Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > atpointN | Structured version Visualization version GIF version |
Description: The singleton of an atom is a point. (Contributed by NM, 14-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ispoint.a | ⊢ 𝐴 = (Atoms‘𝐾) |
ispoint.p | ⊢ 𝑃 = (Points‘𝐾) |
Ref | Expression |
---|---|
atpointN | ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐴) → {𝑋} ∈ 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ {𝑋} = {𝑋} | |
2 | sneq 4571 | . . . . 5 ⊢ (𝑥 = 𝑋 → {𝑥} = {𝑋}) | |
3 | 2 | rspceeqv 3575 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ {𝑋} = {𝑋}) → ∃𝑥 ∈ 𝐴 {𝑋} = {𝑥}) |
4 | 1, 3 | mpan2 688 | . . 3 ⊢ (𝑋 ∈ 𝐴 → ∃𝑥 ∈ 𝐴 {𝑋} = {𝑥}) |
5 | 4 | adantl 482 | . 2 ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 {𝑋} = {𝑥}) |
6 | ispoint.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
7 | ispoint.p | . . . 4 ⊢ 𝑃 = (Points‘𝐾) | |
8 | 6, 7 | ispointN 37756 | . . 3 ⊢ (𝐾 ∈ 𝐷 → ({𝑋} ∈ 𝑃 ↔ ∃𝑥 ∈ 𝐴 {𝑋} = {𝑥})) |
9 | 8 | adantr 481 | . 2 ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐴) → ({𝑋} ∈ 𝑃 ↔ ∃𝑥 ∈ 𝐴 {𝑋} = {𝑥})) |
10 | 5, 9 | mpbird 256 | 1 ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐴) → {𝑋} ∈ 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 {csn 4561 ‘cfv 6433 Atomscatm 37277 PointscpointsN 37509 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-pointsN 37516 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |