Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks5lem5a Structured version   Visualization version   GIF version

Theorem aks5lem5a 42204
Description: Lemma for AKS, section 5, connect to Theorem 6.1. (Contributed by metakunt, 17-Jun-2025.)
Hypotheses
Ref Expression
aks5lema.1 (𝜑𝐾 ∈ Field)
aks5lema.2 𝑃 = (chr‘𝐾)
aks5lema.3 (𝜑 → (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ∧ 𝑃𝑁))
aks5lema.9 𝐵 = (𝑆 /s (𝑆 ~QG 𝐿))
aks5lema.10 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(-g𝑆)(1r𝑆))})
aks5lema.11 (𝜑𝑅 ∈ ℕ)
aks5lema.14 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
aks5lema.15 𝑆 = (Poly1‘(ℤ/nℤ‘𝑁))
aks5lem5a.13 (𝜑 → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿))
Assertion
Ref Expression
aks5lem5a (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
Distinct variable groups:   𝑦,𝐴   𝐵,𝑒   𝑒,𝐾,𝑓,𝑦   𝑦,𝐿   𝑒,𝑁,𝑓,𝑦   𝑅,𝑒,𝑓   𝑦,𝑆   𝑒,𝑎,𝑓,𝑦   𝜑,𝑎,𝑦
Allowed substitution hints:   𝜑(𝑒,𝑓)   𝐴(𝑒,𝑓,𝑎)   𝐵(𝑦,𝑓,𝑎)   𝑃(𝑦,𝑒,𝑓,𝑎)   (𝑦,𝑒,𝑓,𝑎)   𝑅(𝑦,𝑎)   𝑆(𝑒,𝑓,𝑎)   𝐾(𝑎)   𝐿(𝑒,𝑓,𝑎)   𝑁(𝑎)

Proof of Theorem aks5lem5a
StepHypRef Expression
1 aks5lem5a.13 . 2 (𝜑 → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿))
2 aks5lema.1 . . . . . . . 8 (𝜑𝐾 ∈ Field)
32ad3antrrr 730 . . . . . . 7 ((((𝜑𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) ∧ 𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) → 𝐾 ∈ Field)
4 aks5lema.2 . . . . . . 7 𝑃 = (chr‘𝐾)
5 aks5lema.3 . . . . . . . 8 (𝜑 → (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ∧ 𝑃𝑁))
65ad3antrrr 730 . . . . . . 7 ((((𝜑𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) ∧ 𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) → (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ∧ 𝑃𝑁))
7 aks5lema.9 . . . . . . 7 𝐵 = (𝑆 /s (𝑆 ~QG 𝐿))
8 aks5lema.10 . . . . . . 7 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(-g𝑆)(1r𝑆))})
9 aks5lema.11 . . . . . . . 8 (𝜑𝑅 ∈ ℕ)
109ad3antrrr 730 . . . . . . 7 ((((𝜑𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) ∧ 𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) → 𝑅 ∈ ℕ)
11 aks5lema.14 . . . . . . 7 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
12 aks5lema.15 . . . . . . 7 𝑆 = (Poly1‘(ℤ/nℤ‘𝑁))
13 simpr 484 . . . . . . 7 ((((𝜑𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) ∧ 𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) → 𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
14 elfzelz 13541 . . . . . . . . . 10 (𝑎 ∈ (1...𝐴) → 𝑎 ∈ ℤ)
1514adantl 481 . . . . . . . . 9 ((𝜑𝑎 ∈ (1...𝐴)) → 𝑎 ∈ ℤ)
1615adantr 480 . . . . . . . 8 (((𝜑𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → 𝑎 ∈ ℤ)
1716adantr 480 . . . . . . 7 ((((𝜑𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) ∧ 𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) → 𝑎 ∈ ℤ)
18 eqid 2735 . . . . . . . . . . . . . 14 (algSc‘𝑆) = (algSc‘𝑆)
19 eqid 2735 . . . . . . . . . . . . . 14 (ℤRHom‘𝑆) = (ℤRHom‘𝑆)
20 eqid 2735 . . . . . . . . . . . . . 14 (ℤRHom‘(ℤ/nℤ‘𝑁)) = (ℤRHom‘(ℤ/nℤ‘𝑁))
215simp2d 1143 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℕ)
2221adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑎 ∈ (1...𝐴)) → 𝑁 ∈ ℕ)
2322nnnn0d 12562 . . . . . . . . . . . . . . 15 ((𝜑𝑎 ∈ (1...𝐴)) → 𝑁 ∈ ℕ0)
24 eqid 2735 . . . . . . . . . . . . . . . 16 (ℤ/nℤ‘𝑁) = (ℤ/nℤ‘𝑁)
2524zncrng 21505 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → (ℤ/nℤ‘𝑁) ∈ CRing)
2623, 25syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑎 ∈ (1...𝐴)) → (ℤ/nℤ‘𝑁) ∈ CRing)
2712, 18, 19, 20, 26, 15ply1asclzrhval 42201 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (1...𝐴)) → ((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝑎)) = ((ℤRHom‘𝑆)‘𝑎))
2827oveq2d 7421 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (1...𝐴)) → ((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝑎))) = ((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))
2928oveq2d 7421 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (1...𝐴)) → (𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝑎)))) = (𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))))
3029eceq1d 8759 . . . . . . . . . 10 ((𝜑𝑎 ∈ (1...𝐴)) → [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝑎))))](𝑆 ~QG 𝐿) = [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿))
3130adantr 480 . . . . . . . . 9 (((𝜑𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝑎))))](𝑆 ~QG 𝐿) = [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿))
32 simpr 484 . . . . . . . . 9 (((𝜑𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿))
3327eqcomd 2741 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (1...𝐴)) → ((ℤRHom‘𝑆)‘𝑎) = ((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝑎)))
3433oveq2d 7421 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (1...𝐴)) → ((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)) = ((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝑎))))
3534eceq1d 8759 . . . . . . . . . 10 ((𝜑𝑎 ∈ (1...𝐴)) → [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝑎)))](𝑆 ~QG 𝐿))
3635adantr 480 . . . . . . . . 9 (((𝜑𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝑎)))](𝑆 ~QG 𝐿))
3731, 32, 363eqtrd 2774 . . . . . . . 8 (((𝜑𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝑎))))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝑎)))](𝑆 ~QG 𝐿))
3837adantr 480 . . . . . . 7 ((((𝜑𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) ∧ 𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) → [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝑎))))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝑎)))](𝑆 ~QG 𝐿))
393, 4, 6, 7, 8, 10, 11, 12, 13, 17, 38aks5lem4a 42203 . . . . . 6 ((((𝜑𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) ∧ 𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) → (𝑁(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))‘𝑦)) = (((eval1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))‘(𝑁(.g‘(mulGrp‘𝐾))𝑦)))
4039ralrimiva 3132 . . . . 5 (((𝜑𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑁(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))‘𝑦)) = (((eval1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))‘(𝑁(.g‘(mulGrp‘𝐾))𝑦)))
41 eqid 2735 . . . . . . . . . 10 (Poly1𝐾) = (Poly1𝐾)
42 eqid 2735 . . . . . . . . . 10 (algSc‘(Poly1𝐾)) = (algSc‘(Poly1𝐾))
43 eqid 2735 . . . . . . . . . 10 (ℤRHom‘(Poly1𝐾)) = (ℤRHom‘(Poly1𝐾))
44 eqid 2735 . . . . . . . . . 10 (ℤRHom‘𝐾) = (ℤRHom‘𝐾)
452fldcrngd 20702 . . . . . . . . . . 11 (𝜑𝐾 ∈ CRing)
4645adantr 480 . . . . . . . . . 10 ((𝜑𝑎 ∈ (1...𝐴)) → 𝐾 ∈ CRing)
4741, 42, 43, 44, 46, 15ply1asclzrhval 42201 . . . . . . . . 9 ((𝜑𝑎 ∈ (1...𝐴)) → ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎)) = ((ℤRHom‘(Poly1𝐾))‘𝑎))
4847oveq2d 7421 . . . . . . . 8 ((𝜑𝑎 ∈ (1...𝐴)) → ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))) = ((var1𝐾)(+g‘(Poly1𝐾))((ℤRHom‘(Poly1𝐾))‘𝑎)))
49 eqid 2735 . . . . . . . . 9 (Base‘(Poly1𝐾)) = (Base‘(Poly1𝐾))
50 eqid 2735 . . . . . . . . 9 (+g‘(Poly1𝐾)) = (+g‘(Poly1𝐾))
5141ply1crng 22134 . . . . . . . . . . . . 13 (𝐾 ∈ CRing → (Poly1𝐾) ∈ CRing)
5245, 51syl 17 . . . . . . . . . . . 12 (𝜑 → (Poly1𝐾) ∈ CRing)
5352adantr 480 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (1...𝐴)) → (Poly1𝐾) ∈ CRing)
54 crngring 20205 . . . . . . . . . . 11 ((Poly1𝐾) ∈ CRing → (Poly1𝐾) ∈ Ring)
5553, 54syl 17 . . . . . . . . . 10 ((𝜑𝑎 ∈ (1...𝐴)) → (Poly1𝐾) ∈ Ring)
5655ringgrpd 20202 . . . . . . . . 9 ((𝜑𝑎 ∈ (1...𝐴)) → (Poly1𝐾) ∈ Grp)
5746crngringd 20206 . . . . . . . . . 10 ((𝜑𝑎 ∈ (1...𝐴)) → 𝐾 ∈ Ring)
58 eqid 2735 . . . . . . . . . . 11 (var1𝐾) = (var1𝐾)
5958, 41, 49vr1cl 22153 . . . . . . . . . 10 (𝐾 ∈ Ring → (var1𝐾) ∈ (Base‘(Poly1𝐾)))
6057, 59syl 17 . . . . . . . . 9 ((𝜑𝑎 ∈ (1...𝐴)) → (var1𝐾) ∈ (Base‘(Poly1𝐾)))
