Step | Hyp | Ref
| Expression |
1 | | uzuzle23 12485 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈
(ℤ≥‘3) → 𝑁 ∈
(ℤ≥‘2)) |
2 | 1 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → 𝑁 ∈
(ℤ≥‘2)) |
3 | | fzss2 13152 |
. . . . . . . . . . 11
⊢ (𝑁 ∈
(ℤ≥‘2) → (1...2) ⊆ (1...𝑁)) |
4 | 2, 3 | syl 17 |
. . . . . . . . . 10
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (1...2) ⊆
(1...𝑁)) |
5 | | simpr 488 |
. . . . . . . . . 10
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → 𝑖 ∈ (1...2)) |
6 | 4, 5 | sseldd 3902 |
. . . . . . . . 9
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → 𝑖 ∈ (1...𝑁)) |
7 | | fznuz 13194 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ (1...2) → ¬
𝑖 ∈
(ℤ≥‘(2 + 1))) |
8 | 7 | adantl 485 |
. . . . . . . . . 10
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → ¬ 𝑖 ∈
(ℤ≥‘(2 + 1))) |
9 | | 3z 12210 |
. . . . . . . . . . . . . 14
⊢ 3 ∈
ℤ |
10 | | uzid 12453 |
. . . . . . . . . . . . . 14
⊢ (3 ∈
ℤ → 3 ∈ (ℤ≥‘3)) |
11 | 9, 10 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ 3 ∈
(ℤ≥‘3) |
12 | | df-3 11894 |
. . . . . . . . . . . . . 14
⊢ 3 = (2 +
1) |
13 | 12 | fveq2i 6720 |
. . . . . . . . . . . . 13
⊢
(ℤ≥‘3) = (ℤ≥‘(2 +
1)) |
14 | 11, 13 | eleqtri 2836 |
. . . . . . . . . . . 12
⊢ 3 ∈
(ℤ≥‘(2 + 1)) |
15 | | eleq1 2825 |
. . . . . . . . . . . 12
⊢ (𝑖 = 3 → (𝑖 ∈ (ℤ≥‘(2 +
1)) ↔ 3 ∈ (ℤ≥‘(2 + 1)))) |
16 | 14, 15 | mpbiri 261 |
. . . . . . . . . . 11
⊢ (𝑖 = 3 → 𝑖 ∈ (ℤ≥‘(2 +
1))) |
17 | 16 | necon3bi 2967 |
. . . . . . . . . 10
⊢ (¬
𝑖 ∈
(ℤ≥‘(2 + 1)) → 𝑖 ≠ 3) |
18 | 8, 17 | syl 17 |
. . . . . . . . 9
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → 𝑖 ≠ 3) |
19 | | axlowdimlem16.1 |
. . . . . . . . . 10
⊢ 𝑃 = ({〈3, -1〉} ∪
(((1...𝑁) ∖ {3})
× {0})) |
20 | 19 | axlowdimlem9 27041 |
. . . . . . . . 9
⊢ ((𝑖 ∈ (1...𝑁) ∧ 𝑖 ≠ 3) → (𝑃‘𝑖) = 0) |
21 | 6, 18, 20 | syl2anc 587 |
. . . . . . . 8
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (𝑃‘𝑖) = 0) |
22 | | elfzuz 13108 |
. . . . . . . . . . . . . 14
⊢ (𝐼 ∈ (2...(𝑁 − 1)) → 𝐼 ∈
(ℤ≥‘2)) |
23 | 22 | ad2antlr 727 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → 𝐼 ∈
(ℤ≥‘2)) |
24 | | eluzp1p1 12466 |
. . . . . . . . . . . . 13
⊢ (𝐼 ∈
(ℤ≥‘2) → (𝐼 + 1) ∈
(ℤ≥‘(2 + 1))) |
25 | 23, 24 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (𝐼 + 1) ∈
(ℤ≥‘(2 + 1))) |
26 | | uzss 12461 |
. . . . . . . . . . . 12
⊢ ((𝐼 + 1) ∈
(ℤ≥‘(2 + 1)) →
(ℤ≥‘(𝐼 + 1)) ⊆
(ℤ≥‘(2 + 1))) |
27 | 25, 26 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) →
(ℤ≥‘(𝐼 + 1)) ⊆
(ℤ≥‘(2 + 1))) |
28 | 27, 8 | ssneldd 3904 |
. . . . . . . . . 10
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → ¬ 𝑖 ∈
(ℤ≥‘(𝐼 + 1))) |
29 | | eluzelz 12448 |
. . . . . . . . . . . . . 14
⊢ ((𝐼 + 1) ∈
(ℤ≥‘(2 + 1)) → (𝐼 + 1) ∈ ℤ) |
30 | 25, 29 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (𝐼 + 1) ∈ ℤ) |
31 | | uzid 12453 |
. . . . . . . . . . . . 13
⊢ ((𝐼 + 1) ∈ ℤ →
(𝐼 + 1) ∈
(ℤ≥‘(𝐼 + 1))) |
32 | 30, 31 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (𝐼 + 1) ∈
(ℤ≥‘(𝐼 + 1))) |
33 | | eleq1 2825 |
. . . . . . . . . . . 12
⊢ (𝑖 = (𝐼 + 1) → (𝑖 ∈ (ℤ≥‘(𝐼 + 1)) ↔ (𝐼 + 1) ∈
(ℤ≥‘(𝐼 + 1)))) |
34 | 32, 33 | syl5ibrcom 250 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (𝑖 = (𝐼 + 1) → 𝑖 ∈ (ℤ≥‘(𝐼 + 1)))) |
35 | 34 | necon3bd 2954 |
. . . . . . . . . 10
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (¬ 𝑖 ∈
(ℤ≥‘(𝐼 + 1)) → 𝑖 ≠ (𝐼 + 1))) |
36 | 28, 35 | mpd 15 |
. . . . . . . . 9
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → 𝑖 ≠ (𝐼 + 1)) |
37 | | axlowdimlem16.2 |
. . . . . . . . . 10
⊢ 𝑄 = ({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) |
38 | 37 | axlowdimlem12 27044 |
. . . . . . . . 9
⊢ ((𝑖 ∈ (1...𝑁) ∧ 𝑖 ≠ (𝐼 + 1)) → (𝑄‘𝑖) = 0) |
39 | 6, 36, 38 | syl2anc 587 |
. . . . . . . 8
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (𝑄‘𝑖) = 0) |
40 | 21, 39 | eqtr4d 2780 |
. . . . . . 7
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (𝑃‘𝑖) = (𝑄‘𝑖)) |
41 | 40 | oveq1d 7228 |
. . . . . 6
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → ((𝑃‘𝑖) − (𝐴‘𝑖)) = ((𝑄‘𝑖) − (𝐴‘𝑖))) |
42 | 41 | oveq1d 7228 |
. . . . 5
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (((𝑃‘𝑖) − (𝐴‘𝑖))↑2) = (((𝑄‘𝑖) − (𝐴‘𝑖))↑2)) |
43 | 42 | sumeq2dv 15267 |
. . . 4
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (1...2)(((𝑃‘𝑖) − (𝐴‘𝑖))↑2) = Σ𝑖 ∈ (1...2)(((𝑄‘𝑖) − (𝐴‘𝑖))↑2)) |
44 | 19, 37 | axlowdimlem16 27048 |
. . . . 5
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (3...𝑁)((𝑃‘𝑖)↑2) = Σ𝑖 ∈ (3...𝑁)((𝑄‘𝑖)↑2)) |
45 | | axlowdimlem17.3 |
. . . . . . . . . . . . 13
⊢ 𝐴 = ({〈1, 𝑋〉, 〈2, 𝑌〉} ∪ ((3...𝑁) × {0})) |
46 | 45 | fveq1i 6718 |
. . . . . . . . . . . 12
⊢ (𝐴‘𝑖) = (({〈1, 𝑋〉, 〈2, 𝑌〉} ∪ ((3...𝑁) × {0}))‘𝑖) |
47 | | axlowdimlem2 27034 |
. . . . . . . . . . . . 13
⊢ ((1...2)
∩ (3...𝑁)) =
∅ |
48 | | axlowdimlem17.4 |
. . . . . . . . . . . . . . . 16
⊢ 𝑋 ∈ ℝ |
49 | | axlowdimlem17.5 |
. . . . . . . . . . . . . . . 16
⊢ 𝑌 ∈ ℝ |
50 | 48, 49 | axlowdimlem4 27036 |
. . . . . . . . . . . . . . 15
⊢ {〈1,
𝑋〉, 〈2, 𝑌〉}:(1...2)⟶ℝ |
51 | | ffn 6545 |
. . . . . . . . . . . . . . 15
⊢
({〈1, 𝑋〉,
〈2, 𝑌〉}:(1...2)⟶ℝ →
{〈1, 𝑋〉, 〈2,
𝑌〉} Fn
(1...2)) |
52 | 50, 51 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ {〈1,
𝑋〉, 〈2, 𝑌〉} Fn
(1...2) |
53 | | axlowdimlem1 27033 |
. . . . . . . . . . . . . . 15
⊢
((3...𝑁) ×
{0}):(3...𝑁)⟶ℝ |
54 | | ffn 6545 |
. . . . . . . . . . . . . . 15
⊢
(((3...𝑁) ×
{0}):(3...𝑁)⟶ℝ
→ ((3...𝑁) ×
{0}) Fn (3...𝑁)) |
55 | 53, 54 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢
((3...𝑁) ×
{0}) Fn (3...𝑁) |
56 | | fvun2 6803 |
. . . . . . . . . . . . . 14
⊢
(({〈1, 𝑋〉,
〈2, 𝑌〉} Fn
(1...2) ∧ ((3...𝑁)
× {0}) Fn (3...𝑁)
∧ (((1...2) ∩ (3...𝑁)) = ∅ ∧ 𝑖 ∈ (3...𝑁))) → (({〈1, 𝑋〉, 〈2, 𝑌〉} ∪ ((3...𝑁) × {0}))‘𝑖) = (((3...𝑁) × {0})‘𝑖)) |
57 | 52, 55, 56 | mp3an12 1453 |
. . . . . . . . . . . . 13
⊢
((((1...2) ∩ (3...𝑁)) = ∅ ∧ 𝑖 ∈ (3...𝑁)) → (({〈1, 𝑋〉, 〈2, 𝑌〉} ∪ ((3...𝑁) × {0}))‘𝑖) = (((3...𝑁) × {0})‘𝑖)) |
58 | 47, 57 | mpan 690 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ (3...𝑁) → (({〈1, 𝑋〉, 〈2, 𝑌〉} ∪ ((3...𝑁) × {0}))‘𝑖) = (((3...𝑁) × {0})‘𝑖)) |
59 | 46, 58 | syl5eq 2790 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ (3...𝑁) → (𝐴‘𝑖) = (((3...𝑁) × {0})‘𝑖)) |
60 | | c0ex 10827 |
. . . . . . . . . . . 12
⊢ 0 ∈
V |
61 | 60 | fvconst2 7019 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ (3...𝑁) → (((3...𝑁) × {0})‘𝑖) = 0) |
62 | 59, 61 | eqtrd 2777 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (3...𝑁) → (𝐴‘𝑖) = 0) |
63 | 62 | adantl 485 |
. . . . . . . . 9
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → (𝐴‘𝑖) = 0) |
64 | 63 | oveq2d 7229 |
. . . . . . . 8
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → ((𝑃‘𝑖) − (𝐴‘𝑖)) = ((𝑃‘𝑖) − 0)) |
65 | 19 | axlowdimlem7 27039 |
. . . . . . . . . . 11
⊢ (𝑁 ∈
(ℤ≥‘3) → 𝑃 ∈ (𝔼‘𝑁)) |
66 | 65 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → 𝑃 ∈ (𝔼‘𝑁)) |
67 | | 3nn 11909 |
. . . . . . . . . . . . . 14
⊢ 3 ∈
ℕ |
68 | | nnuz 12477 |
. . . . . . . . . . . . . 14
⊢ ℕ =
(ℤ≥‘1) |
69 | 67, 68 | eleqtri 2836 |
. . . . . . . . . . . . 13
⊢ 3 ∈
(ℤ≥‘1) |
70 | | fzss1 13151 |
. . . . . . . . . . . . 13
⊢ (3 ∈
(ℤ≥‘1) → (3...𝑁) ⊆ (1...𝑁)) |
71 | 69, 70 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
(3...𝑁) ⊆
(1...𝑁) |
72 | 71 | sseli 3896 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ (3...𝑁) → 𝑖 ∈ (1...𝑁)) |
73 | 72 | adantl 485 |
. . . . . . . . . 10
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → 𝑖 ∈ (1...𝑁)) |
74 | | fveecn 26993 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝑃‘𝑖) ∈ ℂ) |
75 | 66, 73, 74 | syl2anc 587 |
. . . . . . . . 9
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → (𝑃‘𝑖) ∈ ℂ) |
76 | 75 | subid1d 11178 |
. . . . . . . 8
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → ((𝑃‘𝑖) − 0) = (𝑃‘𝑖)) |
77 | 64, 76 | eqtrd 2777 |
. . . . . . 7
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → ((𝑃‘𝑖) − (𝐴‘𝑖)) = (𝑃‘𝑖)) |
78 | 77 | oveq1d 7228 |
. . . . . 6
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → (((𝑃‘𝑖) − (𝐴‘𝑖))↑2) = ((𝑃‘𝑖)↑2)) |
79 | 78 | sumeq2dv 15267 |
. . . . 5
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (3...𝑁)(((𝑃‘𝑖) − (𝐴‘𝑖))↑2) = Σ𝑖 ∈ (3...𝑁)((𝑃‘𝑖)↑2)) |
80 | 63 | oveq2d 7229 |
. . . . . . . 8
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → ((𝑄‘𝑖) − (𝐴‘𝑖)) = ((𝑄‘𝑖) − 0)) |
81 | | eluzge3nn 12486 |
. . . . . . . . . . 11
⊢ (𝑁 ∈
(ℤ≥‘3) → 𝑁 ∈ ℕ) |
82 | | 2eluzge1 12490 |
. . . . . . . . . . . . 13
⊢ 2 ∈
(ℤ≥‘1) |
83 | | fzss1 13151 |
. . . . . . . . . . . . 13
⊢ (2 ∈
(ℤ≥‘1) → (2...(𝑁 − 1)) ⊆ (1...(𝑁 − 1))) |
84 | 82, 83 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
(2...(𝑁 − 1))
⊆ (1...(𝑁 −
1)) |
85 | 84 | sseli 3896 |
. . . . . . . . . . 11
⊢ (𝐼 ∈ (2...(𝑁 − 1)) → 𝐼 ∈ (1...(𝑁 − 1))) |
86 | 37 | axlowdimlem10 27042 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑄 ∈ (𝔼‘𝑁)) |
87 | 81, 85, 86 | syl2an 599 |
. . . . . . . . . 10
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝑄 ∈ (𝔼‘𝑁)) |
88 | | fveecn 26993 |
. . . . . . . . . 10
⊢ ((𝑄 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝑄‘𝑖) ∈ ℂ) |
89 | 87, 72, 88 | syl2an 599 |
. . . . . . . . 9
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → (𝑄‘𝑖) ∈ ℂ) |
90 | 89 | subid1d 11178 |
. . . . . . . 8
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → ((𝑄‘𝑖) − 0) = (𝑄‘𝑖)) |
91 | 80, 90 | eqtrd 2777 |
. . . . . . 7
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → ((𝑄‘𝑖) − (𝐴‘𝑖)) = (𝑄‘𝑖)) |
92 | 91 | oveq1d 7228 |
. . . . . 6
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → (((𝑄‘𝑖) − (𝐴‘𝑖))↑2) = ((𝑄‘𝑖)↑2)) |
93 | 92 | sumeq2dv 15267 |
. . . . 5
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (3...𝑁)(((𝑄‘𝑖) − (𝐴‘𝑖))↑2) = Σ𝑖 ∈ (3...𝑁)((𝑄‘𝑖)↑2)) |
94 | 44, 79, 93 | 3eqtr4d 2787 |
. . . 4
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (3...𝑁)(((𝑃‘𝑖) − (𝐴‘𝑖))↑2) = Σ𝑖 ∈ (3...𝑁)(((𝑄‘𝑖) − (𝐴‘𝑖))↑2)) |
95 | 43, 94 | oveq12d 7231 |
. . 3
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (Σ𝑖 ∈ (1...2)(((𝑃‘𝑖) − (𝐴‘𝑖))↑2) + Σ𝑖 ∈ (3...𝑁)(((𝑃‘𝑖) − (𝐴‘𝑖))↑2)) = (Σ𝑖 ∈ (1...2)(((𝑄‘𝑖) − (𝐴‘𝑖))↑2) + Σ𝑖 ∈ (3...𝑁)(((𝑄‘𝑖) − (𝐴‘𝑖))↑2))) |
96 | 47 | a1i 11 |
. . . 4
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → ((1...2) ∩
(3...𝑁)) =
∅) |
97 | | eluzelre 12449 |
. . . . . . . . . 10
⊢ (𝑁 ∈
(ℤ≥‘3) → 𝑁 ∈ ℝ) |
98 | | eluzle 12451 |
. . . . . . . . . 10
⊢ (𝑁 ∈
(ℤ≥‘3) → 3 ≤ 𝑁) |
99 | | 2re 11904 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℝ |
100 | | 3re 11910 |
. . . . . . . . . . . 12
⊢ 3 ∈
ℝ |
101 | | 2lt3 12002 |
. . . . . . . . . . . 12
⊢ 2 <
3 |
102 | 99, 100, 101 | ltleii 10955 |
. . . . . . . . . . 11
⊢ 2 ≤
3 |
103 | | letr 10926 |
. . . . . . . . . . . 12
⊢ ((2
∈ ℝ ∧ 3 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((2 ≤ 3 ∧ 3
≤ 𝑁) → 2 ≤ 𝑁)) |
104 | 99, 100, 103 | mp3an12 1453 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℝ → ((2 ≤
3 ∧ 3 ≤ 𝑁) → 2
≤ 𝑁)) |
105 | 102, 104 | mpani 696 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℝ → (3 ≤
𝑁 → 2 ≤ 𝑁)) |
106 | 97, 98, 105 | sylc 65 |
. . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘3) → 2 ≤ 𝑁) |
107 | | 1le2 12039 |
. . . . . . . . 9
⊢ 1 ≤
2 |
108 | 106, 107 | jctil 523 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘3) → (1 ≤ 2 ∧ 2 ≤ 𝑁)) |
109 | 108 | adantr 484 |
. . . . . . 7
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (1 ≤ 2 ∧ 2 ≤
𝑁)) |
110 | | eluzelz 12448 |
. . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘3) → 𝑁 ∈ ℤ) |
111 | 110 | adantr 484 |
. . . . . . . 8
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝑁 ∈ ℤ) |
112 | | 2z 12209 |
. . . . . . . . 9
⊢ 2 ∈
ℤ |
113 | | 1z 12207 |
. . . . . . . . 9
⊢ 1 ∈
ℤ |
114 | | elfz 13101 |
. . . . . . . . 9
⊢ ((2
∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 ∈ (1...𝑁) ↔ (1 ≤ 2 ∧ 2 ≤
𝑁))) |
115 | 112, 113,
114 | mp3an12 1453 |
. . . . . . . 8
⊢ (𝑁 ∈ ℤ → (2 ∈
(1...𝑁) ↔ (1 ≤ 2
∧ 2 ≤ 𝑁))) |
116 | 111, 115 | syl 17 |
. . . . . . 7
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (2 ∈ (1...𝑁) ↔ (1 ≤ 2 ∧ 2 ≤
𝑁))) |
117 | 109, 116 | mpbird 260 |
. . . . . 6
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 2 ∈ (1...𝑁)) |
118 | | fzsplit 13138 |
. . . . . 6
⊢ (2 ∈
(1...𝑁) → (1...𝑁) = ((1...2) ∪ ((2 +
1)...𝑁))) |
119 | 117, 118 | syl 17 |
. . . . 5
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (1...𝑁) = ((1...2) ∪ ((2 + 1)...𝑁))) |
120 | 12 | oveq1i 7223 |
. . . . . 6
⊢
(3...𝑁) = ((2 +
1)...𝑁) |
121 | 120 | uneq2i 4074 |
. . . . 5
⊢ ((1...2)
∪ (3...𝑁)) = ((1...2)
∪ ((2 + 1)...𝑁)) |
122 | 119, 121 | eqtr4di 2796 |
. . . 4
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (1...𝑁) = ((1...2) ∪ (3...𝑁))) |
123 | | fzfid 13546 |
. . . 4
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (1...𝑁) ∈ Fin) |
124 | 65 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑃 ∈ (𝔼‘𝑁)) |
125 | 124, 74 | sylancom 591 |
. . . . . 6
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑃‘𝑖) ∈ ℂ) |
126 | 48, 49 | axlowdimlem5 27037 |
. . . . . . . . . 10
⊢ (𝑁 ∈
(ℤ≥‘2) → ({〈1, 𝑋〉, 〈2, 𝑌〉} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁)) |
127 | 45, 126 | eqeltrid 2842 |
. . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘2) → 𝐴 ∈ (𝔼‘𝑁)) |
128 | 1, 127 | syl 17 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘3) → 𝐴 ∈ (𝔼‘𝑁)) |
129 | 128 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → 𝐴 ∈ (𝔼‘𝑁)) |
130 | | fveecn 26993 |
. . . . . . 7
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴‘𝑖) ∈ ℂ) |
131 | 129, 130 | sylancom 591 |
. . . . . 6
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴‘𝑖) ∈ ℂ) |
132 | 125, 131 | subcld 11189 |
. . . . 5
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑃‘𝑖) − (𝐴‘𝑖)) ∈ ℂ) |
133 | 132 | sqcld 13714 |
. . . 4
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑃‘𝑖) − (𝐴‘𝑖))↑2) ∈ ℂ) |
134 | 96, 122, 123, 133 | fsumsplit 15305 |
. . 3
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (1...𝑁)(((𝑃‘𝑖) − (𝐴‘𝑖))↑2) = (Σ𝑖 ∈ (1...2)(((𝑃‘𝑖) − (𝐴‘𝑖))↑2) + Σ𝑖 ∈ (3...𝑁)(((𝑃‘𝑖) − (𝐴‘𝑖))↑2))) |
135 | 87, 88 | sylan 583 |
. . . . . 6
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑄‘𝑖) ∈ ℂ) |
136 | 135, 131 | subcld 11189 |
. . . . 5
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑄‘𝑖) − (𝐴‘𝑖)) ∈ ℂ) |
137 | 136 | sqcld 13714 |
. . . 4
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑄‘𝑖) − (𝐴‘𝑖))↑2) ∈ ℂ) |
138 | 96, 122, 123, 137 | fsumsplit 15305 |
. . 3
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (1...𝑁)(((𝑄‘𝑖) − (𝐴‘𝑖))↑2) = (Σ𝑖 ∈ (1...2)(((𝑄‘𝑖) − (𝐴‘𝑖))↑2) + Σ𝑖 ∈ (3...𝑁)(((𝑄‘𝑖) − (𝐴‘𝑖))↑2))) |
139 | 95, 134, 138 | 3eqtr4d 2787 |
. 2
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (1...𝑁)(((𝑃‘𝑖) − (𝐴‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝑄‘𝑖) − (𝐴‘𝑖))↑2)) |
140 | 65 | adantr 484 |
. . 3
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝑃 ∈ (𝔼‘𝑁)) |
141 | 128 | adantr 484 |
. . 3
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝐴 ∈ (𝔼‘𝑁)) |
142 | | brcgr 26991 |
. . 3
⊢ (((𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁))) → (〈𝑃, 𝐴〉Cgr〈𝑄, 𝐴〉 ↔ Σ𝑖 ∈ (1...𝑁)(((𝑃‘𝑖) − (𝐴‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝑄‘𝑖) − (𝐴‘𝑖))↑2))) |
143 | 140, 141,
87, 141, 142 | syl22anc 839 |
. 2
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (〈𝑃, 𝐴〉Cgr〈𝑄, 𝐴〉 ↔ Σ𝑖 ∈ (1...𝑁)(((𝑃‘𝑖) − (𝐴‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝑄‘𝑖) − (𝐴‘𝑖))↑2))) |
144 | 139, 143 | mpbird 260 |
1
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 〈𝑃, 𝐴〉Cgr〈𝑄, 𝐴〉) |