| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fconst6 | Structured version Visualization version GIF version | ||
| Description: A constant function as a mapping. (Contributed by Jeff Madsen, 30-Nov-2009.) (Revised by Mario Carneiro, 22-Apr-2015.) |
| Ref | Expression |
|---|---|
| fconst6.1 | ⊢ 𝐵 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| fconst6 | ⊢ (𝐴 × {𝐵}):𝐴⟶𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconst6.1 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
| 2 | fconst6g 6764 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶𝐶) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 × {𝐵}):𝐴⟶𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 {csn 4599 × cxp 5650 ⟶wf 6524 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pr 5400 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-br 5118 df-opab 5180 df-mpt 5200 df-id 5546 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-fun 6530 df-fn 6531 df-f 6532 |
| This theorem is referenced by: ramz 17032 psrlidm 21909 psrbag0 22007 00ply1bas 22162 ply1plusgfvi 22164 mbfpos 25591 i1f0 25627 noxp1o 27613 axlowdimlem1 28855 axlowdimlem7 28861 axlowdim1 28872 hlim0 31150 0cnfn 31895 0lnfn 31900 elrgspnlem1 33174 circlemethnat 34602 circlevma 34603 poimirlem29 37602 poimirlem30 37603 poimirlem31 37604 poimir 37606 broucube 37607 expgrowth 44292 |
| Copyright terms: Public domain | W3C validator |