| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fconst6 | Structured version Visualization version GIF version | ||
| Description: A constant function as a mapping. (Contributed by Jeff Madsen, 30-Nov-2009.) (Revised by Mario Carneiro, 22-Apr-2015.) |
| Ref | Expression |
|---|---|
| fconst6.1 | ⊢ 𝐵 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| fconst6 | ⊢ (𝐴 × {𝐵}):𝐴⟶𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconst6.1 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
| 2 | fconst6g 6719 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶𝐶) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 × {𝐵}):𝐴⟶𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 {csn 4577 × cxp 5619 ⟶wf 6484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-fun 6490 df-fn 6491 df-f 6492 |
| This theorem is referenced by: ramz 16941 psrlidm 21902 psrbag0 22000 00ply1bas 22155 ply1plusgfvi 22157 mbfpos 25582 i1f0 25618 noxp1o 27605 axlowdimlem1 28924 axlowdimlem7 28930 axlowdim1 28941 hlim0 31219 0cnfn 31964 0lnfn 31969 elrgspnlem1 33218 circlemethnat 34677 circlevma 34678 poimirlem29 37712 poimirlem30 37713 poimirlem31 37714 poimir 37716 broucube 37717 expgrowth 44455 |
| Copyright terms: Public domain | W3C validator |