Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atpointN Structured version   Visualization version   GIF version

Theorem atpointN 39915
Description: The singleton of an atom is a point. (Contributed by NM, 14-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
ispoint.a 𝐴 = (Atoms‘𝐾)
ispoint.p 𝑃 = (Points‘𝐾)
Assertion
Ref Expression
atpointN ((𝐾𝐷𝑋𝐴) → {𝑋} ∈ 𝑃)

Proof of Theorem atpointN
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . . 4 {𝑋} = {𝑋}
2 sneq 4587 . . . . 5 (𝑥 = 𝑋 → {𝑥} = {𝑋})
32rspceeqv 3596 . . . 4 ((𝑋𝐴 ∧ {𝑋} = {𝑋}) → ∃𝑥𝐴 {𝑋} = {𝑥})
41, 3mpan2 691 . . 3 (𝑋𝐴 → ∃𝑥𝐴 {𝑋} = {𝑥})
54adantl 481 . 2 ((𝐾𝐷𝑋𝐴) → ∃𝑥𝐴 {𝑋} = {𝑥})
6 ispoint.a . . . 4 𝐴 = (Atoms‘𝐾)
7 ispoint.p . . . 4 𝑃 = (Points‘𝐾)
86, 7ispointN 39914 . . 3 (𝐾𝐷 → ({𝑋} ∈ 𝑃 ↔ ∃𝑥𝐴 {𝑋} = {𝑥}))
98adantr 480 . 2 ((𝐾𝐷𝑋𝐴) → ({𝑋} ∈ 𝑃 ↔ ∃𝑥𝐴 {𝑋} = {𝑥}))
105, 9mpbird 257 1 ((𝐾𝐷𝑋𝐴) → {𝑋} ∈ 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wrex 3057  {csn 4577  cfv 6489  Atomscatm 39435  PointscpointsN 39667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-iota 6445  df-fun 6491  df-fv 6497  df-pointsN 39674
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator