MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdimlem1 Structured version   Visualization version   GIF version

Theorem axlowdimlem1 28975
Description: Lemma for axlowdim 28994. Establish a particular constant function as a function. (Contributed by Scott Fenton, 29-Jun-2013.)
Assertion
Ref Expression
axlowdimlem1 ((3...𝑁) × {0}):(3...𝑁)⟶ℝ

Proof of Theorem axlowdimlem1
StepHypRef Expression
1 0re 11292 . 2 0 ∈ ℝ
21fconst6 6811 1 ((3...𝑁) × {0}):(3...𝑁)⟶ℝ
Colors of variables: wff setvar class
Syntax hints:  {csn 4648   × cxp 5698  wf 6569  (class class class)co 7448  cr 11183  0cc0 11184  3c3 12349  ...cfz 13567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-1cn 11242  ax-addrcl 11245  ax-rnegex 11255  ax-cnre 11257
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-fun 6575  df-fn 6576  df-f 6577
This theorem is referenced by:  axlowdimlem5  28979  axlowdimlem6  28980  axlowdimlem17  28991
  Copyright terms: Public domain W3C validator