6143zrhrhm 21472 . . . . . . . . . . . 12 ((Poly1𝐾) ∈ Ring → (ℤRHom‘(Poly1𝐾)) ∈ (ℤring RingHom (Poly1𝐾)))
6255, 61syl 17 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (1...𝐴)) → (ℤRHom‘(Poly1𝐾)) ∈ (ℤring RingHom (Poly1𝐾)))
63 zringbas 21414 . . . . . . . . . . . 12 ℤ = (Base‘ℤring)
6463, 49rhmf 20445 . . . . . . . . . . 11 ((ℤRHom‘(Poly1𝐾)) ∈ (ℤring RingHom (Poly1𝐾)) → (ℤRHom‘(Poly1𝐾)):ℤ⟶(Base‘(Poly1𝐾)))
6562, 64syl 17 . . . . . . . . . 10 ((𝜑𝑎 ∈ (1...𝐴)) → (ℤRHom‘(Poly1𝐾)):ℤ⟶(Base‘(Poly1𝐾)))
6665, 15ffvelcdmd 7075 . . . . . . . . 9 ((𝜑𝑎 ∈ (1...𝐴)) → ((ℤRHom‘(Poly1𝐾))‘𝑎) ∈ (Base‘(Poly1𝐾)))
6749, 50, 56, 60, 66grpcld 18930 . . . . . . . 8 ((𝜑𝑎 ∈ (1...𝐴)) → ((var1𝐾)(+g‘(Poly1𝐾))((ℤRHom‘(Poly1𝐾))‘𝑎)) ∈ (Base‘(Poly1𝐾)))
6848, 67eqeltrd 2834 . . . . . . 7 ((𝜑𝑎 ∈ (1...𝐴)) → ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))) ∈ (Base‘(Poly1𝐾)))
6968adantr 480 . . . . . 6 (((𝜑𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))) ∈ (Base‘(Poly1𝐾)))
7022adantr 480 . . . . . 6 (((𝜑𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → 𝑁 ∈ ℕ)
7111, 69, 70aks6d1c1p1 42120 . . . . 5 (((𝜑𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → (𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))) ↔ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑁(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))‘𝑦)) = (((eval1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))‘(𝑁(.g‘(mulGrp‘𝐾))𝑦))))
7240, 71mpbird 257 . . . 4 (((𝜑𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → 𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
7372ex 412 . . 3 ((𝜑𝑎 ∈ (1...𝐴)) → ([(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿) → 𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎)))))
7473ralimdva 3152 . 2 (𝜑 → (∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿) → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎)))))
751, 74mpd 15 1 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  {csn 4601   class class class wbr 5119  {copab 5181  wf 6527  cfv 6531  (class class class)co 7405  [cec 8717  1c1 11130  cn 12240  0cn0 12501  cz 12588  ...cfz 13524  cdvds 16272  cprime 16690  Basecbs 17228  +gcplusg 17271   /s cqus 17519  -gcsg 18918  .gcmg 19050   ~QG cqg 19105  mulGrpcmgp 20100  1rcur 20141  Ringcrg 20193  CRingccrg 20194   RingHom crh 20429  Fieldcfield 20690  RSpancrsp 21168  ringczring 21407  ℤRHomczrh 21460  chrcchr 21462  ℤ/nczn 21463  algSccascl 21812  var1cv1 22111  Poly1cpl1 22112  eval1ce1 22252   PrimRoots cprimroots 42104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208  ax-mulf 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-ofr 7672  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-ec 8721  df-qs 8725  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-rp 13009  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-dvds 16273  df-prm 16691  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-0g 17455  df-gsum 17456  df-prds 17461  df-pws 17463  df-imas 17522  df-qus 17523  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-nsg 19107  df-eqg 19108  df-ghm 19196  df-cntz 19300  df-od 19509  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-srg 20147  df-ring 20195  df-cring 20196  df-oppr 20297  df-dvdsr 20317  df-rhm 20432  df-subrng 20506  df-subrg 20530  df-field 20692  df-lmod 20819  df-lss 20889  df-lsp 20929  df-sra 21131  df-rgmod 21132  df-lidl 21169  df-rsp 21170  df-2idl 21211  df-cnfld 21316  df-zring 21408  df-zrh 21464  df-chr 21466  df-zn 21467  df-assa 21813  df-asp 21814  df-ascl 21815  df-psr 21869  df-mvr 21870  df-mpl 21871  df-opsr 21873  df-evls 22032  df-evl 22033  df-psr1 22115  df-vr1 22116  df-ply1 22117  df-coe1 22118  df-evls1 22253  df-evl1 22254  df-primroots 42105
This theorem is referenced by:  aks5lem6  42205
  Copyright terms: Public domain W3C validator