Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fconst6 | Structured version Visualization version GIF version |
Description: A constant function as a mapping. (Contributed by Jeff Madsen, 30-Nov-2009.) (Revised by Mario Carneiro, 22-Apr-2015.) |
Ref | Expression |
---|---|
fconst6.1 | ⊢ 𝐵 ∈ 𝐶 |
Ref | Expression |
---|---|
fconst6 | ⊢ (𝐴 × {𝐵}):𝐴⟶𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconst6.1 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
2 | fconst6g 6659 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶𝐶) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 × {𝐵}):𝐴⟶𝐶 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2109 {csn 4566 × cxp 5586 ⟶wf 6426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-fun 6432 df-fn 6433 df-f 6434 |
This theorem is referenced by: ramz 16707 psrlidm 21153 psrbag0 21251 00ply1bas 21392 ply1plusgfvi 21394 mbfpos 24796 i1f0 24832 axlowdimlem1 27291 axlowdimlem7 27297 axlowdim1 27308 hlim0 29576 0cnfn 30321 0lnfn 30326 circlemethnat 32600 circlevma 32601 noxp1o 33845 poimirlem29 35785 poimirlem30 35786 poimirlem31 35787 poimir 35789 broucube 35790 expgrowth 41906 |
Copyright terms: Public domain | W3C validator |