MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fconst6 Structured version   Visualization version   GIF version

Theorem fconst6 6781
Description: A constant function as a mapping. (Contributed by Jeff Madsen, 30-Nov-2009.) (Revised by Mario Carneiro, 22-Apr-2015.)
Hypothesis
Ref Expression
fconst6.1 𝐵𝐶
Assertion
Ref Expression
fconst6 (𝐴 × {𝐵}):𝐴𝐶

Proof of Theorem fconst6
StepHypRef Expression
1 fconst6.1 . 2 𝐵𝐶
2 fconst6g 6780 . 2 (𝐵𝐶 → (𝐴 × {𝐵}):𝐴𝐶)
31, 2ax-mp 5 1 (𝐴 × {𝐵}):𝐴𝐶
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  {csn 4628   × cxp 5674  wf 6539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-fun 6545  df-fn 6546  df-f 6547
This theorem is referenced by:  ramz  16957  psrlidm  21522  psrbag0  21622  00ply1bas  21761  ply1plusgfvi  21763  mbfpos  25167  i1f0  25203  noxp1o  27163  axlowdimlem1  28197  axlowdimlem7  28203  axlowdim1  28214  hlim0  30483  0cnfn  31228  0lnfn  31233  circlemethnat  33648  circlevma  33649  poimirlem29  36512  poimirlem30  36513  poimirlem31  36514  poimir  36516  broucube  36517  expgrowth  43084
  Copyright terms: Public domain W3C validator