Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atpointN Structured version   Visualization version   GIF version

Theorem atpointN 39710
Description: The singleton of an atom is a point. (Contributed by NM, 14-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
ispoint.a 𝐴 = (Atoms‘𝐾)
ispoint.p 𝑃 = (Points‘𝐾)
Assertion
Ref Expression
atpointN ((𝐾𝐷𝑋𝐴) → {𝑋} ∈ 𝑃)

Proof of Theorem atpointN
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 {𝑋} = {𝑋}
2 sneq 4595 . . . . 5 (𝑥 = 𝑋 → {𝑥} = {𝑋})
32rspceeqv 3608 . . . 4 ((𝑋𝐴 ∧ {𝑋} = {𝑋}) → ∃𝑥𝐴 {𝑋} = {𝑥})
41, 3mpan2 691 . . 3 (𝑋𝐴 → ∃𝑥𝐴 {𝑋} = {𝑥})
54adantl 481 . 2 ((𝐾𝐷𝑋𝐴) → ∃𝑥𝐴 {𝑋} = {𝑥})
6 ispoint.a . . . 4 𝐴 = (Atoms‘𝐾)
7 ispoint.p . . . 4 𝑃 = (Points‘𝐾)
86, 7ispointN 39709 . . 3 (𝐾𝐷 → ({𝑋} ∈ 𝑃 ↔ ∃𝑥𝐴 {𝑋} = {𝑥}))
98adantr 480 . 2 ((𝐾𝐷𝑋𝐴) → ({𝑋} ∈ 𝑃 ↔ ∃𝑥𝐴 {𝑋} = {𝑥}))
105, 9mpbird 257 1 ((𝐾𝐷𝑋𝐴) → {𝑋} ∈ 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  {csn 4585  cfv 6499  Atomscatm 39229  PointscpointsN 39462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fv 6507  df-pointsN 39469
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator