| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > atpointN | Structured version Visualization version GIF version | ||
| Description: The singleton of an atom is a point. (Contributed by NM, 14-Jan-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ispoint.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| ispoint.p | ⊢ 𝑃 = (Points‘𝐾) |
| Ref | Expression |
|---|---|
| atpointN | ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐴) → {𝑋} ∈ 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . . 4 ⊢ {𝑋} = {𝑋} | |
| 2 | sneq 4616 | . . . . 5 ⊢ (𝑥 = 𝑋 → {𝑥} = {𝑋}) | |
| 3 | 2 | rspceeqv 3628 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ {𝑋} = {𝑋}) → ∃𝑥 ∈ 𝐴 {𝑋} = {𝑥}) |
| 4 | 1, 3 | mpan2 691 | . . 3 ⊢ (𝑋 ∈ 𝐴 → ∃𝑥 ∈ 𝐴 {𝑋} = {𝑥}) |
| 5 | 4 | adantl 481 | . 2 ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 {𝑋} = {𝑥}) |
| 6 | ispoint.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 7 | ispoint.p | . . . 4 ⊢ 𝑃 = (Points‘𝐾) | |
| 8 | 6, 7 | ispointN 39703 | . . 3 ⊢ (𝐾 ∈ 𝐷 → ({𝑋} ∈ 𝑃 ↔ ∃𝑥 ∈ 𝐴 {𝑋} = {𝑥})) |
| 9 | 8 | adantr 480 | . 2 ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐴) → ({𝑋} ∈ 𝑃 ↔ ∃𝑥 ∈ 𝐴 {𝑋} = {𝑥})) |
| 10 | 5, 9 | mpbird 257 | 1 ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐴) → {𝑋} ∈ 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 {csn 4606 ‘cfv 6541 Atomscatm 39223 PointscpointsN 39456 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-iota 6494 df-fun 6543 df-fv 6549 df-pointsN 39463 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |