MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdimlem17 Structured version   Visualization version   GIF version

Theorem axlowdimlem17 28685
Description: Lemma for axlowdim 28688. Establish a congruence result. (Contributed by Scott Fenton, 22-Apr-2013.) (Proof shortened by Mario Carneiro, 22-May-2014.)
Hypotheses
Ref Expression
axlowdimlem16.1 𝑃 = ({⟨3, -1⟩} βˆͺ (((1...𝑁) βˆ– {3}) Γ— {0}))
axlowdimlem16.2 𝑄 = ({⟨(𝐼 + 1), 1⟩} βˆͺ (((1...𝑁) βˆ– {(𝐼 + 1)}) Γ— {0}))
axlowdimlem17.3 𝐴 = ({⟨1, π‘‹βŸ©, ⟨2, π‘ŒβŸ©} βˆͺ ((3...𝑁) Γ— {0}))
axlowdimlem17.4 𝑋 ∈ ℝ
axlowdimlem17.5 π‘Œ ∈ ℝ
Assertion
Ref Expression
axlowdimlem17 ((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) β†’ βŸ¨π‘ƒ, 𝐴⟩CgrβŸ¨π‘„, 𝐴⟩)

Proof of Theorem axlowdimlem17
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 uzuzle23 12870 . . . . . . . . . . . 12 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ 𝑁 ∈ (β„€β‰₯β€˜2))
21ad2antrr 723 . . . . . . . . . . 11 (((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) ∧ 𝑖 ∈ (1...2)) β†’ 𝑁 ∈ (β„€β‰₯β€˜2))
3 fzss2 13538 . . . . . . . . . . 11 (𝑁 ∈ (β„€β‰₯β€˜2) β†’ (1...2) βŠ† (1...𝑁))
42, 3syl 17 . . . . . . . . . 10 (((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) ∧ 𝑖 ∈ (1...2)) β†’ (1...2) βŠ† (1...𝑁))
5 simpr 484 . . . . . . . . . 10 (((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) ∧ 𝑖 ∈ (1...2)) β†’ 𝑖 ∈ (1...2))
64, 5sseldd 3975 . . . . . . . . 9 (((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) ∧ 𝑖 ∈ (1...2)) β†’ 𝑖 ∈ (1...𝑁))
7 fznuz 13580 . . . . . . . . . . 11 (𝑖 ∈ (1...2) β†’ Β¬ 𝑖 ∈ (β„€β‰₯β€˜(2 + 1)))
87adantl 481 . . . . . . . . . 10 (((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) ∧ 𝑖 ∈ (1...2)) β†’ Β¬ 𝑖 ∈ (β„€β‰₯β€˜(2 + 1)))
9 3z 12592 . . . . . . . . . . . . . 14 3 ∈ β„€
10 uzid 12834 . . . . . . . . . . . . . 14 (3 ∈ β„€ β†’ 3 ∈ (β„€β‰₯β€˜3))
119, 10ax-mp 5 . . . . . . . . . . . . 13 3 ∈ (β„€β‰₯β€˜3)
12 df-3 12273 . . . . . . . . . . . . . 14 3 = (2 + 1)
1312fveq2i 6884 . . . . . . . . . . . . 13 (β„€β‰₯β€˜3) = (β„€β‰₯β€˜(2 + 1))
1411, 13eleqtri 2823 . . . . . . . . . . . 12 3 ∈ (β„€β‰₯β€˜(2 + 1))
15 eleq1 2813 . . . . . . . . . . . 12 (𝑖 = 3 β†’ (𝑖 ∈ (β„€β‰₯β€˜(2 + 1)) ↔ 3 ∈ (β„€β‰₯β€˜(2 + 1))))
1614, 15mpbiri 258 . . . . . . . . . . 11 (𝑖 = 3 β†’ 𝑖 ∈ (β„€β‰₯β€˜(2 + 1)))
