![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axlowdimlem1 | Structured version Visualization version GIF version |
Description: Lemma for axlowdim 28991. Establish a particular constant function as a function. (Contributed by Scott Fenton, 29-Jun-2013.) |
Ref | Expression |
---|---|
axlowdimlem1 | ⊢ ((3...𝑁) × {0}):(3...𝑁)⟶ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11261 | . 2 ⊢ 0 ∈ ℝ | |
2 | 1 | fconst6 6799 | 1 ⊢ ((3...𝑁) × {0}):(3...𝑁)⟶ℝ |
Colors of variables: wff setvar class |
Syntax hints: {csn 4631 × cxp 5687 ⟶wf 6559 (class class class)co 7431 ℝcr 11152 0cc0 11153 3c3 12320 ...cfz 13544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-1cn 11211 ax-addrcl 11214 ax-rnegex 11224 ax-cnre 11226 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-fun 6565 df-fn 6566 df-f 6567 |
This theorem is referenced by: axlowdimlem5 28976 axlowdimlem6 28977 axlowdimlem17 28988 |
Copyright terms: Public domain | W3C validator |