MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdimlem17 Structured version   Visualization version   GIF version

Theorem axlowdimlem17 27229
Description: Lemma for axlowdim 27232. Establish a congruence result. (Contributed by Scott Fenton, 22-Apr-2013.) (Proof shortened by Mario Carneiro, 22-May-2014.)
Hypotheses
Ref Expression
axlowdimlem16.1 𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
axlowdimlem16.2 𝑄 = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))
axlowdimlem17.3 𝐴 = ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩} ∪ ((3...𝑁) × {0}))
axlowdimlem17.4 𝑋 ∈ ℝ
axlowdimlem17.5 𝑌 ∈ ℝ
Assertion
Ref Expression
axlowdimlem17 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → ⟨𝑃, 𝐴⟩Cgr⟨𝑄, 𝐴⟩)

Proof of Theorem axlowdimlem17
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 uzuzle23 12558 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ (ℤ‘2))
21ad2antrr 722 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → 𝑁 ∈ (ℤ‘2))
3 fzss2 13225 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → (1...2) ⊆ (1...𝑁))
42, 3syl 17 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (1...2) ⊆ (1...𝑁))
5 simpr 484 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → 𝑖 ∈ (1...2))
64, 5sseldd 3918 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → 𝑖 ∈ (1...𝑁))
7 fznuz 13267 . . . . . . . . . . 11 (𝑖 ∈ (1...2) → ¬ 𝑖 ∈ (ℤ‘(2 + 1)))
87adantl 481 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → ¬ 𝑖 ∈ (ℤ‘(2 + 1)))
9 3z 12283 . . . . . . . . . . . . . 14 3 ∈ ℤ
10 uzid 12526 . . . . . . . . . . . . . 14 (3 ∈ ℤ → 3 ∈ (ℤ‘3))
119, 10ax-mp 5 . . . . . . . . . . . . 13 3 ∈ (ℤ‘3)
12 df-3 11967 . . . . . . . . . . . . . 14 3 = (2 + 1)
1312fveq2i 6759 . . . . . . . . . . . . 13 (ℤ‘3) = (ℤ‘(2 + 1))
1411, 13eleqtri 2837 . . . . . . . . . . . 12 3 ∈ (ℤ‘(2 + 1))
15 eleq1 2826 . . . . . . . . . . . 12 (𝑖 = 3 → (𝑖 ∈ (ℤ‘(2 + 1)) ↔ 3 ∈ (ℤ‘(2 + 1))))
1614, 15mpbiri 257 . . . . . . . . . . 11 (𝑖 = 3 → 𝑖 ∈ (ℤ‘(2 + 1)))
1716necon3bi 2969 . . . . . . . . . 10 𝑖 ∈ (ℤ‘(2 + 1)) → 𝑖 ≠ 3)
188, 17syl 17 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → 𝑖 ≠ 3)
19 axlowdimlem16.1 . . . . . . . . . 10 𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
2019axlowdimlem9 27221 . . . . . . . . 9 ((𝑖 ∈ (1...𝑁) ∧ 𝑖 ≠ 3) → (𝑃𝑖) = 0)
216, 18, 20syl2anc 583 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (𝑃𝑖) = 0)
22 elfzuz 13181 . . . . . . . . . . . . . 14 (𝐼 ∈ (2...(𝑁 − 1)) → 𝐼 ∈ (ℤ‘2))
2322ad2antlr 723 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → 𝐼 ∈ (ℤ‘2))
24 eluzp1p1 12539 . . . . . . . . . . . . 13 (𝐼 ∈ (ℤ‘2) → (𝐼 + 1) ∈ (ℤ‘(2 + 1)))
2523, 24syl 17 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (𝐼 + 1) ∈ (ℤ‘(2 + 1)))
26 uzss 12534 . . . . . . . . . . . 12 ((𝐼 + 1) ∈ (ℤ‘(2 + 1)) → (ℤ‘(𝐼 + 1)) ⊆ (ℤ‘(2 + 1)))
2725, 26syl 17 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (ℤ‘(𝐼 + 1)) ⊆ (ℤ‘(2 + 1)))
2827, 8ssneldd 3920 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → ¬ 𝑖 ∈ (ℤ‘(𝐼 + 1)))
29 eluzelz 12521 . . . . . . . . . . . . . 14 ((𝐼 + 1) ∈ (ℤ‘(2 + 1)) → (𝐼 + 1) ∈ ℤ)
3025, 29syl 17 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (𝐼 + 1) ∈ ℤ)
31 uzid 12526 . . . . . . . . . . . . 13 ((𝐼 + 1) ∈ ℤ → (𝐼 + 1) ∈ (ℤ‘(𝐼 + 1)))
3230, 31syl 17 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (𝐼 + 1) ∈ (ℤ‘(𝐼 + 1)))
33 eleq1 2826 . . . . . . . . . . . 12 (𝑖 = (𝐼 + 1) → (𝑖 ∈ (ℤ‘(𝐼 + 1)) ↔ (𝐼 + 1) ∈ (ℤ‘(𝐼 + 1))))
3432, 33syl5ibrcom 246 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (𝑖 = (𝐼 + 1) → 𝑖 ∈ (ℤ‘(𝐼 + 1))))
3534necon3bd 2956 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (¬ 𝑖 ∈ (ℤ‘(𝐼 + 1)) → 𝑖 ≠ (𝐼 + 1)))
3628, 35mpd 15 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → 𝑖 ≠ (𝐼 + 1))
37 axlowdimlem16.2 . . . . . . . . . 10 𝑄 = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))
3837axlowdimlem12 27224 . . . . . . . . 9 ((𝑖 ∈ (1...𝑁) ∧ 𝑖 ≠ (𝐼 + 1)) → (𝑄𝑖) = 0)
396, 36, 38syl2anc 583 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (𝑄𝑖) = 0)
4021, 39eqtr4d 2781 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (𝑃𝑖) = (𝑄𝑖))
4140oveq1d 7270 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → ((𝑃𝑖) − (𝐴𝑖)) = ((𝑄𝑖) − (𝐴𝑖)))
4241oveq1d 7270 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (((𝑃𝑖) − (𝐴𝑖))↑2) = (((𝑄𝑖) − (𝐴𝑖))↑2))
4342sumeq2dv 15343 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (1...2)(((𝑃𝑖) − (𝐴𝑖))↑2) = Σ𝑖 ∈ (1...2)(((𝑄𝑖) − (𝐴𝑖))↑2))
4419, 37axlowdimlem16 27228 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (3...𝑁)((𝑃𝑖)↑2) = Σ𝑖 ∈ (3...𝑁)((𝑄𝑖)↑2))
45 axlowdimlem17.3 . . . . . . . . . . . . 13 𝐴 = ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩} ∪ ((3...𝑁) × {0}))
4645fveq1i 6757 . . . . . . . . . . . 12 (𝐴𝑖) = (({⟨1, 𝑋⟩, ⟨2, 𝑌⟩} ∪ ((3...𝑁) × {0}))‘𝑖)
47 axlowdimlem2 27214 . . . . . . . . . . . . 13 ((1...2) ∩ (3...𝑁)) = ∅
48 axlowdimlem17.4 . . . . . . . . . . . . . . . 16 𝑋 ∈ ℝ
49 axlowdimlem17.5 . . . . . . . . . . . . . . . 16 𝑌 ∈ ℝ
5048, 49axlowdimlem4 27216 . . . . . . . . . . . . . . 15 {⟨1, 𝑋⟩, ⟨2, 𝑌⟩}:(1...2)⟶ℝ
51 ffn 6584 . . . . . . . . . . . . . . 15 ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩}:(1...2)⟶ℝ → {⟨1, 𝑋⟩, ⟨2, 𝑌⟩} Fn (1...2))
5250, 51ax-mp 5 . . . . . . . . . . . . . 14 {⟨1, 𝑋⟩, ⟨2, 𝑌⟩} Fn (1...2)
53 axlowdimlem1 27213 . . . . . . . . . . . . . . 15 ((3...𝑁) × {0}):(3...𝑁)⟶ℝ
54 ffn 6584 . . . . . . . . . . . . . . 15 (((3...𝑁) × {0}):(3...𝑁)⟶ℝ → ((3...𝑁) × {0}) Fn (3...𝑁))
5553, 54ax-mp 5 . . . . . . . . . . . . . 14 ((3...𝑁) × {0}) Fn (3...𝑁)
56 fvun2 6842 . . . . . . . . . . . . . 14 (({⟨1, 𝑋⟩, ⟨2, 𝑌⟩} Fn (1...2) ∧ ((3...𝑁) × {0}) Fn (3...𝑁) ∧ (((1...2) ∩ (3...𝑁)) = ∅ ∧ 𝑖 ∈ (3...𝑁))) → (({⟨1, 𝑋⟩, ⟨2, 𝑌⟩} ∪ ((3...𝑁) × {0}))‘𝑖) = (((3...𝑁) × {0})‘𝑖))
5752, 55, 56mp3an12 1449 . . . . . . . . . . . . 13 ((((1...2) ∩ (3...𝑁)) = ∅ ∧ 𝑖 ∈ (3...𝑁)) → (({⟨1, 𝑋⟩, ⟨2, 𝑌⟩} ∪ ((3...𝑁) × {0}))‘𝑖) = (((3...𝑁) × {0})‘𝑖))
5847, 57mpan 686 . . . . . . . . . . . 12 (𝑖 ∈ (3...𝑁) → (({⟨1, 𝑋⟩, ⟨2, 𝑌⟩} ∪ ((3...𝑁) × {0}))‘𝑖) = (((3...𝑁) × {0})‘𝑖))
5946, 58syl5eq 2791 . . . . . . . . . . 11 (𝑖 ∈ (3...𝑁) → (𝐴𝑖) = (((3...𝑁) × {0})‘𝑖))
60 c0ex 10900 . . . . . . . . . . . 12 0 ∈ V
6160fvconst2 7061 . . . . . . . . . . 11 (𝑖 ∈ (3...𝑁) → (((3...𝑁) × {0})‘𝑖) = 0)
6259, 61eqtrd 2778 . . . . . . . . . 10 (𝑖 ∈ (3...𝑁) → (𝐴𝑖) = 0)
6362adantl 481 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → (𝐴𝑖) = 0)
6463oveq2d 7271 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → ((𝑃𝑖) − (𝐴𝑖)) = ((𝑃𝑖) − 0))
6519axlowdimlem7 27219 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → 𝑃 ∈ (𝔼‘𝑁))
6665ad2antrr 722 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → 𝑃 ∈ (𝔼‘𝑁))
67 3nn 11982 . . . . . . . . . . . . . 14 3 ∈ ℕ
68 nnuz 12550 . . . . . . . . . . . . . 14 ℕ = (ℤ‘1)
6967, 68eleqtri 2837 . . . . . . . . . . . . 13 3 ∈ (ℤ‘1)
70 fzss1 13224 . . . . . . . . . . . . 13 (3 ∈ (ℤ‘1) → (3...𝑁) ⊆ (1...𝑁))
7169, 70ax-mp 5 . . . . . . . . . . . 12 (3...𝑁) ⊆ (1...𝑁)
7271sseli 3913 . . . . . . . . . . 11 (𝑖 ∈ (3...𝑁) → 𝑖 ∈ (1...𝑁))
7372adantl 481 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → 𝑖 ∈ (1...𝑁))
74 fveecn 27173 . . . . . . . . . 10 ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝑃𝑖) ∈ ℂ)
7566, 73, 74syl2anc 583 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → (𝑃𝑖) ∈ ℂ)
7675subid1d 11251 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → ((𝑃𝑖) − 0) = (𝑃𝑖))
7764, 76eqtrd 2778 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → ((𝑃𝑖) − (𝐴𝑖)) = (𝑃𝑖))
7877oveq1d 7270 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → (((𝑃𝑖) − (𝐴𝑖))↑2) = ((𝑃𝑖)↑2))
7978sumeq2dv 15343 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (3...𝑁)(((𝑃𝑖) − (𝐴𝑖))↑2) = Σ𝑖 ∈ (3...𝑁)((𝑃𝑖)↑2))
8063oveq2d 7271 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → ((𝑄𝑖) − (𝐴𝑖)) = ((𝑄𝑖) − 0))
81 eluzge3nn 12559 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
82 2eluzge1 12563 . . . . . . . . . . . . 13 2 ∈ (ℤ‘1)
83 fzss1 13224 . . . . . . . . . . . . 13 (2 ∈ (ℤ‘1) → (2...(𝑁 − 1)) ⊆ (1...(𝑁 − 1)))
8482, 83ax-mp 5 . . . . . . . . . . . 12 (2...(𝑁 − 1)) ⊆ (1...(𝑁 − 1))
8584sseli 3913 . . . . . . . . . . 11 (𝐼 ∈ (2...(𝑁 − 1)) → 𝐼 ∈ (1...(𝑁 − 1)))
8637axlowdimlem10 27222 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑄 ∈ (𝔼‘𝑁))
8781, 85, 86syl2an 595 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝑄 ∈ (𝔼‘𝑁))
88 fveecn 27173 . . . . . . . . . 10 ((𝑄 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝑄𝑖) ∈ ℂ)
8987, 72, 88syl2an 595 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → (𝑄𝑖) ∈ ℂ)
9089subid1d 11251 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → ((𝑄𝑖) − 0) = (𝑄𝑖))
9180, 90eqtrd 2778 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → ((𝑄𝑖) − (𝐴𝑖)) = (𝑄𝑖))
9291oveq1d 7270 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → (((𝑄𝑖) − (𝐴𝑖))↑2) = ((𝑄𝑖)↑2))
9392sumeq2dv 15343 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (3...𝑁)(((𝑄𝑖) − (𝐴𝑖))↑2) = Σ𝑖 ∈ (3...𝑁)((𝑄𝑖)↑2))
9444, 79, 933eqtr4d 2788 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (3...𝑁)(((𝑃𝑖) − (𝐴𝑖))↑2) = Σ𝑖 ∈ (3...𝑁)(((𝑄𝑖) − (𝐴𝑖))↑2))
9543, 94oveq12d 7273 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (Σ𝑖 ∈ (1...2)(((𝑃𝑖) − (𝐴𝑖))↑2) + Σ𝑖 ∈ (3...𝑁)(((𝑃𝑖) − (𝐴𝑖))↑2)) = (Σ𝑖 ∈ (1...2)(((𝑄𝑖) − (𝐴𝑖))↑2) + Σ𝑖 ∈ (3...𝑁)(((𝑄𝑖) − (𝐴𝑖))↑2)))
9647a1i 11 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → ((1...2) ∩ (3...𝑁)) = ∅)
97 eluzelre 12522 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℝ)
98 eluzle 12524 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘3) → 3 ≤ 𝑁)
99 2re 11977 . . . . . . . . . . . 12 2 ∈ ℝ
100 3re 11983 . . . . . . . . . . . 12 3 ∈ ℝ
101 2lt3 12075 . . . . . . . . . . . 12 2 < 3
10299, 100, 101ltleii 11028 . . . . . . . . . . 11 2 ≤ 3
103 letr 10999 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ 3 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((2 ≤ 3 ∧ 3 ≤ 𝑁) → 2 ≤ 𝑁))
10499, 100, 103mp3an12 1449 . . . . . . . . . . 11 (𝑁 ∈ ℝ → ((2 ≤ 3 ∧ 3 ≤ 𝑁) → 2 ≤ 𝑁))
105102, 104mpani 692 . . . . . . . . . 10 (𝑁 ∈ ℝ → (3 ≤ 𝑁 → 2 ≤ 𝑁))
10697, 98, 105sylc 65 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → 2 ≤ 𝑁)
107 1le2 12112 . . . . . . . . 9 1 ≤ 2
108106, 107jctil 519 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → (1 ≤ 2 ∧ 2 ≤ 𝑁))
109108adantr 480 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (1 ≤ 2 ∧ 2 ≤ 𝑁))
110 eluzelz 12521 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
111110adantr 480 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝑁 ∈ ℤ)
112 2z 12282 . . . . . . . . 9 2 ∈ ℤ
113 1z 12280 . . . . . . . . 9 1 ∈ ℤ
114 elfz 13174 . . . . . . . . 9 ((2 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 ∈ (1...𝑁) ↔ (1 ≤ 2 ∧ 2 ≤ 𝑁)))
115112, 113, 114mp3an12 1449 . . . . . . . 8 (𝑁 ∈ ℤ → (2 ∈ (1...𝑁) ↔ (1 ≤ 2 ∧ 2 ≤ 𝑁)))
116111, 115syl 17 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (2 ∈ (1...𝑁) ↔ (1 ≤ 2 ∧ 2 ≤ 𝑁)))
117109, 116mpbird 256 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 2 ∈ (1...𝑁))
118 fzsplit 13211 . . . . . 6 (2 ∈ (1...𝑁) → (1...𝑁) = ((1...2) ∪ ((2 + 1)...𝑁)))
119117, 118syl 17 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (1...𝑁) = ((1...2) ∪ ((2 + 1)...𝑁)))
12012oveq1i 7265 . . . . . 6 (3...𝑁) = ((2 + 1)...𝑁)
121120uneq2i 4090 . . . . 5 ((1...2) ∪ (3...𝑁)) = ((1...2) ∪ ((2 + 1)...𝑁))
122119, 121eqtr4di 2797 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (1...𝑁) = ((1...2) ∪ (3...𝑁)))
123 fzfid 13621 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (1...𝑁) ∈ Fin)
12465ad2antrr 722 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑃 ∈ (𝔼‘𝑁))