1716necon3bi 2959 . . . . . . . . . 10 (Β¬ 𝑖 ∈ (β„€β‰₯β€˜(2 + 1)) β†’ 𝑖 β‰  3)
188, 17syl 17 . . . . . . . . 9 (((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) ∧ 𝑖 ∈ (1...2)) β†’ 𝑖 β‰  3)
19 axlowdimlem16.1 . . . . . . . . . 10 𝑃 = ({⟨3, -1⟩} βˆͺ (((1...𝑁) βˆ– {3}) Γ— {0}))
2019axlowdimlem9 28677 . . . . . . . . 9 ((𝑖 ∈ (1...𝑁) ∧ 𝑖 β‰  3) β†’ (π‘ƒβ€˜π‘–) = 0)
216, 18, 20syl2anc 583 . . . . . . . 8 (((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) ∧ 𝑖 ∈ (1...2)) β†’ (π‘ƒβ€˜π‘–) = 0)
22 elfzuz 13494 . . . . . . . . . . . . . 14 (𝐼 ∈ (2...(𝑁 βˆ’ 1)) β†’ 𝐼 ∈ (β„€β‰₯β€˜2))
2322ad2antlr 724 . . . . . . . . . . . . 13 (((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) ∧ 𝑖 ∈ (1...2)) β†’ 𝐼 ∈ (β„€β‰₯β€˜2))
24 eluzp1p1 12847 . . . . . . . . . . . . 13 (𝐼 ∈ (β„€β‰₯β€˜2) β†’ (𝐼 + 1) ∈ (β„€β‰₯β€˜(2 + 1)))
2523, 24syl 17 . . . . . . . . . . . 12 (((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) ∧ 𝑖 ∈ (1...2)) β†’ (𝐼 + 1) ∈ (β„€β‰₯β€˜(2 + 1)))
26 uzss 12842 . . . . . . . . . . . 12 ((𝐼 + 1) ∈ (β„€β‰₯β€˜(2 + 1)) β†’ (β„€β‰₯β€˜(𝐼 + 1)) βŠ† (β„€β‰₯β€˜(2 + 1)))
2725, 26syl 17 . . . . . . . . . . 11 (((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) ∧ 𝑖 ∈ (1...2)) β†’ (β„€β‰₯β€˜(𝐼 + 1)) βŠ† (β„€β‰₯β€˜(2 + 1)))
2827, 8ssneldd 3977 . . . . . . . . . 10 (((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) ∧ 𝑖 ∈ (1...2)) β†’ Β¬ 𝑖 ∈ (β„€β‰₯β€˜(𝐼 + 1)))
29 eluzelz 12829 . . . . . . . . . . . . . 14 ((𝐼 + 1) ∈ (β„€β‰₯β€˜(2 + 1)) β†’ (𝐼 + 1) ∈ β„€)
3025, 29syl 17 . . . . . . . . . . . . 13 (((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) ∧ 𝑖 ∈ (1...2)) β†’ (𝐼 + 1) ∈ β„€)
31 uzid 12834 . . . . . . . . . . . . 13 ((𝐼 + 1) ∈ β„€ β†’ (𝐼 + 1) ∈ (β„€β‰₯β€˜(𝐼 + 1)))
3230, 31syl 17 . . . . . . . . . . . 12 (((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) ∧ 𝑖 ∈ (1...2)) β†’ (𝐼 + 1) ∈ (β„€β‰₯β€˜(𝐼 + 1)))
33 eleq1 2813 . . . . . . . . . . . 12 (𝑖 = (𝐼 + 1) β†’ (𝑖 ∈ (β„€β‰₯β€˜(𝐼 + 1)) ↔ (𝐼 + 1) ∈ (β„€β‰₯β€˜(𝐼 + 1))))
3432, 33syl5ibrcom 246 . . . . . . . . . . 11 (((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) ∧ 𝑖 ∈ (1...2)) β†’ (𝑖 = (𝐼 + 1) β†’ 𝑖 ∈ (β„€β‰₯β€˜(𝐼 + 1))))
3534necon3bd 2946 . . . . . . . . . 10 (((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) ∧ 𝑖 ∈ (1...2)) β†’ (Β¬ 𝑖 ∈ (β„€β‰₯β€˜(𝐼 + 1)) β†’ 𝑖 β‰  (𝐼 + 1)))
