MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbflimsup Structured version   Visualization version   GIF version

Theorem mbflimsup 25543
Description: The limit supremum of a sequence of measurable real-valued functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.)
Hypotheses
Ref Expression
mbflimsup.1 𝑍 = (ℤ𝑀)
mbflimsup.2 𝐺 = (𝑥𝐴 ↦ (lim sup‘(𝑛𝑍𝐵)))
mbflimsup.h 𝐻 = (𝑚 ∈ ℝ ↦ sup((((𝑛𝑍𝐵) “ (𝑚[,)+∞)) ∩ ℝ*), ℝ*, < ))
mbflimsup.3 (𝜑𝑀 ∈ ℤ)
mbflimsup.4 ((𝜑𝑥𝐴) → (lim sup‘(𝑛𝑍𝐵)) ∈ ℝ)
mbflimsup.5 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ MblFn)
mbflimsup.6 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
mbflimsup (𝜑𝐺 ∈ MblFn)
Distinct variable groups:   𝑥,𝑛,𝐴   𝐵,𝑚   𝜑,𝑛,𝑥   𝑚,𝑀   𝑚,𝑛,𝑥,𝑍
Allowed substitution hints:   𝜑(𝑚)   𝐴(𝑚)   𝐵(𝑥,𝑛)   𝐺(𝑥,𝑚,𝑛)   𝐻(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑛)

Proof of Theorem mbflimsup
Dummy variables 𝑖 𝑘 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbflimsup.2 . . 3 𝐺 = (𝑥𝐴 ↦ (lim sup‘(𝑛𝑍𝐵)))
2 mbflimsup.h . . . . . 6 𝐻 = (𝑚 ∈ ℝ ↦ sup((((𝑛𝑍𝐵) “ (𝑚[,)+∞)) ∩ ℝ*), ℝ*, < ))
3 mbflimsup.1 . . . . . . . . 9 𝑍 = (ℤ𝑀)
43fvexi 6854 . . . . . . . 8 𝑍 ∈ V
54mptex 7179 . . . . . . 7 (𝑛𝑍𝐵) ∈ V
65a1i 11 . . . . . 6 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵) ∈ V)
7 uzssz 12790 . . . . . . . . 9 (ℤ𝑀) ⊆ ℤ
83, 7eqsstri 3990 . . . . . . . 8 𝑍 ⊆ ℤ
9 zssre 12512 . . . . . . . 8 ℤ ⊆ ℝ
108, 9sstri 3953 . . . . . . 7 𝑍 ⊆ ℝ
1110a1i 11 . . . . . 6 ((𝜑𝑥𝐴) → 𝑍 ⊆ ℝ)
12 mbflimsup.3 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
133uzsup 13801 . . . . . . . 8 (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) = +∞)
1412, 13syl 17 . . . . . . 7 (𝜑 → sup(𝑍, ℝ*, < ) = +∞)
1514adantr 480 . . . . . 6 ((𝜑𝑥𝐴) → sup(𝑍, ℝ*, < ) = +∞)
162, 6, 11, 15limsupval2 15422 . . . . 5 ((𝜑𝑥𝐴) → (lim sup‘(𝑛𝑍𝐵)) = inf((𝐻𝑍), ℝ*, < ))
17 imassrn 6031 . . . . . . 7 (𝐻𝑍) ⊆ ran 𝐻
1812adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑀 ∈ ℤ)
19 mbflimsup.6 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → 𝐵 ∈ ℝ)
2019anass1rs 655 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → 𝐵 ∈ ℝ)
2120fmpttd 7069 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵):𝑍⟶ℝ)
22 mbflimsup.4 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (lim sup‘(𝑛𝑍𝐵)) ∈ ℝ)
2322ltpnfd 13057 . . . . . . . . 9 ((𝜑𝑥𝐴) → (lim sup‘(𝑛𝑍𝐵)) < +∞)
