![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > atpointN | Structured version Visualization version GIF version |
Description: The singleton of an atom is a point. (Contributed by NM, 14-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ispoint.a | β’ π΄ = (AtomsβπΎ) |
ispoint.p | β’ π = (PointsβπΎ) |
Ref | Expression |
---|---|
atpointN | β’ ((πΎ β π· β§ π β π΄) β {π} β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2731 | . . . 4 β’ {π} = {π} | |
2 | sneq 4638 | . . . . 5 β’ (π₯ = π β {π₯} = {π}) | |
3 | 2 | rspceeqv 3633 | . . . 4 β’ ((π β π΄ β§ {π} = {π}) β βπ₯ β π΄ {π} = {π₯}) |
4 | 1, 3 | mpan2 688 | . . 3 β’ (π β π΄ β βπ₯ β π΄ {π} = {π₯}) |
5 | 4 | adantl 481 | . 2 β’ ((πΎ β π· β§ π β π΄) β βπ₯ β π΄ {π} = {π₯}) |
6 | ispoint.a | . . . 4 β’ π΄ = (AtomsβπΎ) | |
7 | ispoint.p | . . . 4 β’ π = (PointsβπΎ) | |
8 | 6, 7 | ispointN 38917 | . . 3 β’ (πΎ β π· β ({π} β π β βπ₯ β π΄ {π} = {π₯})) |
9 | 8 | adantr 480 | . 2 β’ ((πΎ β π· β§ π β π΄) β ({π} β π β βπ₯ β π΄ {π} = {π₯})) |
10 | 5, 9 | mpbird 257 | 1 β’ ((πΎ β π· β§ π β π΄) β {π} β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1540 β wcel 2105 βwrex 3069 {csn 4628 βcfv 6543 Atomscatm 38437 PointscpointsN 38670 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-pointsN 38677 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |