Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks5lem5a Structured version   Visualization version   GIF version

Theorem aks5lem5a 42148
Description: Lemma for AKS, section 5, connect to Theorem 6.1. (Contributed by metakunt, 17-Jun-2025.)
Hypotheses
Ref Expression
aks5lema.1 (𝜑𝐾 ∈ Field)
aks5lema.2 𝑃 = (chr‘𝐾)
aks5lema.3 (𝜑 → (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ∧ 𝑃𝑁))
aks5lema.9 𝐵 = (𝑆 /s (𝑆 ~QG 𝐿))
aks5lema.10 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(-g𝑆)(1r𝑆))})
aks5lema.11 (𝜑𝑅 ∈ ℕ)
aks5lema.14 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
aks5lema.15 𝑆 = (Poly1‘(ℤ/nℤ‘𝑁))
aks5lem5a.13 (𝜑 → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿))
Assertion
Ref Expression
aks5lem5a (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
Distinct variable groups:   𝑦,𝐴   𝐵,𝑒   𝑒,𝐾,𝑓,𝑦   𝑦,𝐿   𝑒,𝑁,𝑓,𝑦   𝑅,𝑒,𝑓   𝑦,𝑆   𝑒,𝑎,𝑓,𝑦   𝜑,𝑎,𝑦
Allowed substitution hints:   𝜑(𝑒,𝑓)   𝐴(𝑒,𝑓,𝑎)   𝐵(𝑦,𝑓,𝑎)   𝑃(𝑦,𝑒,𝑓,𝑎)   (𝑦,𝑒,𝑓,𝑎)   𝑅(𝑦,𝑎)   𝑆(𝑒,𝑓,𝑎)   𝐾(𝑎)   𝐿(𝑒,𝑓,𝑎)   𝑁(𝑎)

Proof of Theorem aks5lem5a
StepHypRef Expression
1 aks5lem5a.13 . 2 (𝜑 → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿))
2 aks5lema.1 . . . . . . . 8 (𝜑𝐾 ∈ Field)
32ad3antrrr 729 . . . . . . 7 ((((𝜑𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) ∧ 𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) → 𝐾 ∈ Field)
4 aks5lema.2 . . . . . . 7 𝑃 = (chr‘𝐾)
5 aks5lema.3 . . . . . . . 8 (𝜑 → (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ∧ 𝑃𝑁))
65ad3antrrr 729 . . . . . . 7 ((((𝜑𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) ∧ 𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) → (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ∧ 𝑃𝑁))
7 aks5lema.9 . . . . . . 7 𝐵 = (𝑆 /s (𝑆 ~QG 𝐿))
8 aks5lema.10 . . . . . . 7 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(-g𝑆)(1r𝑆))})
9 aks5lema.11 . . . . . . . 8 (𝜑𝑅 ∈ ℕ)
109ad3antrrr 729 . . . . . . 7 ((((𝜑𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) ∧ 𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) → 𝑅 ∈ ℕ)
11 aks5lema.14 . . . . . . 7 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
12 aks5lema.15 . . . . . . 7 𝑆 = (Poly1‘(ℤ/nℤ‘𝑁))
13 simpr 484 . . . . . . 7 ((((𝜑𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) ∧ 𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) → 𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
14 elfzelz 13584 . . . . . . . . . 10 (𝑎 ∈ (1...𝐴) → 𝑎 ∈ ℤ)
1514adantl 481 . . . . . . . . 9 ((𝜑𝑎 ∈ (1...𝐴)) → 𝑎 ∈ ℤ)
1615adantr 480 . . . . . . . 8 (((𝜑𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → 𝑎 ∈ ℤ)
1716adantr 480 . . . . . . 7 ((((𝜑𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) ∧ 𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) → 𝑎 ∈ ℤ)
18 eqid 2740 . . . . . . . . . . . . . 14 (algSc‘𝑆) = (algSc‘𝑆)
19 eqid 2740 . . . . . . . . . . . . . 14 (ℤRHom‘𝑆) = (ℤRHom‘𝑆)
20 eqid 2740 . . . . . . . . . . . . . 14 (ℤRHom‘(ℤ/nℤ‘𝑁)) = (ℤRHom‘(ℤ/nℤ‘𝑁))
215simp2d 1143 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℕ)
2221adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑎 ∈ (1...𝐴)) → 𝑁 ∈ ℕ)
2322nnnn0d 12613 . . . . . . . . . . . . . . 15 ((𝜑𝑎 ∈ (1...𝐴)) → 𝑁 ∈ ℕ0)
24 eqid 2740 . . . . . . . . . . . . . . . 16 (ℤ/nℤ‘𝑁) = (ℤ/nℤ‘𝑁)
2524zncrng 21586 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → (ℤ/nℤ‘𝑁) ∈ CRing)
2623, 25syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑎 ∈ (1...𝐴)) → (ℤ/nℤ‘𝑁) ∈ CRing)
2712, 18, 19, 20, 26, 15ply1asclzrhval 42145 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (1...𝐴)) → ((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝑎)) = ((ℤRHom‘𝑆)‘𝑎))
2827oveq2d 7464 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (1...𝐴)) → ((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝑎))) = ((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))
