| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fconst6 | Structured version Visualization version GIF version | ||
| Description: A constant function as a mapping. (Contributed by Jeff Madsen, 30-Nov-2009.) (Revised by Mario Carneiro, 22-Apr-2015.) |
| Ref | Expression |
|---|---|
| fconst6.1 | ⊢ 𝐵 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| fconst6 | ⊢ (𝐴 × {𝐵}):𝐴⟶𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconst6.1 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
| 2 | fconst6g 6712 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶𝐶) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 × {𝐵}):𝐴⟶𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 {csn 4576 × cxp 5614 ⟶wf 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-fun 6483 df-fn 6484 df-f 6485 |
| This theorem is referenced by: ramz 16934 psrlidm 21897 psrbag0 21995 00ply1bas 22150 ply1plusgfvi 22152 mbfpos 25577 i1f0 25613 noxp1o 27600 axlowdimlem1 28918 axlowdimlem7 28924 axlowdim1 28935 hlim0 31210 0cnfn 31955 0lnfn 31960 elrgspnlem1 33204 circlemethnat 34649 circlevma 34650 poimirlem29 37688 poimirlem30 37689 poimirlem31 37690 poimir 37692 broucube 37693 expgrowth 44367 |
| Copyright terms: Public domain | W3C validator |