125124, 74sylancom 587 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑃𝑖) ∈ ℂ)
12648, 49axlowdimlem5 27217 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁))
12745, 126eqeltrid 2843 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 𝐴 ∈ (𝔼‘𝑁))
1281, 127syl 17 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → 𝐴 ∈ (𝔼‘𝑁))
129128ad2antrr 722 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
130 fveecn 27173 . . . . . . 7 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℂ)
131129, 130sylancom 587 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℂ)
132125, 131subcld 11262 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑃𝑖) − (𝐴𝑖)) ∈ ℂ)
133132sqcld 13790 . . . 4 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑃𝑖) − (𝐴𝑖))↑2) ∈ ℂ)
13496, 122, 123, 133fsumsplit 15381 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (1...𝑁)(((𝑃𝑖) − (𝐴𝑖))↑2) = (Σ𝑖 ∈ (1...2)(((𝑃𝑖) − (𝐴𝑖))↑2) + Σ𝑖 ∈ (3...𝑁)(((𝑃𝑖) − (𝐴𝑖))↑2)))
13587, 88sylan 579 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑄𝑖) ∈ ℂ)
136135, 131subcld 11262 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑄𝑖) − (𝐴𝑖)) ∈ ℂ)
137136sqcld 13790 . . . 4 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑄𝑖) − (𝐴𝑖))↑2) ∈ ℂ)
13896, 122, 123, 137fsumsplit 15381 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (1...𝑁)(((𝑄𝑖) − (𝐴𝑖))↑2) = (Σ𝑖 ∈ (1...2)(((𝑄𝑖) − (𝐴𝑖))↑2) + Σ𝑖 ∈ (3...𝑁)(((𝑄𝑖) − (𝐴𝑖))↑2)))
13995, 134, 1383eqtr4d 2788 . 2 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (1...𝑁)(((𝑃𝑖) − (𝐴𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝑄𝑖) − (𝐴𝑖))↑2))
14065adantr 480 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝑃 ∈ (𝔼‘𝑁))
141128adantr 480 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝐴 ∈ (𝔼‘𝑁))
142 brcgr 27171 . . 3 (((𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁))) → (⟨𝑃, 𝐴⟩Cgr⟨𝑄, 𝐴⟩ ↔ Σ𝑖 ∈ (1...𝑁)(((𝑃𝑖) − (𝐴𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝑄𝑖) − (𝐴𝑖))↑2)))
143140, 141, 87, 141, 142syl22anc 835 . 2 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (⟨𝑃, 𝐴⟩Cgr⟨𝑄, 𝐴⟩ ↔ Σ𝑖 ∈ (1...𝑁)(((𝑃𝑖) − (𝐴𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝑄𝑖) − (𝐴𝑖))↑2)))
144139, 143mpbird 256 1 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → ⟨𝑃, 𝐴⟩Cgr⟨𝑄, 𝐴⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  cdif 3880  cun 3881  cin 3882  wss 3883  c0 4253  {csn 4558  {cpr 4560  cop 4564   class class class wbr 5070   × cxp 5578   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805  cle 10941  cmin 11135  -cneg 11136  cn 11903  2c2 11958  3c3 11959  cz 12249  cuz 12511  ...cfz 13168  cexp 13710  Σcsu 15325  𝔼cee 27159  Cgrccgr 27161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-ee 27162  df-cgr 27164
This theorem is referenced by:  axlowdim  27232
  Copyright terms: Public domain W3C validator