2928oveq2d 7464 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (1...𝐴)) → (𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝑎)))) = (𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))))
3029eceq1d 8803 . . . . . . . . . 10 ((𝜑𝑎 ∈ (1...𝐴)) → [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝑎))))](𝑆 ~QG 𝐿) = [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿))
3130adantr 480 . . . . . . . . 9 (((𝜑𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝑎))))](𝑆 ~QG 𝐿) = [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿))
32 simpr 484 . . . . . . . . 9 (((𝜑𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿))
3327eqcomd 2746 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (1...𝐴)) → ((ℤRHom‘𝑆)‘𝑎) = ((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝑎)))
3433oveq2d 7464 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (1...𝐴)) → ((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)) = ((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝑎))))
3534eceq1d 8803 . . . . . . . . . 10 ((𝜑𝑎 ∈ (1...𝐴)) → [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝑎)))](𝑆 ~QG 𝐿))
3635adantr 480 . . . . . . . . 9 (((𝜑𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝑎)))](𝑆 ~QG 𝐿))
3731, 32, 363eqtrd 2784 . . . . . . . 8 (((𝜑𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝑎))))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝑎)))](𝑆 ~QG 𝐿))
3837adantr 480 . . . . . . 7 ((((𝜑𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) ∧ 𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) → [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝑎))))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝑎)))](𝑆 ~QG 𝐿))
393, 4, 6, 7, 8, 10, 11, 12, 13, 17, 38aks5lem4a 42147 . . . . . 6 ((((𝜑𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) ∧ 𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) → (𝑁(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))‘𝑦)) = (((eval1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))‘(𝑁(.g‘(mulGrp‘𝐾))𝑦)))
4039ralrimiva 3152 . . . . 5 (((𝜑𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑁(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))‘𝑦)) = (((eval1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))‘(𝑁(.g‘(mulGrp‘𝐾))𝑦)))
41 eqid 2740 . . . . . . . . . 10 (Poly1𝐾) = (Poly1𝐾)
42 eqid 2740 . . . . . . . . . 10 (algSc‘(Poly1𝐾)) = (algSc‘(Poly1𝐾))
43 eqid 2740 . . . . . . . . . 10 (ℤRHom‘(Poly1𝐾)) = (ℤRHom‘(Poly1𝐾))
44 eqid 2740 . . . . . . . . . 10 (ℤRHom‘𝐾) = (ℤRHom‘𝐾)
452fldcrngd 20764 . . . . . . . . . . 11 (𝜑𝐾 ∈ CRing)
4645adantr 480 . . . . . . . . . 10 ((𝜑𝑎 ∈ (1...𝐴)) → 𝐾 ∈ CRing)
4741, 42, 43, 44, 46, 15ply1asclzrhval 42145 . . . . . . . . 9 ((𝜑𝑎 ∈ (1...𝐴)) → ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎)) = ((ℤRHom‘(Poly1𝐾))‘𝑎))
4847oveq2d 7464 . . . . . . . 8 ((𝜑𝑎 ∈ (1...𝐴)) → ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))) = ((var1𝐾)(+g‘(Poly1𝐾))((ℤRHom‘(Poly1𝐾))‘𝑎)))
49 eqid 2740 . . . . . . . . 9 (Base‘(Poly1𝐾)) = (Base‘(Poly1𝐾))
50 eqid 2740 . . . . . . . . 9 (+g‘(Poly1𝐾)) = (+g‘(Poly1𝐾))
5141ply1crng 22221 . . . . . . . . . . . . 13 (𝐾 ∈ CRing → (Poly1𝐾) ∈ CRing)
5245, 51syl 17 . . . . . . . . . . . 12 (𝜑 → (Poly1𝐾) ∈ CRing)
5352adantr 480 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (1...𝐴)) → (Poly1𝐾) ∈ CRing)
54 crngring 20272 . . . . . . . . . . 11 ((Poly1𝐾) ∈ CRing → (Poly1𝐾) ∈ Ring)
5553, 54syl 17 . . . . . . . . . 10 ((𝜑𝑎 ∈ (1...𝐴)) → (Poly1𝐾) ∈ Ring)
5655ringgrpd 20269 . . . . . . . . 9 ((𝜑𝑎 ∈ (1...𝐴)) → (Poly1𝐾) ∈ Grp)
5746crngringd 20273 . . . . . . . . . 10 ((𝜑𝑎 ∈ (1...𝐴)) → 𝐾 ∈ Ring)
58 eqid 2740 . . . . . . . . . . 11 (var1𝐾) = (var1𝐾)
5958, 41, 49vr1cl 22240 . . . . . . . . . 10 (𝐾 ∈ Ring → (var1𝐾) ∈ (Base‘(Poly1𝐾)))
6057, 59syl 17 . . . . . . . . 9 ((𝜑𝑎 ∈ (1...𝐴)) → (var1𝐾) ∈ (Base‘(Poly1𝐾)))
6143zrhrhm 21545 . . . . . . . . . . . 12 ((Poly1𝐾) ∈ Ring → (ℤRHom‘(Poly1𝐾)) ∈ (ℤring RingHom (Poly1𝐾)))
6255, 61syl 17 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (1...𝐴)) → (ℤRHom‘(Poly1𝐾)) ∈ (ℤring RingHom (Poly1𝐾)))
63 zringbas 21487 . . . . . . . . . . . 12 ℤ = (Base‘ℤring)
6463, 49rhmf 20511 . . . . . . . . . . 11 ((ℤRHom‘(Poly1𝐾)) ∈ (ℤring RingHom (Poly1𝐾)) → (ℤRHom‘(Poly1𝐾)):ℤ⟶(Base‘(Poly1𝐾)))
6562, 64syl 17 . . . . . . . . . 10 ((𝜑𝑎 ∈ (1...𝐴)) → (ℤRHom‘(Poly1𝐾)):ℤ⟶(Base‘(Poly1𝐾)))
6665, 15ffvelcdmd 7119 . . . . . . . . 9 ((𝜑𝑎 ∈ (1...𝐴)) → ((ℤRHom‘(Poly1𝐾))‘𝑎) ∈ (Base‘(Poly1𝐾)))
6749, 50, 56, 60, 66grpcld 18987 . . . . . . . 8 ((𝜑𝑎 ∈ (1...𝐴)) → ((var1𝐾)(+g‘(Poly1𝐾))((ℤRHom‘(Poly1𝐾))‘𝑎)) ∈ (Base‘(Poly1𝐾)))
6848, 67eqeltrd 2844 . . . . . . 7 ((𝜑𝑎 ∈ (1...𝐴)) → ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))) ∈ (Base‘(Poly1𝐾)))
6968adantr 480 . . . . . 6 (((𝜑𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))) ∈ (Base‘(Poly1𝐾)))
7022adantr 480 . . . . . 6 (((𝜑𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → 𝑁 ∈ ℕ)
7111, 69, 70aks6d1c1p1 42064 . . . . 5 (((𝜑𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → (𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))) ↔ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑁(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))‘𝑦)) = (((eval1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))‘(𝑁(.g‘(mulGrp‘𝐾))𝑦))))
7240, 71mpbird 257 . . . 4 (((𝜑𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → 𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
7372ex 412 . . 3 ((𝜑𝑎 ∈ (1...𝐴)) → ([(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿) → 𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎)))))
7473ralimdva 3173 . 2 (𝜑 → (∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿) → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎)))))
751, 74mpd 15 1 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  {csn 4648   class class class wbr 5166  {copab 5228  wf 6569  cfv 6573  (class class class)co 7448  [cec 8761  1c1 11185  cn 12293  0cn0 12553  cz 12639  ...cfz 13567  cdvds 16302  cprime 16718  Basecbs 17258  +gcplusg 17311   /s cqus 17565  -gcsg 18975  .gcmg 19107   ~QG cqg 19162  mulGrpcmgp 20161  1rcur 20208  Ringcrg 20260  CRingccrg 20261   RingHom crh 20495  Fieldcfield 20752  RSpancrsp 21240  ringczring 21480  ℤRHomczrh 21533  chrcchr 21535  ℤ/nczn 21536  algSccascl 21895  var1cv1 22198  Poly1cpl1 22199  eval1ce1 22339   PrimRoots cprimroots 42048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-ec 8765  df-qs 8769  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-prm 16719  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-imas 17568  df-qus 17569  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-nsg 19164  df-eqg 19165  df-ghm 19253  df-cntz 19357  df-od 19570  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-srg 20214  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-rhm 20498  df-subrng 20572  df-subrg 20597  df-field 20754  df-lmod 20882  df-lss 20953  df-lsp 20993  df-sra 21195  df-rgmod 21196  df-lidl 21241  df-rsp 21242  df-2idl 21283  df-cnfld 21388  df-zring 21481  df-zrh 21537  df-chr 21539  df-zn 21540  df-assa 21896  df-asp 21897  df-ascl 21898  df-psr 21952  df-mvr 21953  df-mpl 21954  df-opsr 21956  df-evls 22121  df-evl 22122  df-psr1 22202  df-vr1 22203  df-ply1 22204  df-coe1 22205  df-evls1 22340  df-evl1 22341  df-primroots 42049
This theorem is referenced by:  aks5lem6  42149
  Copyright terms: Public domain W3C validator