| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ispointN | Structured version Visualization version GIF version | ||
| Description: The predicate "is a point". (Contributed by NM, 2-Oct-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ispoint.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| ispoint.p | ⊢ 𝑃 = (Points‘𝐾) |
| Ref | Expression |
|---|---|
| ispointN | ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑃 ↔ ∃𝑎 ∈ 𝐴 𝑋 = {𝑎})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ispoint.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 2 | ispoint.p | . . . 4 ⊢ 𝑃 = (Points‘𝐾) | |
| 3 | 1, 2 | pointsetN 39740 | . . 3 ⊢ (𝐾 ∈ 𝐷 → 𝑃 = {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = {𝑎}}) |
| 4 | 3 | eleq2d 2814 | . 2 ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑃 ↔ 𝑋 ∈ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = {𝑎}})) |
| 5 | vsnex 5376 | . . . . 5 ⊢ {𝑎} ∈ V | |
| 6 | eleq1 2816 | . . . . 5 ⊢ (𝑋 = {𝑎} → (𝑋 ∈ V ↔ {𝑎} ∈ V)) | |
| 7 | 5, 6 | mpbiri 258 | . . . 4 ⊢ (𝑋 = {𝑎} → 𝑋 ∈ V) |
| 8 | 7 | rexlimivw 3126 | . . 3 ⊢ (∃𝑎 ∈ 𝐴 𝑋 = {𝑎} → 𝑋 ∈ V) |
| 9 | eqeq1 2733 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 = {𝑎} ↔ 𝑋 = {𝑎})) | |
| 10 | 9 | rexbidv 3153 | . . 3 ⊢ (𝑥 = 𝑋 → (∃𝑎 ∈ 𝐴 𝑥 = {𝑎} ↔ ∃𝑎 ∈ 𝐴 𝑋 = {𝑎})) |
| 11 | 8, 10 | elab3 3644 | . 2 ⊢ (𝑋 ∈ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = {𝑎}} ↔ ∃𝑎 ∈ 𝐴 𝑋 = {𝑎}) |
| 12 | 4, 11 | bitrdi 287 | 1 ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑃 ↔ ∃𝑎 ∈ 𝐴 𝑋 = {𝑎})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 Vcvv 3438 {csn 4579 ‘cfv 6486 Atomscatm 39261 PointscpointsN 39494 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-pointsN 39501 |
| This theorem is referenced by: atpointN 39742 pointpsubN 39750 |
| Copyright terms: Public domain | W3C validator |