3628, 35mpd 15 . . . . . . . . 9 (((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) ∧ 𝑖 ∈ (1...2)) β†’ 𝑖 β‰  (𝐼 + 1))
37 axlowdimlem16.2 . . . . . . . . . 10 𝑄 = ({⟨(𝐼 + 1), 1⟩} βˆͺ (((1...𝑁) βˆ– {(𝐼 + 1)}) Γ— {0}))
3837axlowdimlem12 28680 . . . . . . . . 9 ((𝑖 ∈ (1...𝑁) ∧ 𝑖 β‰  (𝐼 + 1)) β†’ (π‘„β€˜π‘–) = 0)
396, 36, 38syl2anc 583 . . . . . . . 8 (((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) ∧ 𝑖 ∈ (1...2)) β†’ (π‘„β€˜π‘–) = 0)
4021, 39eqtr4d 2767 . . . . . . 7 (((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) ∧ 𝑖 ∈ (1...2)) β†’ (π‘ƒβ€˜π‘–) = (π‘„β€˜π‘–))
4140oveq1d 7416 . . . . . 6 (((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) ∧ 𝑖 ∈ (1...2)) β†’ ((π‘ƒβ€˜π‘–) βˆ’ (π΄β€˜π‘–)) = ((π‘„β€˜π‘–) βˆ’ (π΄β€˜π‘–)))
4241oveq1d 7416 . . . . 5 (((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) ∧ 𝑖 ∈ (1...2)) β†’ (((π‘ƒβ€˜π‘–) βˆ’ (π΄β€˜π‘–))↑2) = (((π‘„β€˜π‘–) βˆ’ (π΄β€˜π‘–))↑2))
4342sumeq2dv 15646 . . . 4 ((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) β†’ Σ𝑖 ∈ (1...2)(((π‘ƒβ€˜π‘–) βˆ’ (π΄β€˜π‘–))↑2) = Σ𝑖 ∈ (1...2)(((π‘„β€˜π‘–) βˆ’ (π΄β€˜π‘–))↑2))
4419, 37axlowdimlem16 28684 . . . . 5 ((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) β†’ Σ𝑖 ∈ (3...𝑁)((π‘ƒβ€˜π‘–)↑2) = Σ𝑖 ∈ (3...𝑁)((π‘„β€˜π‘–)↑2))
45 axlowdimlem17.3 . . . . . . . . . . . . 13 𝐴 = ({⟨1, π‘‹βŸ©, ⟨2, π‘ŒβŸ©} βˆͺ ((3...𝑁) Γ— {0}))
4645fveq1i 6882 . . . . . . . . . . . 12 (π΄β€˜π‘–) = (({⟨1, π‘‹βŸ©, ⟨2, π‘ŒβŸ©} βˆͺ ((3...𝑁) Γ— {0}))β€˜π‘–)
47 axlowdimlem2 28670 . . . . . . . . . . . . 13 ((1...2) ∩ (3...𝑁)) = βˆ…
48 axlowdimlem17.4 . . . . . . . . . . . . . . . 16 𝑋 ∈ ℝ
49 axlowdimlem17.5 . . . . . . . . . . . . . . . 16 π‘Œ ∈ ℝ
5048, 49axlowdimlem4 28672 . . . . . . . . . . . . . . 15 {⟨1, π‘‹βŸ©, ⟨2, π‘ŒβŸ©}:(1...2)βŸΆβ„
51 ffn 6707 . . . . . . . . . . . . . . 15 ({⟨1, π‘‹βŸ©, ⟨2, π‘ŒβŸ©}:(1...2)βŸΆβ„ β†’ {⟨1, π‘‹βŸ©, ⟨2, π‘ŒβŸ©} Fn (1...2))
5250, 51ax-mp 5 . . . . . . . . . . . . . 14 {⟨1, π‘‹βŸ©, ⟨2, π‘ŒβŸ©} Fn (1...2)
53 axlowdimlem1 28669 . . . . . . . . . . . . . . 15 ((3...𝑁) Γ— {0}):(3...𝑁)βŸΆβ„
54 ffn 6707 . . . . . . . . . . . . . . 15 (((3...𝑁) Γ— {0}):(3...𝑁)βŸΆβ„ β†’ ((3...𝑁) Γ— {0}) Fn (3...𝑁))
5553, 54ax-mp 5 . . . . . . . . . . . . . 14 ((3...𝑁) Γ— {0}) Fn (3...𝑁)
56 fvun2 6973 . . . . . . . . . . . . . 14 (({⟨1, π‘‹βŸ©, ⟨2, π‘ŒβŸ©} Fn (1...2) ∧ ((3...𝑁) Γ— {0}) Fn (3...𝑁) ∧ (((1...2) ∩ (3...𝑁)) = βˆ… ∧ 𝑖 ∈ (3...𝑁))) β†’ (({⟨1, π‘‹βŸ©, ⟨2, π‘ŒβŸ©} βˆͺ ((3...𝑁) Γ— {0}))β€˜π‘–) = (((3...𝑁) Γ— {0})β€˜π‘–))
5752, 55, 56mp3an12 1447 . . . . . . . . . . . . 13 ((((1...2) ∩ (3...𝑁)) = βˆ… ∧ 𝑖 ∈ (3...𝑁)) β†’ (({⟨1, π‘‹βŸ©, ⟨2, π‘ŒβŸ©} βˆͺ ((3...𝑁) Γ— {0}))β€˜π‘–) = (((3...𝑁) Γ— {0})β€˜π‘–))
5847, 57mpan 687 . . . . . . . . . . . 12 (𝑖 ∈ (3...𝑁) β†’ (({⟨1, π‘‹βŸ©, ⟨2, π‘ŒβŸ©} βˆͺ ((3...𝑁) Γ— {0}))β€˜π‘–) = (((3...𝑁) Γ— {0})β€˜π‘–))
5946, 58eqtrid 2776 . . . . . . . . . . 11 (𝑖 ∈ (3...𝑁) β†’ (π΄β€˜π‘–) = (((3...𝑁) Γ— {0})β€˜π‘–))
60 c0ex 11205 . . . . . . . . . . . 12 0 ∈ V
6160fvconst2 7197 . . . . . . . . . . 11 (𝑖 ∈ (3...𝑁) β†’ (((3...𝑁) Γ— {0})β€˜π‘–) = 0)
6259, 61eqtrd 2764 . . . . . . . . . 10 (𝑖 ∈ (3...𝑁) β†’ (π΄β€˜π‘–) = 0)
6362adantl 481 . . . . . . . . 9 (((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) ∧ 𝑖 ∈ (3...𝑁)) β†’ (π΄β€˜π‘–) = 0)
6463oveq2d 7417 . . . . . . . 8 (((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) ∧ 𝑖 ∈ (3...𝑁)) β†’ ((π‘ƒβ€˜π‘–) βˆ’ (π΄β€˜π‘–)) = ((π‘ƒβ€˜π‘–) βˆ’ 0))
6519axlowdimlem7 28675 . . . . . . . . . . 11 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ 𝑃 ∈ (π”Όβ€˜π‘))
6665ad2antrr 723 . . . . . . . . . 10 (((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) ∧ 𝑖 ∈ (3...𝑁)) β†’ 𝑃 ∈ (π”Όβ€˜π‘))
67 3nn 12288 . . . . . . . . . . . . . 14 3 ∈ β„•
68 nnuz 12862 . . . . . . . . . . . . . 14 β„• = (β„€β‰₯β€˜1)
6967, 68eleqtri 2823 . . . . . . . . . . . . 13 3 ∈ (β„€β‰₯β€˜1)
70 fzss1 13537 . . . . . . . . . . . . 13 (3 ∈ (β„€β‰₯β€˜1) β†’ (3...𝑁) βŠ† (1...𝑁))
7169, 70ax-mp 5 . . . . . . . . . . . 12 (3...𝑁) βŠ† (1...𝑁)
7271sseli 3970 . . . . . . . . . . 11 (𝑖 ∈ (3...𝑁) β†’ 𝑖 ∈ (1...𝑁))
7372adantl 481 . . . . . . . . . 10 (((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) ∧ 𝑖 ∈ (3...𝑁)) β†’ 𝑖 ∈ (1...𝑁))
74 fveecn 28629 . . . . . . . . . 10 ((𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝑖 ∈ (1...𝑁)) β†’ (π‘ƒβ€˜π‘–) ∈ β„‚)
7566, 73, 74syl2anc 583 . . . . . . . . 9 (((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) ∧ 𝑖 ∈ (3...𝑁)) β†’ (π‘ƒβ€˜π‘–) ∈ β„‚)
7675subid1d 11557 . . . . . . . 8 (((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) ∧ 𝑖 ∈ (3...𝑁)) β†’ ((π‘ƒβ€˜π‘–) βˆ’ 0) = (π‘ƒβ€˜π‘–))
7764, 76eqtrd 2764 . . . . . . 7 (((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) ∧ 𝑖 ∈ (3...𝑁)) β†’ ((π‘ƒβ€˜π‘–) βˆ’ (π΄β€˜π‘–)) = (π‘ƒβ€˜π‘–))
7877oveq1d 7416 . . . . . 6 (((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) ∧ 𝑖 ∈ (3...𝑁)) β†’ (((π‘ƒβ€˜π‘–) βˆ’ (π΄β€˜π‘–))↑2) = ((π‘ƒβ€˜π‘–)↑2))
7978sumeq2dv 15646 . . . . 5 ((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) β†’ Σ𝑖 ∈ (3...𝑁)(((π‘ƒβ€˜π‘–) βˆ’ (π΄β€˜π‘–))↑2) = Σ𝑖 ∈ (3...𝑁)((π‘ƒβ€˜π‘–)↑2))
8063oveq2d 7417 . . . . . . . 8 (((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) ∧ 𝑖 ∈ (3...𝑁)) β†’ ((π‘„β€˜π‘–) βˆ’ (π΄β€˜π‘–)) = ((π‘„β€˜π‘–) βˆ’ 0))
81 eluzge3nn 12871 . . . . . . . . . . 11 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ 𝑁 ∈ β„•)
82 2eluzge1 12875 . . . . . . . . . . . . 13 2 ∈ (β„€β‰₯β€˜1)
83 fzss1 13537 . . . . . . . . . . . . 13 (2 ∈ (β„€β‰₯β€˜1) β†’ (2...(𝑁 βˆ’ 1)) βŠ† (1...(𝑁 βˆ’ 1)))
8482, 83ax-mp 5 . . . . . . . . . . . 12 (2...(𝑁 βˆ’ 1)) βŠ† (1...(𝑁 βˆ’ 1))
8584sseli 3970 . . . . . . . . . . 11 (𝐼 ∈ (2...(𝑁 βˆ’ 1)) β†’ 𝐼 ∈ (1...(𝑁 βˆ’ 1)))
8637axlowdimlem10 28678 . . . . . . . . . . 11 ((𝑁 ∈ β„• ∧ 𝐼 ∈ (1...(𝑁 βˆ’ 1))) β†’ 𝑄 ∈ (π”Όβ€˜π‘))
8781, 85, 86syl2an 595 . . . . . . . . . 10 ((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) β†’ 𝑄 ∈ (π”Όβ€˜π‘))
88 fveecn 28629 . . . . . . . . . 10 ((𝑄 ∈ (π”Όβ€˜π‘) ∧ 𝑖 ∈ (1...𝑁)) β†’ (π‘„β€˜π‘–) ∈ β„‚)
8987, 72, 88syl2an 595 . . . . . . . . 9 (((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) ∧ 𝑖 ∈ (3...𝑁)) β†’ (π‘„β€˜π‘–) ∈ β„‚)
9089subid1d 11557 . . . . . . . 8 (((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) ∧ 𝑖 ∈ (3...𝑁)) β†’ ((π‘„β€˜π‘–) βˆ’ 0) = (π‘„β€˜π‘–))
9180, 90eqtrd 2764 . . . . . . 7 (((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) ∧ 𝑖 ∈ (3...𝑁)) β†’ ((π‘„β€˜π‘–) βˆ’ (π΄β€˜π‘–)) = (π‘„β€˜π‘–))
9291oveq1d 7416 . . . . . 6 (((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) ∧ 𝑖 ∈ (3...𝑁)) β†’ (((π‘„β€˜π‘–) βˆ’ (π΄β€˜π‘–))↑2) = ((π‘„β€˜π‘–)↑2))
9392sumeq2dv 15646 . . . . 5 ((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) β†’ Σ𝑖 ∈ (3...𝑁)(((π‘„β€˜π‘–) βˆ’ (π΄β€˜π‘–))↑2) = Σ𝑖 ∈ (3...𝑁)((π‘„β€˜π‘–)↑2))
9444, 79, 933eqtr4d 2774 . . . 4 ((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) β†’ Σ𝑖 ∈ (3...𝑁)(((π‘ƒβ€˜π‘–) βˆ’ (π΄β€˜π‘–))↑2) = Σ𝑖 ∈ (3...𝑁)(((π‘„β€˜π‘–) βˆ’ (π΄β€˜π‘–))↑2))
9543, 94oveq12d 7419 . . 3 ((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) β†’ (Σ𝑖 ∈ (1...2)(((π‘ƒβ€˜π‘–) βˆ’ (π΄β€˜π‘–))↑2) + Σ𝑖 ∈ (3...𝑁)(((π‘ƒβ€˜π‘–) βˆ’ (π΄β€˜π‘–))↑2)) = (Σ𝑖 ∈ (1...2)(((π‘„β€˜π‘–) βˆ’ (π΄β€˜π‘–))↑2) + Σ𝑖 ∈ (3...𝑁)(((π‘„β€˜π‘–) βˆ’ (π΄β€˜π‘–))↑2)))
9647a1i 11 . . . 4 ((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) β†’ ((1...2) ∩ (3...𝑁)) = βˆ…)
97 eluzelre 12830 . . . . . . . . . 10 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ 𝑁 ∈ ℝ)
98 eluzle 12832 . . . . . . . . . 10 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ 3 ≀ 𝑁)
99 2re 12283 . . . . . . . . . . . 12 2 ∈ ℝ
100 3re 12289 . . . . . . . . . . . 12 3 ∈ ℝ
101 2lt3 12381 . . . . . . . . . . . 12 2 < 3
10299, 100, 101ltleii 11334 . . . . . . . . . . 11 2 ≀ 3
103 letr 11305 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ 3 ∈ ℝ ∧ 𝑁 ∈ ℝ) β†’ ((2 ≀ 3 ∧ 3 ≀ 𝑁) β†’ 2 ≀ 𝑁))
10499, 100, 103mp3an12 1447 . . . . . . . . . . 11 (𝑁 ∈ ℝ β†’ ((2 ≀ 3 ∧ 3 ≀ 𝑁) β†’ 2 ≀ 𝑁))
105102, 104mpani 693 . . . . . . . . . 10 (𝑁 ∈ ℝ β†’ (3 ≀ 𝑁 β†’ 2 ≀ 𝑁))
10697, 98, 105sylc 65 . . . . . . . . 9 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ 2 ≀ 𝑁)
107 1le2 12418 . . . . . . . . 9 1 ≀ 2
108106, 107jctil 519 . . . . . . . 8 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ (1 ≀ 2 ∧ 2 ≀ 𝑁))
109108adantr 480 . . . . . . 7 ((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) β†’ (1 ≀ 2 ∧ 2 ≀ 𝑁))
110 eluzelz 12829 . . . . . . . . 9 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ 𝑁 ∈ β„€)
111110adantr 480 . . . . . . . 8 ((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) β†’ 𝑁 ∈ β„€)
112 2z 12591 . . . . . . . . 9 2 ∈ β„€
113 1z 12589 . . . . . . . . 9 1 ∈ β„€
114 elfz 13487 . . . . . . . . 9 ((2 ∈ β„€ ∧ 1 ∈ β„€ ∧ 𝑁 ∈ β„€) β†’ (2 ∈ (1...𝑁) ↔ (1 ≀ 2 ∧ 2 ≀ 𝑁)))
115112, 113, 114mp3an12 1447 . . . . . . . 8 (𝑁 ∈ β„€ β†’ (2 ∈ (1...𝑁) ↔ (1 ≀ 2 ∧ 2 ≀ 𝑁)))
116111, 115syl 17 . . . . . . 7 ((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) β†’ (2 ∈ (1...𝑁) ↔ (1 ≀ 2 ∧ 2 ≀ 𝑁)))
117109, 116mpbird 257 . . . . . 6 ((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) β†’ 2 ∈ (1...𝑁))
118 fzsplit 13524 . . . . . 6 (2 ∈ (1...𝑁) β†’ (1...𝑁) = ((1...2) βˆͺ ((2 + 1)...𝑁)))
119117, 118syl 17 . . . . 5 ((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) β†’ (1...𝑁) = ((1...2) βˆͺ ((2 + 1)...𝑁)))
12012oveq1i 7411 . . . . . 6 (3...𝑁) = ((2 + 1)...𝑁)
121120uneq2i 4152 . . . . 5 ((1...2) βˆͺ (3...𝑁)) = ((1...2) βˆͺ ((2 + 1)...𝑁))
122119, 121eqtr4di 2782 . . . 4 ((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) β†’ (1...𝑁) = ((1...2) βˆͺ (3...𝑁)))
123 fzfid 13935 . . . 4 ((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) β†’ (1...𝑁) ∈ Fin)
12465ad2antrr 723 . . . . . . 7 (((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) ∧ 𝑖 ∈ (1...𝑁)) β†’ 𝑃 ∈ (π”Όβ€˜π‘))
125124, 74sylancom 587 . . . . . 6 (((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) ∧ 𝑖 ∈ (1...𝑁)) β†’ (π‘ƒβ€˜π‘–) ∈ β„‚)
12648, 49axlowdimlem5 28673 . . . . . . . . . 10 (𝑁 ∈ (β„€β‰₯β€˜2) β†’ ({⟨1, π‘‹βŸ©, ⟨2, π‘ŒβŸ©} βˆͺ ((3...𝑁) Γ— {0})) ∈ (π”Όβ€˜π‘))
12745, 126eqeltrid 2829 . . . . . . . . 9 (𝑁 ∈ (β„€β‰₯β€˜2) β†’ 𝐴 ∈ (π”Όβ€˜π‘))
1281, 127syl 17 . . . . . . . 8 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ 𝐴 ∈ (π”Όβ€˜π‘))
129128ad2antrr 723 . . . . . . 7 (((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) ∧ 𝑖 ∈ (1...𝑁)) β†’ 𝐴 ∈ (π”Όβ€˜π‘))
130 fveecn 28629 . . . . . . 7 ((𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝑖 ∈ (1...𝑁)) β†’ (π΄β€˜π‘–) ∈ β„‚)
131129, 130sylancom 587 . . . . . 6 (((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) ∧ 𝑖 ∈ (1...𝑁)) β†’ (π΄β€˜π‘–) ∈ β„‚)
132125, 131subcld 11568 . . . . 5 (((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) ∧ 𝑖 ∈ (1...𝑁)) β†’ ((π‘ƒβ€˜π‘–) βˆ’ (π΄β€˜π‘–)) ∈ β„‚)
133132sqcld 14106 . . . 4 (((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) ∧ 𝑖 ∈ (1...𝑁)) β†’ (((π‘ƒβ€˜π‘–) βˆ’ (π΄β€˜π‘–))↑2) ∈ β„‚)
13496, 122, 123, 133fsumsplit 15684 . . 3 ((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) β†’ Σ𝑖 ∈ (1...𝑁)(((π‘ƒβ€˜π‘–) βˆ’ (π΄β€˜π‘–))↑2) = (Σ𝑖 ∈ (1...2)(((π‘ƒβ€˜π‘–) βˆ’ (π΄β€˜π‘–))↑2) + Σ𝑖 ∈ (3...𝑁)(((π‘ƒβ€˜π‘–) βˆ’ (π΄β€˜π‘–))↑2)))
13587, 88sylan 579 . . . . . 6 (((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) ∧ 𝑖 ∈ (1...𝑁)) β†’ (π‘„β€˜π‘–) ∈ β„‚)
136135, 131subcld 11568 . . . . 5 (((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) ∧ 𝑖 ∈ (1...𝑁)) β†’ ((π‘„β€˜π‘–) βˆ’ (π΄β€˜π‘–)) ∈ β„‚)
