MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdimlem17 Structured version   Visualization version   GIF version

Theorem axlowdimlem17 27907
Description: Lemma for axlowdim 27910. Establish a congruence result. (Contributed by Scott Fenton, 22-Apr-2013.) (Proof shortened by Mario Carneiro, 22-May-2014.)
Hypotheses
Ref Expression
axlowdimlem16.1 𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
axlowdimlem16.2 𝑄 = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))
axlowdimlem17.3 𝐴 = ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩} ∪ ((3...𝑁) × {0}))
axlowdimlem17.4 𝑋 ∈ ℝ
axlowdimlem17.5 𝑌 ∈ ℝ
Assertion
Ref Expression
axlowdimlem17 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → ⟨𝑃, 𝐴⟩Cgr⟨𝑄, 𝐴⟩)

Proof of Theorem axlowdimlem17
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 uzuzle23 12814 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ (ℤ‘2))
21ad2antrr 724 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → 𝑁 ∈ (ℤ‘2))
3 fzss2 13481 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → (1...2) ⊆ (1...𝑁))
42, 3syl 17 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (1...2) ⊆ (1...𝑁))
5 simpr 485 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → 𝑖 ∈ (1...2))
64, 5sseldd 3945 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → 𝑖 ∈ (1...𝑁))
7 fznuz 13523 . . . . . . . . . . 11 (𝑖 ∈ (1...2) → ¬ 𝑖 ∈ (ℤ‘(2 + 1)))
87adantl 482 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → ¬ 𝑖 ∈ (ℤ‘(2 + 1)))
9 3z 12536 . . . . . . . . . . . . . 14 3 ∈ ℤ
10 uzid 12778 . . . . . . . . . . . . . 14 (3 ∈ ℤ → 3 ∈ (ℤ‘3))
119, 10ax-mp 5 . . . . . . . . . . . . 13 3 ∈ (ℤ‘3)
12 df-3 12217 . . . . . . . . . . . . . 14 3 = (2 + 1)
1312fveq2i 6845 . . . . . . . . . . . . 13 (ℤ‘3) = (ℤ‘(2 + 1))
1411, 13eleqtri 2836 . . . . . . . . . . . 12 3 ∈ (ℤ‘(2 + 1))
15 eleq1 2825 . . . . . . . . . . . 12 (𝑖 = 3 → (𝑖 ∈ (ℤ‘(2 + 1)) ↔ 3 ∈ (ℤ‘(2 + 1))))
1614, 15mpbiri 257 . . . . . . . . . . 11 (𝑖 = 3 → 𝑖 ∈ (ℤ‘(2 + 1)))
1716necon3bi 2970 . . . . . . . . . 10 𝑖 ∈ (ℤ‘(2 + 1)) → 𝑖 ≠ 3)
188, 17syl 17 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → 𝑖 ≠ 3)
19 axlowdimlem16.1 . . . . . . . . . 10 𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
2019axlowdimlem9 27899 . . . . . . . . 9 ((𝑖 ∈ (1...𝑁) ∧ 𝑖 ≠ 3) → (𝑃𝑖) = 0)
216, 18, 20syl2anc 584 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (𝑃𝑖) = 0)
22 elfzuz 13437 . . . . . . . . . . . . . 14 (𝐼 ∈ (2...(𝑁 − 1)) → 𝐼 ∈ (ℤ‘2))
2322ad2antlr 725 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → 𝐼 ∈ (ℤ‘2))
24 eluzp1p1 12791 . . . . . . . . . . . . 13 (𝐼 ∈ (ℤ‘2) → (𝐼 + 1) ∈ (ℤ‘(2 + 1)))
2523, 24syl 17 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (𝐼 + 1) ∈ (ℤ‘(2 + 1)))
26 uzss 12786 . . . . . . . . . . . 12 ((𝐼 + 1) ∈ (ℤ‘(2 + 1)) → (ℤ‘(𝐼 + 1)) ⊆ (ℤ‘(2 + 1)))
2725, 26syl 17 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (ℤ‘(𝐼 + 1)) ⊆ (ℤ‘(2 + 1)))
2827, 8ssneldd 3947 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → ¬ 𝑖 ∈ (ℤ‘(𝐼 + 1)))
29 eluzelz 12773 . . . . . . . . . . . . . 14 ((𝐼 + 1) ∈ (ℤ‘(2 + 1)) → (𝐼 + 1) ∈ ℤ)
3025, 29syl 17 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (𝐼 + 1) ∈ ℤ)
31 uzid 12778 . . . . . . . . . . . . 13 ((𝐼 + 1) ∈ ℤ → (𝐼 + 1) ∈ (ℤ‘(𝐼 + 1)))
3230, 31syl 17 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (𝐼 + 1) ∈ (ℤ‘(𝐼 + 1)))
33 eleq1 2825 . . . . . . . . . . . 12 (𝑖 = (𝐼 + 1) → (𝑖 ∈ (ℤ‘(𝐼 + 1)) ↔ (𝐼 + 1) ∈ (ℤ‘(𝐼 + 1))))
3432, 33syl5ibrcom 246 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (𝑖 = (𝐼 + 1) → 𝑖 ∈ (ℤ‘(𝐼 + 1))))
3534necon3bd 2957 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (¬ 𝑖 ∈ (ℤ‘(𝐼 + 1)) → 𝑖 ≠ (𝐼 + 1)))
3628, 35mpd 15 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → 𝑖 ≠ (𝐼 + 1))
37 axlowdimlem16.2 . . . . . . . . . 10 𝑄 = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))
3837axlowdimlem12 27902 . . . . . . . . 9 ((𝑖 ∈ (1...𝑁) ∧ 𝑖 ≠ (𝐼 + 1)) → (𝑄𝑖) = 0)
396, 36, 38syl2anc 584 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (𝑄𝑖) = 0)
4021, 39eqtr4d 2779 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (𝑃𝑖) = (𝑄𝑖))
4140oveq1d 7372 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → ((𝑃𝑖) − (𝐴𝑖)) = ((𝑄𝑖) − (𝐴𝑖)))
4241oveq1d 7372 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (((𝑃𝑖) − (𝐴𝑖))↑2) = (((𝑄𝑖) − (𝐴𝑖))↑2))
4342sumeq2dv 15588 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (1...2)(((𝑃𝑖) − (𝐴𝑖))↑2) = Σ𝑖 ∈ (1...2)(((𝑄𝑖) − (𝐴𝑖))↑2))
4419, 37axlowdimlem16 27906 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (3...𝑁)((𝑃𝑖)↑2) = Σ𝑖 ∈ (3...𝑁)((𝑄𝑖)↑2))
45 axlowdimlem17.3 . . . . . . . . . . . . 13 𝐴 = ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩} ∪ ((3...𝑁) × {0}))
4645fveq1i 6843 . . . . . . . . . . . 12 (𝐴𝑖) = (({⟨1, 𝑋⟩, ⟨2, 𝑌⟩} ∪ ((3...𝑁) × {0}))‘𝑖)
47 axlowdimlem2 27892 . . . . . . . . . . . . 13 ((1...2) ∩ (3...𝑁)) = ∅
48 axlowdimlem17.4 . . . . . . . . . . . . . . . 16 𝑋 ∈ ℝ
49 axlowdimlem17.5 . . . . . . . . . . . . . . . 16 𝑌 ∈ ℝ
5048, 49axlowdimlem4 27894 . . . . . . . . . . . . . . 15 {⟨1, 𝑋⟩, ⟨2, 𝑌⟩}:(1...2)⟶ℝ
51 ffn 6668 . . . . . . . . . . . . . . 15 ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩}:(1...2)⟶ℝ → {⟨1, 𝑋⟩, ⟨2, 𝑌⟩} Fn (1...2))
5250, 51ax-mp 5 . . . . . . . . . . . . . 14 {⟨1, 𝑋⟩, ⟨2, 𝑌⟩} Fn (1...2)
53 axlowdimlem1 27891 . . . . . . . . . . . . . . 15 ((3...𝑁) × {0}):(3...𝑁)⟶ℝ
54 ffn 6668 . . . . . . . . . . . . . . 15 (((3...𝑁) × {0}):(3...𝑁)⟶ℝ → ((3...𝑁) × {0}) Fn (3...𝑁))
5553, 54ax-mp 5 . . . . . . . . . . . . . 14 ((3...𝑁) × {0}) Fn (3...𝑁)
56 fvun2 6933 . . . . . . . . . . . . . 14 (({⟨1, 𝑋⟩, ⟨2, 𝑌⟩} Fn (1...2) ∧ ((3...𝑁) × {0}) Fn (3...𝑁) ∧ (((1...2) ∩ (3...𝑁)) = ∅ ∧ 𝑖 ∈ (3...𝑁))) → (({⟨1, 𝑋⟩, ⟨2, 𝑌⟩} ∪ ((3...𝑁) × {0}))‘𝑖) = (((3...𝑁) × {0})‘𝑖))
5752, 55, 56mp3an12 1451 . . . . . . . . . . . . 13 ((((1...2) ∩ (3...𝑁)) = ∅ ∧ 𝑖 ∈ (3...𝑁)) → (({⟨1, 𝑋⟩, ⟨2, 𝑌⟩} ∪ ((3...𝑁) × {0}))‘𝑖) = (((3...𝑁) × {0})‘𝑖))
5847, 57mpan 688 . . . . . . . . . . . 12 (𝑖 ∈ (3...𝑁) → (({⟨1, 𝑋⟩, ⟨2, 𝑌⟩} ∪ ((3...𝑁) × {0}))‘𝑖) = (((3...𝑁) × {0})‘𝑖))
5946, 58eqtrid 2788 . . . . . . . . . . 11 (𝑖 ∈ (3...𝑁) → (𝐴𝑖) = (((3...𝑁) × {0})‘𝑖))
60 c0ex 11149 . . . . . . . . . . . 12 0 ∈ V
6160fvconst2 7153 . . . . . . . . . . 11 (𝑖 ∈ (3...𝑁) → (((3...𝑁) × {0})‘𝑖) = 0)
6259, 61eqtrd 2776 . . . . . . . . . 10 (𝑖 ∈ (3...𝑁) → (𝐴𝑖) = 0)
6362adantl 482 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → (𝐴𝑖) = 0)
6463oveq2d 7373 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → ((𝑃𝑖) − (𝐴𝑖)) = ((𝑃𝑖) − 0))
6519axlowdimlem7 27897 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → 𝑃 ∈ (𝔼‘𝑁))
6665ad2antrr 724 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → 𝑃 ∈ (𝔼‘𝑁))
67 3nn 12232 . . . . . . . . . . . . . 14 3 ∈ ℕ
68 nnuz 12806 . . . . . . . . . . . . . 14 ℕ = (ℤ‘1)
6967, 68eleqtri 2836 . . . . . . . . . . . . 13 3 ∈ (ℤ‘1)
70 fzss1 13480 . . . . . . . . . . . . 13 (3 ∈ (ℤ‘1) → (3...𝑁) ⊆ (1...𝑁))
7169, 70ax-mp 5 . . . . . . . . . . . 12 (3...𝑁) ⊆ (1...𝑁)
7271sseli 3940 . . . . . . . . . . 11 (𝑖 ∈ (3...𝑁) → 𝑖 ∈ (1...𝑁))
7372adantl 482 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → 𝑖 ∈ (1...𝑁))
74 fveecn 27851 . . . . . . . . . 10 ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝑃𝑖) ∈ ℂ)
7566, 73, 74syl2anc 584 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → (𝑃𝑖) ∈ ℂ)
7675subid1d 11501 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → ((𝑃𝑖) − 0) = (𝑃𝑖))
7764, 76eqtrd 2776 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → ((𝑃𝑖) − (𝐴𝑖)) = (𝑃𝑖))
7877oveq1d 7372 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → (((𝑃𝑖) − (𝐴𝑖))↑2) = ((𝑃𝑖)↑2))
7978sumeq2dv 15588 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (3...𝑁)(((𝑃𝑖) − (𝐴𝑖))↑2) = Σ𝑖 ∈ (3...𝑁)((𝑃𝑖)↑2))
8063oveq2d 7373 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → ((𝑄𝑖) − (𝐴𝑖)) = ((𝑄𝑖) − 0))
81 eluzge3nn 12815 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
82 2eluzge1 12819 . . . . . . . . . . . . 13 2 ∈ (ℤ‘1)
83 fzss1 13480 . . . . . . . . . . . . 13 (2 ∈ (ℤ‘1) → (2...(𝑁 − 1)) ⊆ (1...(𝑁 − 1)))
8482, 83ax-mp 5 . . . . . . . . . . . 12 (2...(𝑁 − 1)) ⊆ (1...(𝑁 − 1))
8584sseli 3940 . . . . . . . . . . 11 (𝐼 ∈ (2...(𝑁 − 1)) → 𝐼 ∈ (1...(𝑁 − 1)))
8637axlowdimlem10 27900 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑄 ∈ (𝔼‘𝑁))
8781, 85, 86syl2an 596 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝑄 ∈ (𝔼‘𝑁))
88 fveecn 27851 . . . . . . . . . 10 ((𝑄 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝑄𝑖) ∈ ℂ)
8987, 72, 88syl2an 596 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → (𝑄𝑖) ∈ ℂ)
9089subid1d 11501 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → ((𝑄𝑖) − 0) = (𝑄𝑖))
9180, 90eqtrd 2776 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → ((𝑄𝑖) − (𝐴𝑖)) = (𝑄𝑖))
9291oveq1d 7372 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → (((𝑄𝑖) − (𝐴𝑖))↑2) = ((𝑄𝑖)↑2))
9392sumeq2dv 15588 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (3...𝑁)(((𝑄𝑖) − (𝐴𝑖))↑2) = Σ𝑖 ∈ (3...𝑁)((𝑄𝑖)↑2))
9444, 79, 933eqtr4d 2786 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (3...𝑁)(((𝑃𝑖) − (𝐴𝑖))↑2) = Σ𝑖 ∈ (3...𝑁)(((𝑄𝑖) − (𝐴𝑖))↑2))
9543, 94oveq12d 7375 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (Σ𝑖 ∈ (1...2)(((𝑃𝑖) − (𝐴𝑖))↑2) + Σ𝑖 ∈ (3...𝑁)(((𝑃𝑖) − (𝐴𝑖))↑2)) = (Σ𝑖 ∈ (1...2)(((𝑄𝑖) − (𝐴𝑖))↑2) + Σ𝑖 ∈ (3...𝑁)(((𝑄𝑖) − (𝐴𝑖))↑2)))
9647a1i 11 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → ((1...2) ∩ (3...𝑁)) = ∅)
97 eluzelre 12774 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℝ)
98 eluzle 12776 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘3) → 3 ≤ 𝑁)
99 2re 12227 . . . . . . . . . . . 12 2 ∈ ℝ
100 3re 12233 . . . . . . . . . . . 12 3 ∈ ℝ
101 2lt3 12325 . . . . . . . . . . . 12 2 < 3
10299, 100, 101ltleii 11278 . . . . . . . . . . 11 2 ≤ 3
103 letr 11249 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ 3 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((2 ≤ 3 ∧ 3 ≤ 𝑁) → 2 ≤ 𝑁))
10499, 100, 103mp3an12 1451 . . . . . . . . . . 11 (𝑁 ∈ ℝ → ((2 ≤ 3 ∧ 3 ≤ 𝑁) → 2 ≤ 𝑁))
105102, 104mpani 694 . . . . . . . . . 10 (𝑁 ∈ ℝ → (3 ≤ 𝑁 → 2 ≤ 𝑁))
10697, 98, 105sylc 65 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → 2 ≤ 𝑁)
107 1le2 12362 . . . . . . . . 9 1 ≤ 2
108106, 107jctil 520 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → (1 ≤ 2 ∧ 2 ≤ 𝑁))
109108adantr 481 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (1 ≤ 2 ∧ 2 ≤ 𝑁))
110 eluzelz 12773 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
111110adantr 481 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝑁 ∈ ℤ)
112 2z 12535 . . . . . . . . 9 2 ∈ ℤ
113 1z 12533 . . . . . . . . 9 1 ∈ ℤ
114 elfz 13430 . . . . . . . . 9 ((2 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 ∈ (1...𝑁) ↔ (1 ≤ 2 ∧ 2 ≤ 𝑁)))
115112, 113, 114mp3an12 1451 . . . . . . . 8 (𝑁 ∈ ℤ → (2 ∈ (1...𝑁) ↔ (1 ≤ 2 ∧ 2 ≤ 𝑁)))
116111, 115syl 17 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (2 ∈ (1...𝑁) ↔ (1 ≤ 2 ∧ 2 ≤ 𝑁)))
117109, 116mpbird 256 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 2 ∈ (1...𝑁))
118 fzsplit 13467 . . . . . 6 (2 ∈ (1...𝑁) → (1...𝑁) = ((1...2) ∪ ((2 + 1)...𝑁)))
119117, 118syl 17 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (1...𝑁) = ((1...2) ∪ ((2 + 1)...𝑁)))
12012oveq1i 7367 . . . . . 6 (3...𝑁) = ((2 + 1)...𝑁)
121120uneq2i 4120 . . . . 5 ((1...2) ∪ (3...𝑁)) = ((1...2) ∪ ((2 + 1)...𝑁))
122119, 121eqtr4di 2794 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (1...𝑁) = ((1...2) ∪ (3...𝑁)))
123 fzfid 13878 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (1...𝑁) ∈ Fin)
12465ad2antrr 724 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑃 ∈ (𝔼‘𝑁))
