1𝐾))) → ((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)) ∈ (Base‘(Poly1𝐾)))
228226, 87, 97, 227syl3anc 1371 . . . . . . . . . . 11 (𝜑 → ((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)) ∈ (Base‘(Poly1𝐾)))
229222, 228ffvelcdmd 7119 . . . . . . . . . 10 (𝜑 → ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) ∈ ((Base‘𝐾) ↑m (Base‘𝐾)))
230218, 218elmapd 8898 . . . . . . . . . 10 (𝜑 → (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) ∈ ((Base‘𝐾) ↑m (Base‘𝐾)) ↔ ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))):(Base‘𝐾)⟶(Base‘𝐾)))
231229, 230mpbid 232 . . . . . . . . 9 (𝜑 → ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))):(Base‘𝐾)⟶(Base‘𝐾))
232231ffund 6751 . . . . . . . 8 (𝜑 → Fun ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))))
233232adantr 480 . . . . . . 7 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → Fun ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))))
234231ffnd 6748 . . . . . . . . . . 11 (𝜑 → ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) Fn (Base‘𝐾))
235234adantr 480 . . . . . . . . . 10 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) Fn (Base‘𝐾))
236235fndmd 6684 . . . . . . . . 9 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → dom ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) = (Base‘𝐾))
237236eqcomd 2746 . . . . . . . 8 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (Base‘𝐾) = dom ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))))
23872, 237eleqtrd 2846 . . . . . . 7 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀) ∈ dom ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))))
239 fvimacnv 7086 . . . . . . 7 ((Fun ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) ∧ ((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀) ∈ dom ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)))) → ((((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) ∈ {(0g𝐾)} ↔ ((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀) ∈ (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)})))
240233, 238, 239syl2anc 583 . . . . . 6 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) ∈ {(0g𝐾)} ↔ ((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀) ∈ (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)})))
241211, 240mpbid 232 . . . . 5 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀) ∈ (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)}))
24240, 241eqeltrd 2844 . . . 4 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (𝐽𝑤) ∈ (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)}))
24329, 33, 242funimassd 6988 . . 3 (𝜑 → (𝐽 “ (ℕ0 × ℕ0)) ⊆ (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)}))
244 hashss 14458 . . 3 (((((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)}) ∈ V ∧ (𝐽 “ (ℕ0 × ℕ0)) ⊆ (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)})) → (♯‘(𝐽 “ (ℕ0 × ℕ0))) ≤ (♯‘(((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)})))
24528, 243, 244syl2anc 583 . 2 (𝜑 → (♯‘(𝐽 “ (ℕ0 × ℕ0))) ≤ (♯‘(((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)})))
2468, 18, 24, 27, 245xrletrd 13224 1 (𝜑𝐷 ≤ (♯‘(((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  {crab 3443  Vcvv 3488  wss 3976  {csn 4648  cop 4654   class class class wbr 5166  {copab 5228  cmpt 5249   × cxp 5698  ccnv 5699  dom cdm 5700  cres 5702  cima 5703  Fun wfun 6567   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  cmpo 7450  1st c1st 8028  2nd c2nd 8029  m cmap 8884  0cc0 11184  1c1 11185   · cmul 11189  *cxr 11323   < clt 11324  cle 11325  cmin 11520   / cdiv 11947  cn 12293  0cn0 12553  ...cfz 13567  cexp 14112  chash 14379  Σcsu 15734  cdvds 16302   gcd cgcd 16540  cprime 16718  Basecbs 17258  +gcplusg 17311  0gc0g 17499   Σg cgsu 17500  s cpws 17506  Mndcmnd 18772  Grpcgrp 18973  -gcsg 18975  .gcmg 19107  CMndccmn 19822  mulGrpcmgp 20161  Ringcrg 20260  CRingccrg 20261   RingHom crh 20495   RingIso crs 20496  Fieldcfield 20752  ℤRHomczrh 21533  chrcchr 21535  ℤ/nczn 21536  algSccascl 21895  var1cv1 22198  Poly1cpl1 22199  eval1ce1 22339   PrimRoots cprimroots 42048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-gcd 16541  df-prm 16719  df-phi 16813  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cntz 19357  df-od 19570  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-srg 20214  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-rhm 20498  df-rim 20499  df-subrng 20572  df-subrg 20597  df-drng 20753  df-field 20754  df-lmod 20882  df-lss 20953  df-lsp 20993  df-cnfld 21388  df-zring 21481  df-zrh 21537  df-chr 21539  df-assa 21896  df-asp 21897  df-ascl 21898  df-psr 21952  df-mvr 21953  df-mpl 21954  df-opsr 21956  df-evls 22121  df-evl 22122  df-psr1 22202  df-vr1 22203  df-ply1 22204  df-coe1 22205  df-evl1 22341  df-primroots 42049
This theorem is referenced by:  aks6d1c6lem3  42129
  Copyright terms: Public domain W3C validator