Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ispointN | Structured version Visualization version GIF version |
Description: The predicate "is a point". (Contributed by NM, 2-Oct-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ispoint.a | ⊢ 𝐴 = (Atoms‘𝐾) |
ispoint.p | ⊢ 𝑃 = (Points‘𝐾) |
Ref | Expression |
---|---|
ispointN | ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑃 ↔ ∃𝑎 ∈ 𝐴 𝑋 = {𝑎})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ispoint.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
2 | ispoint.p | . . . 4 ⊢ 𝑃 = (Points‘𝐾) | |
3 | 1, 2 | pointsetN 37781 | . . 3 ⊢ (𝐾 ∈ 𝐷 → 𝑃 = {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = {𝑎}}) |
4 | 3 | eleq2d 2819 | . 2 ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑃 ↔ 𝑋 ∈ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = {𝑎}})) |
5 | snex 5357 | . . . . 5 ⊢ {𝑎} ∈ V | |
6 | eleq1 2821 | . . . . 5 ⊢ (𝑋 = {𝑎} → (𝑋 ∈ V ↔ {𝑎} ∈ V)) | |
7 | 5, 6 | mpbiri 257 | . . . 4 ⊢ (𝑋 = {𝑎} → 𝑋 ∈ V) |
8 | 7 | rexlimivw 3142 | . . 3 ⊢ (∃𝑎 ∈ 𝐴 𝑋 = {𝑎} → 𝑋 ∈ V) |
9 | eqeq1 2737 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 = {𝑎} ↔ 𝑋 = {𝑎})) | |
10 | 9 | rexbidv 3169 | . . 3 ⊢ (𝑥 = 𝑋 → (∃𝑎 ∈ 𝐴 𝑥 = {𝑎} ↔ ∃𝑎 ∈ 𝐴 𝑋 = {𝑎})) |
11 | 8, 10 | elab3 3619 | . 2 ⊢ (𝑋 ∈ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = {𝑎}} ↔ ∃𝑎 ∈ 𝐴 𝑋 = {𝑎}) |
12 | 4, 11 | bitrdi 286 | 1 ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑃 ↔ ∃𝑎 ∈ 𝐴 𝑋 = {𝑎})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1537 ∈ wcel 2101 {cab 2710 ∃wrex 3068 Vcvv 3434 {csn 4564 ‘cfv 6447 Atomscatm 37303 PointscpointsN 37535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-rep 5212 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3224 df-v 3436 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-br 5078 df-opab 5140 df-mpt 5161 df-id 5491 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-iota 6399 df-fun 6449 df-fv 6455 df-pointsN 37542 |
This theorem is referenced by: atpointN 37783 pointpsubN 37791 |
Copyright terms: Public domain | W3C validator |