125124, 74sylancom 588 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑃𝑖) ∈ ℂ)
12648, 49axlowdimlem5 27895 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁))
12745, 126eqeltrid 2842 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 𝐴 ∈ (𝔼‘𝑁))
1281, 127syl 17 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → 𝐴 ∈ (𝔼‘𝑁))
129128ad2antrr 724 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
130 fveecn 27851 . . . . . . 7 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℂ)
131129, 130sylancom 588 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℂ)
132125, 131subcld 11512 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑃𝑖) − (𝐴𝑖)) ∈ ℂ)
133132sqcld 14049 . . . 4 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑃𝑖) − (𝐴𝑖))↑2) ∈ ℂ)
13496, 122, 123, 133fsumsplit 15626 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (1...𝑁)(((𝑃𝑖) − (𝐴𝑖))↑2) = (Σ𝑖 ∈ (1...2)(((𝑃𝑖) − (𝐴𝑖))↑2) + Σ𝑖 ∈ (3...𝑁)(((𝑃𝑖) − (𝐴𝑖))↑2)))
13587, 88sylan 580 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑄𝑖) ∈ ℂ)
136135, 131subcld 11512 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑄𝑖) − (𝐴𝑖)) ∈ ℂ)
137136sqcld 14049 . . . 4 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑄𝑖) − (𝐴𝑖))↑2) ∈ ℂ)
13896, 122, 123, 137fsumsplit 15626 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (1...𝑁)(((𝑄𝑖) − (𝐴𝑖))↑2) = (Σ𝑖 ∈ (1...2)(((𝑄𝑖) − (𝐴𝑖))↑2) + Σ𝑖 ∈ (3...𝑁)(((𝑄𝑖) − (𝐴𝑖))↑2)))
13995, 134, 1383eqtr4d 2786 . 2 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (1...𝑁)(((𝑃𝑖) − (𝐴𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝑄𝑖) − (𝐴𝑖))↑2))
14065adantr 481 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝑃 ∈ (𝔼‘𝑁))
141128adantr 481 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝐴 ∈ (𝔼‘𝑁))
142 brcgr 27849 . . 3 (((𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁))) → (⟨𝑃, 𝐴⟩Cgr⟨𝑄, 𝐴⟩ ↔ Σ𝑖 ∈ (1...𝑁)(((𝑃𝑖) − (𝐴𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝑄𝑖) − (𝐴𝑖))↑2)))
143140, 141, 87, 141, 142syl22anc 837 . 2 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (⟨𝑃, 𝐴⟩Cgr⟨𝑄, 𝐴⟩ ↔ Σ𝑖 ∈ (1...𝑁)(((𝑃𝑖) − (𝐴𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝑄𝑖) − (𝐴𝑖))↑2)))
144139, 143mpbird 256 1 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → ⟨𝑃, 𝐴⟩Cgr⟨𝑄, 𝐴⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  cdif 3907  cun 3908  cin 3909  wss 3910  c0 4282  {csn 4586  {cpr 4588  cop 4592   class class class wbr 5105   × cxp 5631   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054  cle 11190  cmin 11385  -cneg 11386  cn 12153  2c2 12208  3c3 12209  cz 12499  cuz 12763  ...cfz 13424  cexp 13967  Σcsu 15570  𝔼cee 27837  Cgrccgr 27839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-sum 15571  df-ee 27840  df-cgr 27842
This theorem is referenced by:  axlowdim  27910
  Copyright terms: Public domain W3C validator