![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fconst6 | Structured version Visualization version GIF version |
Description: A constant function as a mapping. (Contributed by Jeff Madsen, 30-Nov-2009.) (Revised by Mario Carneiro, 22-Apr-2015.) |
Ref | Expression |
---|---|
fconst6.1 | ⊢ 𝐵 ∈ 𝐶 |
Ref | Expression |
---|---|
fconst6 | ⊢ (𝐴 × {𝐵}):𝐴⟶𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconst6.1 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
2 | fconst6g 6786 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶𝐶) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 × {𝐵}):𝐴⟶𝐶 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2098 {csn 4630 × cxp 5676 ⟶wf 6545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-fun 6551 df-fn 6552 df-f 6553 |
This theorem is referenced by: ramz 16997 psrlidm 21924 psrbag0 22028 00ply1bas 22182 ply1plusgfvi 22184 mbfpos 25624 i1f0 25660 noxp1o 27642 axlowdimlem1 28825 axlowdimlem7 28831 axlowdim1 28842 hlim0 31117 0cnfn 31862 0lnfn 31867 circlemethnat 34404 circlevma 34405 poimirlem29 37253 poimirlem30 37254 poimirlem31 37255 poimir 37257 broucube 37258 expgrowth 43914 |
Copyright terms: Public domain | W3C validator |