Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c6lem2 Structured version   Visualization version   GIF version

Theorem aks6d1c6lem2 42132
Description: Every primitive root is root of G(u)-G(v). (Contributed by metakunt, 8-May-2025.)
Hypotheses
Ref Expression
aks6d1c6.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
aks6d1c6.2 𝑃 = (chr‘𝐾)
aks6d1c6.3 (𝜑𝐾 ∈ Field)
aks6d1c6.4 (𝜑𝑃 ∈ ℙ)
aks6d1c6.5 (𝜑𝑅 ∈ ℕ)
aks6d1c6.6 (𝜑𝑁 ∈ ℕ)
aks6d1c6.7 (𝜑𝑃𝑁)
aks6d1c6.8 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c6.9 (𝜑𝐴 < 𝑃)
aks6d1c6.10 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
aks6d1c6.11 (𝜑𝐴 ∈ ℕ0)
aks6d1c6.12 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
aks6d1c6.13 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
aks6d1c6.14 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
aks6d1c6.15 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
aks6d1c6.16 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
aks6d1c6.17 𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀))
aks6d1c6.18 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
aks6d1c6.19 𝑆 = {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)}
aks6d1c6lem2.1 (𝜑𝑈𝑆)
aks6d1c6lem2.2 (𝜑𝑉𝑆)
aks6d1c6lem2.3 (𝜑 → ((𝐻𝑆)‘𝑈) = ((𝐻𝑆)‘𝑉))
aks6d1c6lem2.4 (𝜑𝑈𝑉)
aks6d1c6lem2.5 𝐽 = (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀))
aks6d1c6lem2.6 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≤ (♯‘(𝐽 “ (ℕ0 × ℕ0))))
Assertion
Ref Expression
aks6d1c6lem2 (𝜑𝐷 ≤ (♯‘(((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)})))
Distinct variable groups:   ,𝑎   𝐴,𝑎   𝐴,𝑔,𝑖   𝐴,   𝐴,𝑠   𝑥,𝐴   𝑒,𝐸,𝑓,𝑦   𝑗,𝐸   𝑒,𝐺,𝑓,𝑦   ,𝐺   𝐾,𝑎   𝑒,𝐾,𝑓,𝑦   𝑔,𝐾,𝑖   ,𝐾   𝑗,𝐾   𝑥,𝐾   ,𝑀   𝑗,𝑀   𝑦,𝑀   𝑁,𝑎   𝑒,𝑁,𝑓   𝑘,𝑁,𝑙,𝑠   𝑥,𝑁   𝑃,𝑒,𝑓   𝑃,𝑘,𝑙,𝑠   𝑥,𝑃   𝑅,𝑒,𝑓,𝑦   𝑥,𝑅   𝑆,   𝑈,𝑒,𝑓,𝑦   𝑈,𝑔,𝑖   𝑈,   𝑒,𝑉,𝑓,𝑦   𝑔,𝑉,𝑖   ,𝑉   𝜑,𝑎   𝜑,𝑔,𝑖   𝜑,   𝜑,𝑗   𝜑,𝑠   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑡,𝑒,𝑓,𝑘,𝑙)   𝐴(𝑦,𝑡,𝑒,𝑓,𝑗,𝑘,𝑙)   𝐷(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑠,𝑎,𝑙)   𝑃(𝑦,𝑡,𝑔,,𝑖,𝑗,𝑎)   (𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑠,𝑙)   𝑅(𝑡,𝑔,,𝑖,𝑗,𝑘,𝑠,𝑎,𝑙)   𝑆(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,𝑖,𝑗,𝑘,𝑠,𝑎,𝑙)   𝑈(𝑥,𝑡,𝑗,𝑘,𝑠,𝑎,𝑙)   𝐸(𝑥,𝑡,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   𝐺(𝑥,𝑡,𝑔,𝑖,𝑗,𝑘,𝑠,𝑎,𝑙)   𝐻(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑠,𝑎,𝑙)   𝐽(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑠,𝑎,𝑙)   𝐾(𝑡,𝑘,𝑠,𝑙)   𝐿(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑠,𝑎,𝑙)   𝑀(𝑥,𝑡,𝑒,𝑓,𝑔,𝑖,𝑘,𝑠,𝑎,𝑙)   𝑁(𝑦,𝑡,𝑔,,𝑖,𝑗)   𝑉(𝑥,𝑡,𝑗,𝑘,𝑠,𝑎,𝑙)

Proof of Theorem aks6d1c6lem2
Dummy variables 𝑤 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aks6d1c6.18 . . 3 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
2 aks6d1c6.13 . . . . . 6 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
3 fvexd 6855 . . . . . 6 (𝜑 → (ℤRHom‘(ℤ/nℤ‘𝑅)) ∈ V)
42, 3eqeltrid 2832 . . . . 5 (𝜑𝐿 ∈ V)
54imaexd 7872 . . . 4 (𝜑 → (𝐿 “ (𝐸 “ (ℕ0 × ℕ0))) ∈ V)
6 hashxrcl 14298 . . . 4 ((𝐿 “ (𝐸 “ (ℕ0 × ℕ0))) ∈ V → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℝ*)
75, 6syl 17 . . 3 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℝ*)
81, 7eqeltrid 2832 . 2 (𝜑𝐷 ∈ ℝ*)
9 aks6d1c6lem2.5 . . . . . 6 𝐽 = (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀))
109a1i 11 . . . . 5 (𝜑𝐽 = (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)))
11 nn0ex 12424 . . . . . . . 8 0 ∈ V
1211a1i 11 . . . . . . 7 (𝜑 → ℕ0 ∈ V)
1312, 12xpexd 7707 . . . . . 6 (𝜑 → (ℕ0 × ℕ0) ∈ V)
1413mptexd 7180 . . . . 5 (𝜑 → (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)) ∈ V)
1510, 14eqeltrd 2828 . . . 4 (𝜑𝐽 ∈ V)
1615imaexd 7872 . . 3 (𝜑 → (𝐽 “ (ℕ0 × ℕ0)) ∈ V)
17 hashxrcl 14298 . . 3 ((𝐽 “ (ℕ0 × ℕ0)) ∈ V → (♯‘(𝐽 “ (ℕ0 × ℕ0))) ∈ ℝ*)
1816, 17syl 17 . 2 (𝜑 → (♯‘(𝐽 “ (ℕ0 × ℕ0))) ∈ ℝ*)
19 fvexd 6855 . . . . 5 (𝜑 → ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) ∈ V)
20 cnvexg 7880 . . . . 5 (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) ∈ V → ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) ∈ V)
2119, 20syl 17 . . . 4 (𝜑((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) ∈ V)
2221imaexd 7872 . . 3 (𝜑 → (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)}) ∈ V)
23 hashxrcl 14298 . . 3 ((((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)}) ∈ V → (♯‘(((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)})) ∈ ℝ*)
2422, 23syl 17 . 2 (𝜑 → (♯‘(((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)})) ∈ ℝ*)
251a1i 11 . . 3 (𝜑𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))
26 aks6d1c6lem2.6 . . 3 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≤ (♯‘(𝐽 “ (ℕ0 × ℕ0))))
2725, 26eqbrtrd 5124 . 2 (𝜑𝐷 ≤ (♯‘(𝐽 “ (ℕ0 × ℕ0))))
2822elexd 3468 . . 3 (𝜑 → (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)}) ∈ V)
29 nfv 1914 . . . 4 𝑤𝜑
30 ovexd 7404 . . . . . 6 ((𝜑𝑗 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀) ∈ V)
3130, 9fmptd 7068 . . . . 5 (𝜑𝐽:(ℕ0 × ℕ0)⟶V)
32 ffun 6673 . . . . 5 (𝐽:(ℕ0 × ℕ0)⟶V → Fun 𝐽)
3331, 32syl 17 . . . 4 (𝜑 → Fun 𝐽)
349a1i 11 . . . . . 6 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝐽 = (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)))
35 simpr 484 . . . . . . . 8 (((𝜑𝑤 ∈ (ℕ0 × ℕ0)) ∧ 𝑗 = 𝑤) → 𝑗 = 𝑤)
3635fveq2d 6844 . . . . . . 7 (((𝜑𝑤 ∈ (ℕ0 × ℕ0)) ∧ 𝑗 = 𝑤) → (𝐸𝑗) = (𝐸𝑤))
3736oveq1d 7384 . . . . . 6 (((𝜑𝑤 ∈ (ℕ0 × ℕ0)) ∧ 𝑗 = 𝑤) → ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀) = ((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))
38 simpr 484 . . . . . 6 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝑤 ∈ (ℕ0 × ℕ0))
39 ovexd 7404 . . . . . 6 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀) ∈ V)
4034, 37, 38, 39fvmptd 6957 . . . . 5 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (𝐽𝑤) = ((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))
41 eqid 2729 . . . . . . . . . 10 (eval1𝐾) = (eval1𝐾)
42 eqid 2729 . . . . . . . . . 10 (Poly1𝐾) = (Poly1𝐾)
43 eqid 2729 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
44 eqid 2729 . . . . . . . . . 10 (Base‘(Poly1𝐾)) = (Base‘(Poly1𝐾))
45 aks6d1c6.3 . . . . . . . . . . . 12 (𝜑𝐾 ∈ Field)
4645fldcrngd 20627 . . . . . . . . . . 11 (𝜑𝐾 ∈ CRing)
4746adantr 480 . . . . . . . . . 10 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝐾 ∈ CRing)
48 eqid 2729 . . . . . . . . . . . 12 (mulGrp‘𝐾) = (mulGrp‘𝐾)
4948, 43mgpbas 20030 . . . . . . . . . . 11 (Base‘𝐾) = (Base‘(mulGrp‘𝐾))
50 eqid 2729 . . . . . . . . . . 11 (.g‘(mulGrp‘𝐾)) = (.g‘(mulGrp‘𝐾))
5146crngringd 20131 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ Ring)
5248ringmgp 20124 . . . . . . . . . . . . 13 (𝐾 ∈ Ring → (mulGrp‘𝐾) ∈ Mnd)
5351, 52syl 17 . . . . . . . . . . . 12 (𝜑 → (mulGrp‘𝐾) ∈ Mnd)
5453adantr 480 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (mulGrp‘𝐾) ∈ Mnd)
55 aks6d1c6.6 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ)
56 aks6d1c6.4 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℙ)
57 aks6d1c6.7 . . . . . . . . . . . . . 14 (𝜑𝑃𝑁)
58 aks6d1c6.12 . . . . . . . . . . . . . 14 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
5955, 56, 57, 58aks6d1c2p1 42079 . . . . . . . . . . . . 13 (𝜑𝐸:(ℕ0 × ℕ0)⟶ℕ)
6059ffvelcdmda 7038 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (𝐸𝑤) ∈ ℕ)
6160nnnn0d 12479 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (𝐸𝑤) ∈ ℕ0)
62 aks6d1c6.16 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
6348crngmgp 20126 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ CRing → (mulGrp‘𝐾) ∈ CMnd)
6446, 63syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (mulGrp‘𝐾) ∈ CMnd)
65 aks6d1c6.5 . . . . . . . . . . . . . . . . 17 (𝜑𝑅 ∈ ℕ)
6665nnnn0d 12479 . . . . . . . . . . . . . . . 16 (𝜑𝑅 ∈ ℕ0)
6764, 66, 50isprimroot 42054 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅) ↔ (𝑀 ∈ (Base‘(mulGrp‘𝐾)) ∧ (𝑅(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) ∧ ∀𝑜 ∈ ℕ0 ((𝑜(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) → 𝑅𝑜))))
6862, 67mpbid 232 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 ∈ (Base‘(mulGrp‘𝐾)) ∧ (𝑅(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) ∧ ∀𝑜 ∈ ℕ0 ((𝑜(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) → 𝑅𝑜)))
6968simp1d 1142 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ (Base‘(mulGrp‘𝐾)))
7069, 49eleqtrrdi 2839 . . . . . . . . . . . 12 (𝜑𝑀 ∈ (Base‘𝐾))
7170adantr 480 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝑀 ∈ (Base‘𝐾))
7249, 50, 54, 61, 71mulgnn0cld 19003 . . . . . . . . . 10 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀) ∈ (Base‘𝐾))
73 aks6d1c6.2 . . . . . . . . . . . . . 14 𝑃 = (chr‘𝐾)
74 aks6d1c6.11 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℕ0)
75 aks6d1c6.9 . . . . . . . . . . . . . 14 (𝜑𝐴 < 𝑃)
76 eqid 2729 . . . . . . . . . . . . . 14 (var1𝐾) = (var1𝐾)
77 eqid 2729 . . . . . . . . . . . . . 14 (.g‘(mulGrp‘(Poly1𝐾))) = (.g‘(mulGrp‘(Poly1𝐾)))
78 aks6d1c6.10 . . . . . . . . . . . . . 14 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
7945, 56, 73, 74, 75, 76, 77, 78aks6d1c5lem0 42096 . . . . . . . . . . . . 13 (𝜑𝐺:(ℕ0m (0...𝐴))⟶(Base‘(Poly1𝐾)))
80 aks6d1c6lem2.1 . . . . . . . . . . . . . . 15 (𝜑𝑈𝑆)
81 aks6d1c6.19 . . . . . . . . . . . . . . . 16 𝑆 = {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)}
8281eleq2i 2820 . . . . . . . . . . . . . . 15 (𝑈𝑆𝑈 ∈ {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)})
8380, 82sylib 218 . . . . . . . . . . . . . 14 (𝜑𝑈 ∈ {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)})
84 elrabi 3651 . . . . . . . . . . . . . . 15 (𝑈 ∈ {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)} → 𝑈 ∈ (ℕ0m (0...𝐴)))
8584a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (𝑈 ∈ {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)} → 𝑈 ∈ (ℕ0m (0...𝐴))))
8683, 85mpd 15 . . . . . . . . . . . . 13 (𝜑𝑈 ∈ (ℕ0m (0...𝐴)))
8779, 86ffvelcdmd 7039 . . . . . . . . . . . 12 (𝜑 → (𝐺𝑈) ∈ (Base‘(Poly1𝐾)))
8887adantr 480 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (𝐺𝑈) ∈ (Base‘(Poly1𝐾)))
89 eqidd 2730 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)))
9088, 89jca 511 . . . . . . . . . 10 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝐺𝑈) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))))
91 aks6d1c6lem2.2 . . . . . . . . . . . . . . 15 (𝜑𝑉𝑆)
9281eleq2i 2820 . . . . . . . . . . . . . . 15 (𝑉𝑆𝑉 ∈ {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)})
9391, 92sylib 218 . . . . . . . . . . . . . 14 (𝜑𝑉 ∈ {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)})
94 elrabi 3651 . . . . . . . . . . . . . . 15 (𝑉 ∈ {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)} → 𝑉 ∈ (ℕ0m (0...𝐴)))
9594a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (𝑉 ∈ {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)} → 𝑉 ∈ (ℕ0m (0...𝐴))))
9693, 95mpd 15 . . . . . . . . . . . . 13 (𝜑𝑉 ∈ (ℕ0m (0...𝐴)))
9779, 96ffvelcdmd 7039 . . . . . . . . . . . 12 (𝜑 → (𝐺𝑉) ∈ (Base‘(Poly1𝐾)))
9897adantr 480 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (𝐺𝑉) ∈ (Base‘(Poly1𝐾)))
99 eqidd 2730 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)))
10098, 99jca 511 . . . . . . . . . 10 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝐺𝑉) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))))
101 eqid 2729 . . . . . . . . . 10 (-g‘(Poly1𝐾)) = (-g‘(Poly1𝐾))
102 eqid 2729 . . . . . . . . . 10 (-g𝐾) = (-g𝐾)
10341, 42, 43, 44, 47, 72, 90, 100, 101, 102evl1subd 22205 . . . . . . . . 9 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = ((((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))(-g𝐾)(((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)))))
104103simprd 495 . . . . . . . 8 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = ((((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))(-g𝐾)(((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))))
105 fveq2 6840 . . . . . . . . . . . . . . 15 (𝑦 = 𝑀 → (((eval1𝐾)‘(𝐺𝑈))‘𝑦) = (((eval1𝐾)‘(𝐺𝑈))‘𝑀))
106105oveq2d 7385 . . . . . . . . . . . . . 14 (𝑦 = 𝑀 → ((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑈))‘𝑦)) = ((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑈))‘𝑀)))
107 oveq2 7377 . . . . . . . . . . . . . . 15 (𝑦 = 𝑀 → ((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑦) = ((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))
108107fveq2d 6844 . . . . . . . . . . . . . 14 (𝑦 = 𝑀 → (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑦)) = (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)))
109106, 108eqeq12d 2745 . . . . . . . . . . . . 13 (𝑦 = 𝑀 → (((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑈))‘𝑦)) = (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑦)) ↔ ((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑈))‘𝑀)) = (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))))
110 vex 3448 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘 ∈ V
111 vex 3448 . . . . . . . . . . . . . . . . . . . . . . 23 𝑙 ∈ V
112110, 111op1std 7957 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = ⟨𝑘, 𝑙⟩ → (1st𝑠) = 𝑘)
113112oveq2d 7385 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = ⟨𝑘, 𝑙⟩ → (𝑃↑(1st𝑠)) = (𝑃𝑘))
114110, 111op2ndd 7958 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = ⟨𝑘, 𝑙⟩ → (2nd𝑠) = 𝑙)
115114oveq2d 7385 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = ⟨𝑘, 𝑙⟩ → ((𝑁 / 𝑃)↑(2nd𝑠)) = ((𝑁 / 𝑃)↑𝑙))
116113, 115oveq12d 7387 . . . . . . . . . . . . . . . . . . . 20 (𝑠 = ⟨𝑘, 𝑙⟩ → ((𝑃↑(1st𝑠)) · ((𝑁 / 𝑃)↑(2nd𝑠))) = ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
117116mpompt 7483 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑠)) · ((𝑁 / 𝑃)↑(2nd𝑠)))) = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
11858eqcomi 2738 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙))) = 𝐸
119117, 118eqtri 2752 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑠)) · ((𝑁 / 𝑃)↑(2nd𝑠)))) = 𝐸
120119eqcomi 2738 . . . . . . . . . . . . . . . . 17 𝐸 = (𝑠 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑠)) · ((𝑁 / 𝑃)↑(2nd𝑠))))
121120a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝐸 = (𝑠 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑠)) · ((𝑁 / 𝑃)↑(2nd𝑠)))))
122 simpr 484 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑤 ∈ (ℕ0 × ℕ0)) ∧ 𝑠 = 𝑤) → 𝑠 = 𝑤)
123122fveq2d 6844 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ (ℕ0 × ℕ0)) ∧ 𝑠 = 𝑤) → (1st𝑠) = (1st𝑤))
124123oveq2d 7385 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ (ℕ0 × ℕ0)) ∧ 𝑠 = 𝑤) → (𝑃↑(1st𝑠)) = (𝑃↑(1st𝑤)))
125122fveq2d 6844 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ (ℕ0 × ℕ0)) ∧ 𝑠 = 𝑤) → (2nd𝑠) = (2nd𝑤))
126125oveq2d 7385 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ (ℕ0 × ℕ0)) ∧ 𝑠 = 𝑤) → ((𝑁 / 𝑃)↑(2nd𝑠)) = ((𝑁 / 𝑃)↑(2nd𝑤)))
127124, 126oveq12d 7387 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ (ℕ0 × ℕ0)) ∧ 𝑠 = 𝑤) → ((𝑃↑(1st𝑠)) · ((𝑁 / 𝑃)↑(2nd𝑠))) = ((𝑃↑(1st𝑤)) · ((𝑁 / 𝑃)↑(2nd𝑤))))
128 ovexd 7404 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝑃↑(1st𝑤)) · ((𝑁 / 𝑃)↑(2nd𝑤))) ∈ V)
129121, 127, 38, 128fvmptd 6957 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (𝐸𝑤) = ((𝑃↑(1st𝑤)) · ((𝑁 / 𝑃)↑(2nd𝑤))))
130 aks6d1c6.1 . . . . . . . . . . . . . . . 16 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
13145adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝐾 ∈ Field)
13256adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝑃 ∈ ℙ)
13365adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝑅 ∈ ℕ)
13455adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝑁 ∈ ℕ)
13557adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝑃𝑁)
136 aks6d1c6.8 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑁 gcd 𝑅) = 1)
