| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fconst6 | Structured version Visualization version GIF version | ||
| Description: A constant function as a mapping. (Contributed by Jeff Madsen, 30-Nov-2009.) (Revised by Mario Carneiro, 22-Apr-2015.) |
| Ref | Expression |
|---|---|
| fconst6.1 | ⊢ 𝐵 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| fconst6 | ⊢ (𝐴 × {𝐵}):𝐴⟶𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconst6.1 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
| 2 | fconst6g 6749 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶𝐶) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 × {𝐵}):𝐴⟶𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 {csn 4589 × cxp 5636 ⟶wf 6507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-fun 6513 df-fn 6514 df-f 6515 |
| This theorem is referenced by: ramz 16996 psrlidm 21871 psrbag0 21969 00ply1bas 22124 ply1plusgfvi 22126 mbfpos 25552 i1f0 25588 noxp1o 27575 axlowdimlem1 28869 axlowdimlem7 28875 axlowdim1 28886 hlim0 31164 0cnfn 31909 0lnfn 31914 elrgspnlem1 33193 circlemethnat 34632 circlevma 34633 poimirlem29 37643 poimirlem30 37644 poimirlem31 37645 poimir 37647 broucube 37648 expgrowth 44324 |
| Copyright terms: Public domain | W3C validator |