MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdimlem1 Structured version   Visualization version   GIF version

Theorem axlowdimlem1 27213
Description: Lemma for axlowdim 27232. Establish a particular constant function as a function. (Contributed by Scott Fenton, 29-Jun-2013.)
Assertion
Ref Expression
axlowdimlem1 ((3...𝑁) × {0}):(3...𝑁)⟶ℝ

Proof of Theorem axlowdimlem1
StepHypRef Expression
1 0re 10908 . 2 0 ∈ ℝ
21fconst6 6648 1 ((3...𝑁) × {0}):(3...𝑁)⟶ℝ
Colors of variables: wff setvar class
Syntax hints:  {csn 4558   × cxp 5578  wf 6414  (class class class)co 7255  cr 10801  0cc0 10802  3c3 11959  ...cfz 13168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-1cn 10860  ax-addrcl 10863  ax-rnegex 10873  ax-cnre 10875
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-fun 6420  df-fn 6421  df-f 6422
This theorem is referenced by:  axlowdimlem5  27217  axlowdimlem6  27218  axlowdimlem17  27229
  Copyright terms: Public domain W3C validator