137136adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (𝑁 gcd 𝑅) = 1)
138 ovexd 7404 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (0...𝐴) ∈ V)
13912, 138elmapd 8790 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑈 ∈ (ℕ0m (0...𝐴)) ↔ 𝑈:(0...𝐴)⟶ℕ0))
14086, 139mpbid 232 . . . . . . . . . . . . . . . . 17 (𝜑𝑈:(0...𝐴)⟶ℕ0)
141140adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝑈:(0...𝐴)⟶ℕ0)
14274adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝐴 ∈ ℕ0)
143 xp1st 7979 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ (ℕ0 × ℕ0) → (1st𝑤) ∈ ℕ0)
144143adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (1st𝑤) ∈ ℕ0)
145 xp2nd 7980 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ (ℕ0 × ℕ0) → (2nd𝑤) ∈ ℕ0)
146145adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (2nd𝑤) ∈ ℕ0)
147 eqid 2729 . . . . . . . . . . . . . . . 16 ((𝑃↑(1st𝑤)) · ((𝑁 / 𝑃)↑(2nd𝑤))) = ((𝑃↑(1st𝑤)) · ((𝑁 / 𝑃)↑(2nd𝑤)))
148 aks6d1c6.14 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
149148adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
150 aks6d1c6.15 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
151150adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
152130, 73, 131, 132, 133, 134, 135, 137, 141, 78, 142, 144, 146, 147, 149, 151aks6d1c1rh 42086 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝑃↑(1st𝑤)) · ((𝑁 / 𝑃)↑(2nd𝑤))) (𝐺𝑈))
153129, 152eqbrtrd 5124 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (𝐸𝑤) (𝐺𝑈))
154130, 88, 60aks6d1c1p1 42068 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑤) (𝐺𝑈) ↔ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑈))‘𝑦)) = (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑦))))
155153, 154mpbid 232 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑈))‘𝑦)) = (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑦)))
15662adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
157109, 155, 156rspcdva 3586 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑈))‘𝑀)) = (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)))
158157eqcomd 2735 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = ((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑈))‘𝑀)))
159 aks6d1c6.17 . . . . . . . . . . . . . . . . . . 19 𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀))
160159a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀)))
161160reseq1d 5938 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐻𝑆) = (( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀)) ↾ 𝑆))
16281a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑆 = {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)})
163 ssrab2 4039 . . . . . . . . . . . . . . . . . . . 20 {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)} ⊆ (ℕ0m (0...𝐴))
164163a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)} ⊆ (ℕ0m (0...𝐴)))
165162, 164eqsstrd 3978 . . . . . . . . . . . . . . . . . 18 (𝜑𝑆 ⊆ (ℕ0m (0...𝐴)))
166165resmptd 6000 . . . . . . . . . . . . . . . . 17 (𝜑 → (( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀)) ↾ 𝑆) = (𝑆 ↦ (((eval1𝐾)‘(𝐺))‘𝑀)))
167161, 166eqtrd 2764 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐻𝑆) = (𝑆 ↦ (((eval1𝐾)‘(𝐺))‘𝑀)))
168 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑 = 𝑈) → = 𝑈)
169168fveq2d 6844 . . . . . . . . . . . . . . . . . 18 ((𝜑 = 𝑈) → (𝐺) = (𝐺𝑈))
170169fveq2d 6844 . . . . . . . . . . . . . . . . 17 ((𝜑 = 𝑈) → ((eval1𝐾)‘(𝐺)) = ((eval1𝐾)‘(𝐺𝑈)))
171170fveq1d 6842 . . . . . . . . . . . . . . . 16 ((𝜑 = 𝑈) → (((eval1𝐾)‘(𝐺))‘𝑀) = (((eval1𝐾)‘(𝐺𝑈))‘𝑀))
172 fvexd 6855 . . . . . . . . . . . . . . . 16 (𝜑 → (((eval1𝐾)‘(𝐺𝑈))‘𝑀) ∈ V)
173167, 171, 80, 172fvmptd 6957 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐻𝑆)‘𝑈) = (((eval1𝐾)‘(𝐺𝑈))‘𝑀))
174173eqcomd 2735 . . . . . . . . . . . . . 14 (𝜑 → (((eval1𝐾)‘(𝐺𝑈))‘𝑀) = ((𝐻𝑆)‘𝑈))
175 aks6d1c6lem2.3 . . . . . . . . . . . . . 14 (𝜑 → ((𝐻𝑆)‘𝑈) = ((𝐻𝑆)‘𝑉))
176 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑 = 𝑉) → = 𝑉)
177176fveq2d 6844 . . . . . . . . . . . . . . . . 17 ((𝜑 = 𝑉) → (𝐺) = (𝐺𝑉))
178177fveq2d 6844 . . . . . . . . . . . . . . . 16 ((𝜑 = 𝑉) → ((eval1𝐾)‘(𝐺)) = ((eval1𝐾)‘(𝐺𝑉)))
179178fveq1d 6842 . . . . . . . . . . . . . . 15 ((𝜑 = 𝑉) → (((eval1𝐾)‘(𝐺))‘𝑀) = (((eval1𝐾)‘(𝐺𝑉))‘𝑀))
180 fvexd 6855 . . . . . . . . . . . . . . 15 (𝜑 → (((eval1𝐾)‘(𝐺𝑉))‘𝑀) ∈ V)
181167, 179, 91, 180fvmptd 6957 . . . . . . . . . . . . . 14 (𝜑 → ((𝐻𝑆)‘𝑉) = (((eval1𝐾)‘(𝐺𝑉))‘𝑀))
182174, 175, 1813eqtrd 2768 . . . . . . . . . . . . 13 (𝜑 → (((eval1𝐾)‘(𝐺𝑈))‘𝑀) = (((eval1𝐾)‘(𝐺𝑉))‘𝑀))
183182adantr 480 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((eval1𝐾)‘(𝐺𝑈))‘𝑀) = (((eval1𝐾)‘(𝐺𝑉))‘𝑀))
184183oveq2d 7385 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑈))‘𝑀)) = ((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑉))‘𝑀)))
185158, 184eqtrd 2764 . . . . . . . . . 10 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = ((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑉))‘𝑀)))
186 fveq2 6840 . . . . . . . . . . . . 13 (𝑦 = 𝑀 → (((eval1𝐾)‘(𝐺𝑉))‘𝑦) = (((eval1𝐾)‘(𝐺𝑉))‘𝑀))
187186oveq2d 7385 . . . . . . . . . . . 12 (𝑦 = 𝑀 → ((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑉))‘𝑦)) = ((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑉))‘𝑀)))
188107fveq2d 6844 . . . . . . . . . . . 12 (𝑦 = 𝑀 → (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑦)) = (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)))
189187, 188eqeq12d 2745 . . . . . . . . . . 11 (𝑦 = 𝑀 → (((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑉))‘𝑦)) = (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑦)) ↔ ((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑉))‘𝑀)) = (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))))
19012, 138elmapd 8790 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑉 ∈ (ℕ0m (0...𝐴)) ↔ 𝑉:(0...𝐴)⟶ℕ0))
19196, 190mpbid 232 . . . . . . . . . . . . . . 15 (𝜑𝑉:(0...𝐴)⟶ℕ0)
192191adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝑉:(0...𝐴)⟶ℕ0)
193130, 73, 131, 132, 133, 134, 135, 137, 192, 78, 142, 144, 146, 147, 149, 151aks6d1c1rh 42086 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝑃↑(1st𝑤)) · ((𝑁 / 𝑃)↑(2nd𝑤))) (𝐺𝑉))
194129, 193eqbrtrd 5124 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (𝐸𝑤) (𝐺𝑉))
195130, 98, 60aks6d1c1p1 42068 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑤) (𝐺𝑉) ↔ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑉))‘𝑦)) = (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑦))))
196194, 195mpbid 232 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑉))‘𝑦)) = (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑦)))
197189, 196, 156rspcdva 3586 . . . . . . . . . 10 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑤)(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑉))‘𝑀)) = (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)))
198185, 197eqtrd 2764 . . . . . . . . 9 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)))
19946crnggrpd 20132 . . . . . . . . . . 11 (𝜑𝐾 ∈ Grp)
200199adantr 480 . . . . . . . . . 10 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → 𝐾 ∈ Grp)
20141, 42, 43, 44, 47, 72, 88fveval1fvcl 22196 . . . . . . . . . 10 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) ∈ (Base‘𝐾))
20241, 42, 43, 44, 47, 72, 98fveval1fvcl 22196 . . . . . . . . . 10 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) ∈ (Base‘𝐾))
203 eqid 2729 . . . . . . . . . . 11 (0g𝐾) = (0g𝐾)
20443, 203, 102grpsubeq0 18934 . . . . . . . . . 10 ((𝐾 ∈ Grp ∧ (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) ∈ (Base‘𝐾) ∧ (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) ∈ (Base‘𝐾)) → (((((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))(-g𝐾)(((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))) = (0g𝐾) ↔ (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))))
205200, 201, 202, 204syl3anc 1373 . . . . . . . . 9 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))(-g𝐾)(((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))) = (0g𝐾) ↔ (((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = (((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))))
206198, 205mpbird 257 . . . . . . . 8 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((((eval1𝐾)‘(𝐺𝑈))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))(-g𝐾)(((eval1𝐾)‘(𝐺𝑉))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀))) = (0g𝐾))
207104, 206eqtrd 2764 . . . . . . 7 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = (0g𝐾))
208 fvexd 6855 . . . . . . . 8 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) ∈ V)
209 elsng 4599 . . . . . . . 8 ((((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) ∈ V → ((((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) ∈ {(0g𝐾)} ↔ (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = (0g𝐾)))
210208, 209syl 17 . . . . . . 7 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) ∈ {(0g𝐾)} ↔ (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) = (0g𝐾)))
211207, 210mpbird 257 . . . . . 6 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) ∈ {(0g𝐾)})
212 eqid 2729 . . . . . . . . . . . . . . 15 (𝐾s (Base‘𝐾)) = (𝐾s (Base‘𝐾))
21341, 42, 212, 43evl1rhm 22195 . . . . . . . . . . . . . 14 (𝐾 ∈ CRing → (eval1𝐾) ∈ ((Poly1𝐾) RingHom (𝐾s (Base‘𝐾))))
21446, 213syl 17 . . . . . . . . . . . . 13 (𝜑 → (eval1𝐾) ∈ ((Poly1𝐾) RingHom (𝐾s (Base‘𝐾))))
215 eqid 2729 . . . . . . . . . . . . . 14 (Base‘(𝐾s (Base‘𝐾))) = (Base‘(𝐾s (Base‘𝐾)))
21644, 215rhmf 20370 . . . . . . . . . . . . 13 ((eval1𝐾) ∈ ((Poly1𝐾) RingHom (𝐾s (Base‘𝐾))) → (eval1𝐾):(Base‘(Poly1𝐾))⟶(Base‘(𝐾s (Base‘𝐾))))
217214, 216syl 17 . . . . . . . . . . . 12 (𝜑 → (eval1𝐾):(Base‘(Poly1𝐾))⟶(Base‘(𝐾s (Base‘𝐾))))
218 fvexd 6855 . . . . . . . . . . . . . 14 (𝜑 → (Base‘𝐾) ∈ V)
219212, 43pwsbas 17426 . . . . . . . . . . . . . 14 ((𝐾 ∈ Field ∧ (Base‘𝐾) ∈ V) → ((Base‘𝐾) ↑m (Base‘𝐾)) = (Base‘(𝐾s (Base‘𝐾))))
22045, 218, 219syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ((Base‘𝐾) ↑m (Base‘𝐾)) = (Base‘(𝐾s (Base‘𝐾))))
221220feq3d 6655 . . . . . . . . . . . 12 (𝜑 → ((eval1𝐾):(Base‘(Poly1𝐾))⟶((Base‘𝐾) ↑m (Base‘𝐾)) ↔ (eval1𝐾):(Base‘(Poly1𝐾))⟶(Base‘(𝐾s (Base‘𝐾)))))
222217, 221mpbird 257 . . . . . . . . . . 11 (𝜑 → (eval1𝐾):(Base‘(Poly1𝐾))⟶((Base‘𝐾) ↑m (Base‘𝐾)))
22342ply1ring 22108 . . . . . . . . . . . . . 14 (𝐾 ∈ Ring → (Poly1𝐾) ∈ Ring)
22451, 223syl 17 . . . . . . . . . . . . 13 (𝜑 → (Poly1𝐾) ∈ Ring)
225 ringgrp 20123 . . . . . . . . . . . . 13 ((Poly1𝐾) ∈ Ring → (Poly1𝐾) ∈ Grp)
226224, 225syl 17 . . . . . . . . . . . 12 (𝜑 → (Poly1𝐾) ∈ Grp)
22744, 101grpsubcl 18928 . . . . . . . . . . . 12 (((Poly1𝐾) ∈ Grp ∧ (𝐺𝑈) ∈ (Base‘(Poly1𝐾)) ∧ (𝐺𝑉) ∈ (Base‘(Poly1𝐾))) → ((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)) ∈ (Base‘(Poly1𝐾)))
228226, 87, 97, 227syl3anc 1373 . . . . . . . . . . 11 (𝜑 → ((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)) ∈ (Base‘(Poly1𝐾)))
229222, 228ffvelcdmd 7039 . . . . . . . . . 10 (𝜑 → ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) ∈ ((Base‘𝐾) ↑m (Base‘𝐾)))
230218, 218elmapd 8790 . . . . . . . . . 10 (𝜑 → (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) ∈ ((Base‘𝐾) ↑m (Base‘𝐾)) ↔ ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))):(Base‘𝐾)⟶(Base‘𝐾)))
231229, 230mpbid 232 . . . . . . . . 9 (𝜑 → ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))):(Base‘𝐾)⟶(Base‘𝐾))
232231ffund 6674 . . . . . . . 8 (𝜑 → Fun ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))))
233232adantr 480 . . . . . . 7 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → Fun ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))))
234231ffnd 6671 . . . . . . . . . . 11 (𝜑 → ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) Fn (Base‘𝐾))
