| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axlowdimlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for axlowdim 28940. Establish a particular constant function as a function. (Contributed by Scott Fenton, 29-Jun-2013.) |
| Ref | Expression |
|---|---|
| axlowdimlem1 | ⊢ ((3...𝑁) × {0}):(3...𝑁)⟶ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11237 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | 1 | fconst6 6768 | 1 ⊢ ((3...𝑁) × {0}):(3...𝑁)⟶ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: {csn 4601 × cxp 5652 ⟶wf 6527 (class class class)co 7405 ℝcr 11128 0cc0 11129 3c3 12296 ...cfz 13524 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-1cn 11187 ax-addrcl 11190 ax-rnegex 11200 ax-cnre 11202 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-fun 6533 df-fn 6534 df-f 6535 |
| This theorem is referenced by: axlowdimlem5 28925 axlowdimlem6 28926 axlowdimlem17 28937 |
| Copyright terms: Public domain | W3C validator |