| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ispointN | Structured version Visualization version GIF version | ||
| Description: The predicate "is a point". (Contributed by NM, 2-Oct-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ispoint.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| ispoint.p | ⊢ 𝑃 = (Points‘𝐾) |
| Ref | Expression |
|---|---|
| ispointN | ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑃 ↔ ∃𝑎 ∈ 𝐴 𝑋 = {𝑎})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ispoint.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 2 | ispoint.p | . . . 4 ⊢ 𝑃 = (Points‘𝐾) | |
| 3 | 1, 2 | pointsetN 39780 | . . 3 ⊢ (𝐾 ∈ 𝐷 → 𝑃 = {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = {𝑎}}) |
| 4 | 3 | eleq2d 2817 | . 2 ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑃 ↔ 𝑋 ∈ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = {𝑎}})) |
| 5 | vsnex 5367 | . . . . 5 ⊢ {𝑎} ∈ V | |
| 6 | eleq1 2819 | . . . . 5 ⊢ (𝑋 = {𝑎} → (𝑋 ∈ V ↔ {𝑎} ∈ V)) | |
| 7 | 5, 6 | mpbiri 258 | . . . 4 ⊢ (𝑋 = {𝑎} → 𝑋 ∈ V) |
| 8 | 7 | rexlimivw 3129 | . . 3 ⊢ (∃𝑎 ∈ 𝐴 𝑋 = {𝑎} → 𝑋 ∈ V) |
| 9 | eqeq1 2735 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 = {𝑎} ↔ 𝑋 = {𝑎})) | |
| 10 | 9 | rexbidv 3156 | . . 3 ⊢ (𝑥 = 𝑋 → (∃𝑎 ∈ 𝐴 𝑥 = {𝑎} ↔ ∃𝑎 ∈ 𝐴 𝑋 = {𝑎})) |
| 11 | 8, 10 | elab3 3637 | . 2 ⊢ (𝑋 ∈ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = {𝑎}} ↔ ∃𝑎 ∈ 𝐴 𝑋 = {𝑎}) |
| 12 | 4, 11 | bitrdi 287 | 1 ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑃 ↔ ∃𝑎 ∈ 𝐴 𝑋 = {𝑎})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 {cab 2709 ∃wrex 3056 Vcvv 3436 {csn 4571 ‘cfv 6476 Atomscatm 39302 PointscpointsN 39534 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-iota 6432 df-fun 6478 df-fv 6484 df-pointsN 39541 |
| This theorem is referenced by: atpointN 39782 pointpsubN 39790 |
| Copyright terms: Public domain | W3C validator |