235234adantr 480 . . . . . . . . . 10 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) Fn (Base‘𝐾))
236235fndmd 6605 . . . . . . . . 9 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → dom ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) = (Base‘𝐾))
237236eqcomd 2735 . . . . . . . 8 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (Base‘𝐾) = dom ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))))
23872, 237eleqtrd 2830 . . . . . . 7 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀) ∈ dom ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))))
239 fvimacnv 7007 . . . . . . 7 ((Fun ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) ∧ ((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀) ∈ dom ((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)))) → ((((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) ∈ {(0g𝐾)} ↔ ((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀) ∈ (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)})))
240233, 238, 239syl2anc 584 . . . . . 6 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉)))‘((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀)) ∈ {(0g𝐾)} ↔ ((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀) ∈ (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)})))
241211, 240mpbid 232 . . . . 5 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑤)(.g‘(mulGrp‘𝐾))𝑀) ∈ (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)}))
24240, 241eqeltrd 2828 . . . 4 ((𝜑𝑤 ∈ (ℕ0 × ℕ0)) → (𝐽𝑤) ∈ (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)}))
24329, 33, 242funimassd 6909 . . 3 (𝜑 → (𝐽 “ (ℕ0 × ℕ0)) ⊆ (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)}))
244 hashss 14350 . . 3 (((((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)}) ∈ V ∧ (𝐽 “ (ℕ0 × ℕ0)) ⊆ (((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)})) → (♯‘(𝐽 “ (ℕ0 × ℕ0))) ≤ (♯‘(((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)})))
24528, 243, 244syl2anc 584 . 2 (𝜑 → (♯‘(𝐽 “ (ℕ0 × ℕ0))) ≤ (♯‘(((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)})))
2468, 18, 24, 27, 245xrletrd 13098 1 (𝜑𝐷 ≤ (♯‘(((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  {crab 3402  Vcvv 3444  wss 3911  {csn 4585  cop 4591   class class class wbr 5102  {copab 5164  cmpt 5183   × cxp 5629  ccnv 5630  dom cdm 5631  cres 5633  cima 5634  Fun wfun 6493   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  cmpo 7371  1st c1st 7945  2nd c2nd 7946  m cmap 8776  0cc0 11044  1c1 11045   · cmul 11049  *cxr 11183   < clt 11184  cle 11185  cmin 11381   / cdiv 11811  cn 12162  0cn0 12418  ...cfz 13444  cexp 14002  chash 14271  Σcsu 15628  cdvds 16198   gcd cgcd 16440  cprime 16617  Basecbs 17155  +gcplusg 17196  0gc0g 17378   Σg cgsu 17379  s cpws 17385  Mndcmnd 18637  Grpcgrp 18841  -gcsg 18843  .gcmg 18975  CMndccmn 19686  mulGrpcmgp 20025  Ringcrg 20118  CRingccrg 20119   RingHom crh 20354   RingIso crs 20355  Fieldcfield 20615  ℤRHomczrh 21385  chrcchr 21387  ℤ/nczn 21388  algSccascl 21737  var1cv1 22036  Poly1cpl1 22037  eval1ce1 22177   PrimRoots cprimroots 42052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-dvds 16199  df-gcd 16441  df-prm 16618  df-phi 16712  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-ghm 19121  df-cntz 19225  df-od 19434  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-srg 20072  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-dvr 20286  df-rhm 20357  df-rim 20358  df-subrng 20431  df-subrg 20455  df-drng 20616  df-field 20617  df-lmod 20744  df-lss 20814  df-lsp 20854  df-cnfld 21241  df-zring 21333  df-zrh 21389  df-chr 21391  df-assa 21738  df-asp 21739  df-ascl 21740  df-psr 21794  df-mvr 21795  df-mpl 21796  df-opsr 21798  df-evls 21957  df-evl 21958  df-psr1 22040  df-vr1 22041  df-ply1 22042  df-coe1 22043  df-evl1 22179  df-primroots 42053
This theorem is referenced by:  aks6d1c6lem3  42133
  Copyright terms: Public domain W3C validator