137136sqcld 14106 . . . 4 (((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) ∧ 𝑖 ∈ (1...𝑁)) β†’ (((π‘„β€˜π‘–) βˆ’ (π΄β€˜π‘–))↑2) ∈ β„‚)
13896, 122, 123, 137fsumsplit 15684 . . 3 ((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) β†’ Σ𝑖 ∈ (1...𝑁)(((π‘„β€˜π‘–) βˆ’ (π΄β€˜π‘–))↑2) = (Σ𝑖 ∈ (1...2)(((π‘„β€˜π‘–) βˆ’ (π΄β€˜π‘–))↑2) + Σ𝑖 ∈ (3...𝑁)(((π‘„β€˜π‘–) βˆ’ (π΄β€˜π‘–))↑2)))
13995, 134, 1383eqtr4d 2774 . 2 ((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) β†’ Σ𝑖 ∈ (1...𝑁)(((π‘ƒβ€˜π‘–) βˆ’ (π΄β€˜π‘–))↑2) = Σ𝑖 ∈ (1...𝑁)(((π‘„β€˜π‘–) βˆ’ (π΄β€˜π‘–))↑2))
14065adantr 480 . . 3 ((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) β†’ 𝑃 ∈ (π”Όβ€˜π‘))
141128adantr 480 . . 3 ((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) β†’ 𝐴 ∈ (π”Όβ€˜π‘))
142 brcgr 28627 . . 3 (((𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘)) ∧ (𝑄 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘))) β†’ (βŸ¨π‘ƒ, 𝐴⟩CgrβŸ¨π‘„, 𝐴⟩ ↔ Σ𝑖 ∈ (1...𝑁)(((π‘ƒβ€˜π‘–) βˆ’ (π΄β€˜π‘–))↑2) = Σ𝑖 ∈ (1...𝑁)(((π‘„β€˜π‘–) βˆ’ (π΄β€˜π‘–))↑2)))
143140, 141, 87, 141, 142syl22anc 836 . 2 ((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) β†’ (βŸ¨π‘ƒ, 𝐴⟩CgrβŸ¨π‘„, 𝐴⟩ ↔ Σ𝑖 ∈ (1...𝑁)(((π‘ƒβ€˜π‘–) βˆ’ (π΄β€˜π‘–))↑2) = Σ𝑖 ∈ (1...𝑁)(((π‘„β€˜π‘–) βˆ’ (π΄β€˜π‘–))↑2)))
144139, 143mpbird 257 1 ((𝑁 ∈ (β„€β‰₯β€˜3) ∧ 𝐼 ∈ (2...(𝑁 βˆ’ 1))) β†’ βŸ¨π‘ƒ, 𝐴⟩CgrβŸ¨π‘„, 𝐴⟩)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1533   ∈ wcel 2098   β‰  wne 2932   βˆ– cdif 3937   βˆͺ cun 3938   ∩ cin 3939   βŠ† wss 3940  βˆ…c0 4314  {csn 4620  {cpr 4622  βŸ¨cop 4626   class class class wbr 5138   Γ— cxp 5664   Fn wfn 6528  βŸΆwf 6529  β€˜cfv 6533  (class class class)co 7401  β„‚cc 11104  β„cr 11105  0cc0 11106  1c1 11107   + caddc 11109   ≀ cle 11246   βˆ’ cmin 11441  -cneg 11442  β„•cn 12209  2c2 12264  3c3 12265  β„€cz 12555  β„€β‰₯cuz 12819  ...cfz 13481  β†‘cexp 14024  Ξ£csu 15629  π”Όcee 28615  Cgrccgr 28617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-oi 9501  df-card 9930  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-n0 12470  df-z 12556  df-uz 12820  df-rp 12972  df-fz 13482  df-fzo 13625  df-seq 13964  df-exp 14025  df-hash 14288  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-clim 15429  df-sum 15630  df-ee 28618  df-cgr 28620
This theorem is referenced by:  axlowdim  28688
  Copyright terms: Public domain W3C validator