Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ispointN Structured version   Visualization version   GIF version

Theorem ispointN 37683
Description: The predicate "is a point". (Contributed by NM, 2-Oct-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
ispoint.a 𝐴 = (Atoms‘𝐾)
ispoint.p 𝑃 = (Points‘𝐾)
Assertion
Ref Expression
ispointN (𝐾𝐷 → (𝑋𝑃 ↔ ∃𝑎𝐴 𝑋 = {𝑎}))
Distinct variable groups:   𝐴,𝑎   𝑋,𝑎
Allowed substitution hints:   𝐷(𝑎)   𝑃(𝑎)   𝐾(𝑎)

Proof of Theorem ispointN
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ispoint.a . . . 4 𝐴 = (Atoms‘𝐾)
2 ispoint.p . . . 4 𝑃 = (Points‘𝐾)
31, 2pointsetN 37682 . . 3 (𝐾𝐷𝑃 = {𝑥 ∣ ∃𝑎𝐴 𝑥 = {𝑎}})
43eleq2d 2824 . 2 (𝐾𝐷 → (𝑋𝑃𝑋 ∈ {𝑥 ∣ ∃𝑎𝐴 𝑥 = {𝑎}}))
5 snex 5349 . . . . 5 {𝑎} ∈ V
6 eleq1 2826 . . . . 5 (𝑋 = {𝑎} → (𝑋 ∈ V ↔ {𝑎} ∈ V))
75, 6mpbiri 257 . . . 4 (𝑋 = {𝑎} → 𝑋 ∈ V)
87rexlimivw 3210 . . 3 (∃𝑎𝐴 𝑋 = {𝑎} → 𝑋 ∈ V)
9 eqeq1 2742 . . . 4 (𝑥 = 𝑋 → (𝑥 = {𝑎} ↔ 𝑋 = {𝑎}))
109rexbidv 3225 . . 3 (𝑥 = 𝑋 → (∃𝑎𝐴 𝑥 = {𝑎} ↔ ∃𝑎𝐴 𝑋 = {𝑎}))
118, 10elab3 3610 . 2 (𝑋 ∈ {𝑥 ∣ ∃𝑎𝐴 𝑥 = {𝑎}} ↔ ∃𝑎𝐴 𝑋 = {𝑎})
124, 11bitrdi 286 1 (𝐾𝐷 → (𝑋𝑃 ↔ ∃𝑎𝐴 𝑋 = {𝑎}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108  {cab 2715  wrex 3064  Vcvv 3422  {csn 4558  cfv 6418  Atomscatm 37204  PointscpointsN 37436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-pointsN 37443
This theorem is referenced by:  atpointN  37684  pointpsubN  37692
  Copyright terms: Public domain W3C validator