![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ispointN | Structured version Visualization version GIF version |
Description: The predicate "is a point". (Contributed by NM, 2-Oct-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ispoint.a | β’ π΄ = (AtomsβπΎ) |
ispoint.p | β’ π = (PointsβπΎ) |
Ref | Expression |
---|---|
ispointN | β’ (πΎ β π· β (π β π β βπ β π΄ π = {π})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ispoint.a | . . . 4 β’ π΄ = (AtomsβπΎ) | |
2 | ispoint.p | . . . 4 β’ π = (PointsβπΎ) | |
3 | 1, 2 | pointsetN 38612 | . . 3 β’ (πΎ β π· β π = {π₯ β£ βπ β π΄ π₯ = {π}}) |
4 | 3 | eleq2d 2820 | . 2 β’ (πΎ β π· β (π β π β π β {π₯ β£ βπ β π΄ π₯ = {π}})) |
5 | vsnex 5430 | . . . . 5 β’ {π} β V | |
6 | eleq1 2822 | . . . . 5 β’ (π = {π} β (π β V β {π} β V)) | |
7 | 5, 6 | mpbiri 258 | . . . 4 β’ (π = {π} β π β V) |
8 | 7 | rexlimivw 3152 | . . 3 β’ (βπ β π΄ π = {π} β π β V) |
9 | eqeq1 2737 | . . . 4 β’ (π₯ = π β (π₯ = {π} β π = {π})) | |
10 | 9 | rexbidv 3179 | . . 3 β’ (π₯ = π β (βπ β π΄ π₯ = {π} β βπ β π΄ π = {π})) |
11 | 8, 10 | elab3 3677 | . 2 β’ (π β {π₯ β£ βπ β π΄ π₯ = {π}} β βπ β π΄ π = {π}) |
12 | 4, 11 | bitrdi 287 | 1 β’ (πΎ β π· β (π β π β βπ β π΄ π = {π})) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1542 β wcel 2107 {cab 2710 βwrex 3071 Vcvv 3475 {csn 4629 βcfv 6544 Atomscatm 38133 PointscpointsN 38366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-pointsN 38373 |
This theorem is referenced by: atpointN 38614 pointpsubN 38622 |
Copyright terms: Public domain | W3C validator |