MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fconst6 Structured version   Visualization version   GIF version

Theorem fconst6 6750
Description: A constant function as a mapping. (Contributed by Jeff Madsen, 30-Nov-2009.) (Revised by Mario Carneiro, 22-Apr-2015.)
Hypothesis
Ref Expression
fconst6.1 𝐵𝐶
Assertion
Ref Expression
fconst6 (𝐴 × {𝐵}):𝐴𝐶

Proof of Theorem fconst6
StepHypRef Expression
1 fconst6.1 . 2 𝐵𝐶
2 fconst6g 6749 . 2 (𝐵𝐶 → (𝐴 × {𝐵}):𝐴𝐶)
31, 2ax-mp 5 1 (𝐴 × {𝐵}):𝐴𝐶
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  {csn 4589   × cxp 5636  wf 6507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-fun 6513  df-fn 6514  df-f 6515
This theorem is referenced by:  ramz  16996  psrlidm  21871  psrbag0  21969  00ply1bas  22124  ply1plusgfvi  22126  mbfpos  25552  i1f0  25588  noxp1o  27575  axlowdimlem1  28869  axlowdimlem7  28875  axlowdim1  28886  hlim0  31164  0cnfn  31909  0lnfn  31914  elrgspnlem1  33193  circlemethnat  34632  circlevma  34633  poimirlem29  37643  poimirlem30  37644  poimirlem31  37645  poimir  37647  broucube  37648  expgrowth  44324
  Copyright terms: Public domain W3C validator