Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atpointN Structured version   Visualization version   GIF version

Theorem atpointN 38918
Description: The singleton of an atom is a point. (Contributed by NM, 14-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
ispoint.a 𝐴 = (Atomsβ€˜πΎ)
ispoint.p 𝑃 = (Pointsβ€˜πΎ)
Assertion
Ref Expression
atpointN ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐴) β†’ {𝑋} ∈ 𝑃)

Proof of Theorem atpointN
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . 4 {𝑋} = {𝑋}
2 sneq 4638 . . . . 5 (π‘₯ = 𝑋 β†’ {π‘₯} = {𝑋})
32rspceeqv 3633 . . . 4 ((𝑋 ∈ 𝐴 ∧ {𝑋} = {𝑋}) β†’ βˆƒπ‘₯ ∈ 𝐴 {𝑋} = {π‘₯})
41, 3mpan2 688 . . 3 (𝑋 ∈ 𝐴 β†’ βˆƒπ‘₯ ∈ 𝐴 {𝑋} = {π‘₯})
54adantl 481 . 2 ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐴) β†’ βˆƒπ‘₯ ∈ 𝐴 {𝑋} = {π‘₯})
6 ispoint.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
7 ispoint.p . . . 4 𝑃 = (Pointsβ€˜πΎ)
86, 7ispointN 38917 . . 3 (𝐾 ∈ 𝐷 β†’ ({𝑋} ∈ 𝑃 ↔ βˆƒπ‘₯ ∈ 𝐴 {𝑋} = {π‘₯}))
98adantr 480 . 2 ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐴) β†’ ({𝑋} ∈ 𝑃 ↔ βˆƒπ‘₯ ∈ 𝐴 {𝑋} = {π‘₯}))
105, 9mpbird 257 1 ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐴) β†’ {𝑋} ∈ 𝑃)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1540   ∈ wcel 2105  βˆƒwrex 3069  {csn 4628  β€˜cfv 6543  Atomscatm 38437  PointscpointsN 38670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-pointsN 38677
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator