Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks5lem5a Structured version   Visualization version   GIF version

Theorem aks5lem5a 42294
Description: Lemma for AKS, section 5, connect to Theorem 6.1. (Contributed by metakunt, 17-Jun-2025.)
Hypotheses
Ref Expression
aks5lema.1 (𝜑𝐾 ∈ Field)
aks5lema.2 𝑃 = (chr‘𝐾)
aks5lema.3 (𝜑 → (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ∧ 𝑃𝑁))
aks5lema.9 𝐵 = (𝑆 /s (𝑆 ~QG 𝐿))
aks5lema.10 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(-g𝑆)(1r𝑆))})
aks5lema.11 (𝜑𝑅 ∈ ℕ)
aks5lema.14 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
aks5lema.15 𝑆 = (Poly1‘(ℤ/nℤ‘𝑁))
aks5lem5a.13 (𝜑 → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿))
Assertion
Ref Expression
aks5lem5a (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
Distinct variable groups:   𝑦,𝐴   𝐵,𝑒   𝑒,𝐾,𝑓,𝑦   𝑦,𝐿   𝑒,𝑁,𝑓,𝑦   𝑅,𝑒,𝑓   𝑦,𝑆   𝑒,𝑎,𝑓,𝑦   𝜑,𝑎,𝑦
Allowed substitution hints:   𝜑(𝑒,𝑓)   𝐴(𝑒,𝑓,𝑎)   𝐵(𝑦,𝑓,𝑎)   𝑃(𝑦,𝑒,𝑓,𝑎)   (𝑦,𝑒,𝑓,𝑎)   𝑅(𝑦,𝑎)   𝑆(𝑒,𝑓,𝑎)   𝐾(𝑎)   𝐿(𝑒,𝑓,𝑎)   𝑁(𝑎)

Proof of Theorem aks5lem5a
StepHypRef Expression
1 aks5lem5a.13 . 2 (𝜑 → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿))
2 aks5lema.1 . . . . . . . 8 (𝜑𝐾 ∈ Field)
32ad3antrrr 730 . . . . . . 7 ((((𝜑𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) ∧ 𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) → 𝐾 ∈ Field)
4 aks5lema.2 . . . . . . 7 𝑃 = (chr‘𝐾)
5 aks5lema.3 . . . . . . . 8 (𝜑 → (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ∧ 𝑃𝑁))
65ad3antrrr 730 . . . . . . 7 ((((𝜑𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) ∧ 𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) → (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ∧ 𝑃𝑁))
7 aks5lema.9 . . . . . . 7 𝐵 = (𝑆 /s (𝑆 ~QG 𝐿))
8 aks5lema.10 . . . . . . 7 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(-g𝑆)(1r𝑆))})
9 aks5lema.11 . . . . . . . 8 (𝜑𝑅 ∈ ℕ)
109ad3antrrr 730 . . . . . . 7 ((((𝜑𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) ∧ 𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) → 𝑅 ∈ ℕ)
11 aks5lema.14 . . . . . . 7 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
12 aks5lema.15 . . . . . . 7 𝑆 = (Poly1‘(ℤ/nℤ‘𝑁))
13 simpr 484 . . . . . . 7 ((((𝜑𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) ∧ 𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) → 𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
14 elfzelz 13424 . . . . . . . . . 10 (𝑎 ∈ (1...𝐴) → 𝑎 ∈ ℤ)
1514adantl 481 . . . . . . . . 9 ((𝜑𝑎 ∈ (1...𝐴)) → 𝑎 ∈ ℤ)
1615adantr 480 . . . . . . . 8 (((𝜑𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → 𝑎 ∈ ℤ)
1716adantr 480 . . . . . . 7 ((((𝜑𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) ∧ 𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) → 𝑎 ∈ ℤ)
18 eqid 2731 . . . . . . . . . . . . . 14 (algSc‘𝑆) = (algSc‘𝑆)
19 eqid 2731 . . . . . . . . . . . . . 14 (ℤRHom‘𝑆) = (ℤRHom‘𝑆)
20 eqid 2731 . . . . . . . . . . . . . 14 (ℤRHom‘(ℤ/nℤ‘𝑁)) = (ℤRHom‘(ℤ/nℤ‘𝑁))
215simp2d 1143 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℕ)
2221adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑎 ∈ (1...𝐴)) → 𝑁 ∈ ℕ)
2322nnnn0d 12442 . . . . . . . . . . . . . . 15 ((𝜑𝑎 ∈ (1...𝐴)) → 𝑁 ∈ ℕ0)
24 eqid 2731 . . . . . . . . . . . . . . . 16 (ℤ/nℤ‘𝑁) = (ℤ/nℤ‘𝑁)
2524zncrng 21481 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → (ℤ/nℤ‘𝑁) ∈ CRing)
2623, 25syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑎 ∈ (1...𝐴)) → (ℤ/nℤ‘𝑁) ∈ CRing)
2712, 18, 19, 20, 26, 15ply1asclzrhval 42291 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (1...𝐴)) → ((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝑎)) = ((ℤRHom‘𝑆)‘𝑎))
2827oveq2d 7362 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (1...𝐴)) → ((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝑎))) = ((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))
2928oveq2d 7362 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (1...𝐴)) → (𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝑎)))) = (𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))))
3029eceq1d 8662 . . . . . . . . . 10 ((𝜑𝑎 ∈ (1...𝐴)) → [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝑎))))](𝑆 ~QG 𝐿) = [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿))
3130adantr 480 . . . . . . . . 9 (((𝜑𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝑎))))](𝑆 ~QG 𝐿) = [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿))
32 simpr 484 . . . . . . . . 9 (((𝜑𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿))
3327eqcomd 2737 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (1...𝐴)) → ((ℤRHom‘𝑆)‘𝑎) = ((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝑎)))
3433oveq2d 7362 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (1...𝐴)) → ((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)) = ((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝑎))))
3534eceq1d 8662 . . . . . . . . . 10 ((𝜑𝑎 ∈ (1...𝐴)) → [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝑎)))](𝑆 ~QG 𝐿))
3635adantr 480 . . . . . . . . 9 (((𝜑𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝑎)))](𝑆 ~QG 𝐿))
3731, 32, 363eqtrd 2770 . . . . . . . 8 (((𝜑𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝑎))))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝑎)))](𝑆 ~QG 𝐿))
3837adantr 480 . . . . . . 7 ((((𝜑𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) ∧ 𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) → [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝑎))))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝑎)))](𝑆 ~QG 𝐿))
393, 4, 6, 7, 8, 10, 11, 12, 13, 17, 38aks5lem4a 42293 . . . . . 6 ((((𝜑𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) ∧ 𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) → (𝑁(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))‘𝑦)) = (((eval1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))‘(𝑁(.g‘(mulGrp‘𝐾))𝑦)))
4039ralrimiva 3124 . . . . 5 (((𝜑𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑁(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))‘𝑦)) = (((eval1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))‘(𝑁(.g‘(mulGrp‘𝐾))𝑦)))
41 eqid 2731 . . . . . . . . . 10 (Poly1𝐾) = (Poly1𝐾)
42 eqid 2731 . . . . . . . . . 10 (algSc‘(Poly1𝐾)) = (algSc‘(Poly1𝐾))
43 eqid 2731 . . . . . . . . . 10 (ℤRHom‘(Poly1𝐾)) = (ℤRHom‘(Poly1𝐾))
44 eqid 2731 . . . . . . . . . 10 (ℤRHom‘𝐾) = (ℤRHom‘𝐾)
452fldcrngd 20657 . . . . . . . . . . 11 (𝜑𝐾 ∈ CRing)
4645adantr 480 . . . . . . . . . 10 ((𝜑𝑎 ∈ (1...𝐴)) → 𝐾 ∈ CRing)
4741, 42, 43, 44, 46, 15ply1asclzrhval 42291 . . . . . . . . 9 ((𝜑𝑎 ∈ (1...𝐴)) → ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎)) = ((ℤRHom‘(Poly1𝐾))‘𝑎))
4847oveq2d 7362 . . . . . . . 8 ((𝜑𝑎 ∈ (1...𝐴)) → ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))) = ((var1𝐾)(+g‘(Poly1𝐾))((ℤRHom‘(Poly1𝐾))‘𝑎)))
49 eqid 2731 . . . . . . . . 9 (Base‘(Poly1𝐾)) = (Base‘(Poly1𝐾))
50 eqid 2731 . . . . . . . . 9 (+g‘(Poly1𝐾)) = (+g‘(Poly1𝐾))
5141ply1crng 22111 . . . . . . . . . . . . 13 (𝐾 ∈ CRing → (Poly1𝐾) ∈ CRing)
5245, 51syl 17 . . . . . . . . . . . 12 (𝜑 → (Poly1𝐾) ∈ CRing)
5352adantr 480 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (1...𝐴)) → (Poly1𝐾) ∈ CRing)
54 crngring 20163 . . . . . . . . . . 11 ((Poly1𝐾) ∈ CRing → (Poly1𝐾) ∈ Ring)
5553, 54syl 17 . . . . . . . . . 10 ((𝜑𝑎 ∈ (1...𝐴)) → (Poly1𝐾) ∈ Ring)
5655ringgrpd 20160 . . . . . . . . 9 ((𝜑𝑎 ∈ (1...𝐴)) → (Poly1𝐾) ∈ Grp)
5746crngringd 20164 . . . . . . . . . 10 ((𝜑𝑎 ∈ (1...𝐴)) → 𝐾 ∈ Ring)
58 eqid 2731 . . . . . . . . . . 11 (var1𝐾) = (var1𝐾)
5958, 41, 49vr1cl 22130 . . . . . . . . . 10 (𝐾 ∈ Ring → (var1𝐾) ∈ (Base‘(Poly1𝐾)))
6057, 59syl 17 . . . . . . . . 9 ((𝜑𝑎 ∈ (1...𝐴)) → (var1𝐾) ∈ (Base‘(Poly1𝐾)))
6143zrhrhm 21448 . . . . . . . . . . . 12 ((Poly1𝐾) ∈ Ring → (ℤRHom‘(Poly1𝐾)) ∈ (ℤring RingHom (Poly1𝐾)))
6255, 61syl 17 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (1...𝐴)) → (ℤRHom‘(Poly1𝐾)) ∈ (ℤring RingHom (Poly1𝐾)))
63 zringbas 21390 . . . . . . . . . . . 12 ℤ = (Base‘ℤring)
6463, 49rhmf 20402 . . . . . . . . . . 11 ((ℤRHom‘(Poly1𝐾)) ∈ (ℤring RingHom (Poly1𝐾)) → (ℤRHom‘(Poly1𝐾)):ℤ⟶(Base‘(Poly1𝐾)))
6562, 64syl 17 . . . . . . . . . 10 ((𝜑𝑎 ∈ (1...𝐴)) → (ℤRHom‘(Poly1𝐾)):ℤ⟶(Base‘(Poly1𝐾)))
6665, 15ffvelcdmd 7018 . . . . . . . . 9 ((𝜑𝑎 ∈ (1...𝐴)) → ((ℤRHom‘(Poly1𝐾))‘𝑎) ∈ (Base‘(Poly1𝐾)))
6749, 50, 56, 60, 66grpcld 18860 . . . . . . . 8 ((𝜑𝑎 ∈ (1...𝐴)) → ((var1𝐾)(+g‘(Poly1𝐾))((ℤRHom‘(Poly1𝐾))‘𝑎)) ∈ (Base‘(Poly1𝐾)))
6848, 67eqeltrd 2831 . . . . . . 7 ((𝜑𝑎 ∈ (1...𝐴)) → ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))) ∈ (Base‘(Poly1𝐾)))
6968adantr 480 . . . . . 6 (((𝜑𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))) ∈ (Base‘(Poly1𝐾)))
7022adantr 480 . . . . . 6 (((𝜑𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → 𝑁 ∈ ℕ)
7111, 69, 70aks6d1c1p1 42210 . . . . 5 (((𝜑𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → (𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))) ↔ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑁(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))‘𝑦)) = (((eval1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))‘(𝑁(.g‘(mulGrp‘𝐾))𝑦))))
7240, 71mpbird 257 . . . 4 (((𝜑𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → 𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
7372ex 412 . . 3 ((𝜑𝑎 ∈ (1...𝐴)) → ([(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿) → 𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎)))))
7473ralimdva 3144 . 2 (𝜑 → (∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿) → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎)))))
751, 74mpd 15 1 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  {csn 4573   class class class wbr 5089  {copab 5151  wf 6477  cfv 6481  (class class class)co 7346  [cec 8620  1c1 11007  cn 12125  0cn0 12381  cz 12468  ...cfz 13407  cdvds 16163  cprime 16582  Basecbs 17120  +gcplusg 17161   /s cqus 17409  -gcsg 18848  .gcmg 18980   ~QG cqg 19035  mulGrpcmgp 20058  1rcur 20099  Ringcrg 20151  CRingccrg 20152   RingHom crh 20387  Fieldcfield 20645  RSpancrsp 21144  ringczring 21383  ℤRHomczrh 21436  chrcchr 21438  ℤ/nczn 21439  algSccascl 21789  var1cv1 22088  Poly1cpl1 22089  eval1ce1 22229   PrimRoots cprimroots 42194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-ec 8624  df-qs 8628  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-prm 16583  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-imas 17412  df-qus 17413  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-nsg 19037  df-eqg 19038  df-ghm 19125  df-cntz 19229  df-od 19440  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-srg 20105  df-ring 20153  df-cring 20154  df-oppr 20255  df-dvdsr 20275  df-rhm 20390  df-subrng 20461  df-subrg 20485  df-field 20647  df-lmod 20795  df-lss 20865  df-lsp 20905  df-sra 21107  df-rgmod 21108  df-lidl 21145  df-rsp 21146  df-2idl 21187  df-cnfld 21292  df-zring 21384  df-zrh 21440  df-chr 21442  df-zn 21443  df-assa 21790  df-asp 21791  df-ascl 21792  df-psr 21846  df-mvr 21847  df-mpl 21848  df-opsr 21850  df-evls 22009  df-evl 22010  df-psr1 22092  df-vr1 22093  df-ply1 22094  df-coe1 22095  df-evls1 22230  df-evl1 22231  df-primroots 42195
This theorem is referenced by:  aks5lem6  42295
  Copyright terms: Public domain W3C validator