242, 3limsupgre 15423 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ (𝑛𝑍𝐵):𝑍⟶ℝ ∧ (lim sup‘(𝑛𝑍𝐵)) < +∞) → 𝐻:ℝ⟶ℝ)
2518, 21, 23, 24syl3anc 1373 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐻:ℝ⟶ℝ)
2625frnd 6678 . . . . . . 7 ((𝜑𝑥𝐴) → ran 𝐻 ⊆ ℝ)
2717, 26sstrid 3955 . . . . . 6 ((𝜑𝑥𝐴) → (𝐻𝑍) ⊆ ℝ)
2825fdmd 6680 . . . . . . . . . 10 ((𝜑𝑥𝐴) → dom 𝐻 = ℝ)
2928ineq1d 4178 . . . . . . . . 9 ((𝜑𝑥𝐴) → (dom 𝐻𝑍) = (ℝ ∩ 𝑍))
30 sseqin2 4182 . . . . . . . . . 10 (𝑍 ⊆ ℝ ↔ (ℝ ∩ 𝑍) = 𝑍)
3110, 30mpbi 230 . . . . . . . . 9 (ℝ ∩ 𝑍) = 𝑍
3229, 31eqtrdi 2780 . . . . . . . 8 ((𝜑𝑥𝐴) → (dom 𝐻𝑍) = 𝑍)
33 uzid 12784 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
3412, 33syl 17 . . . . . . . . . . 11 (𝜑𝑀 ∈ (ℤ𝑀))
3534, 3eleqtrrdi 2839 . . . . . . . . . 10 (𝜑𝑀𝑍)
3635adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑀𝑍)
3736ne0d 4301 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑍 ≠ ∅)
3832, 37eqnetrd 2992 . . . . . . 7 ((𝜑𝑥𝐴) → (dom 𝐻𝑍) ≠ ∅)
39 imadisj 6040 . . . . . . . 8 ((𝐻𝑍) = ∅ ↔ (dom 𝐻𝑍) = ∅)
4039necon3bii 2977 . . . . . . 7 ((𝐻𝑍) ≠ ∅ ↔ (dom 𝐻𝑍) ≠ ∅)
4138, 40sylibr 234 . . . . . 6 ((𝜑𝑥𝐴) → (𝐻𝑍) ≠ ∅)
4222leidd 11720 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (lim sup‘(𝑛𝑍𝐵)) ≤ (lim sup‘(𝑛𝑍𝐵)))
4320rexrd 11200 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → 𝐵 ∈ ℝ*)
4443fmpttd 7069 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵):𝑍⟶ℝ*)
4522rexrd 11200 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (lim sup‘(𝑛𝑍𝐵)) ∈ ℝ*)
462limsuple 15420 . . . . . . . . . . 11 ((𝑍 ⊆ ℝ ∧ (𝑛𝑍𝐵):𝑍⟶ℝ* ∧ (lim sup‘(𝑛𝑍𝐵)) ∈ ℝ*) → ((lim sup‘(𝑛𝑍𝐵)) ≤ (lim sup‘(𝑛𝑍𝐵)) ↔ ∀𝑦 ∈ ℝ (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑦)))
4711, 44, 45, 46syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ((lim sup‘(𝑛𝑍𝐵)) ≤ (lim sup‘(𝑛𝑍𝐵)) ↔ ∀𝑦 ∈ ℝ (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑦)))
4842, 47mpbid 232 . . . . . . . . 9 ((𝜑𝑥𝐴) → ∀𝑦 ∈ ℝ (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑦))
49 ssralv 4012 . . . . . . . . 9 (𝑍 ⊆ ℝ → (∀𝑦 ∈ ℝ (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑦) → ∀𝑦𝑍 (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑦)))
5010, 48, 49mpsyl 68 . . . . . . . 8 ((𝜑𝑥𝐴) → ∀𝑦𝑍 (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑦))
512limsupgf 15417 . . . . . . . . . 10 𝐻:ℝ⟶ℝ*
52 ffn 6670 . . . . . . . . . 10 (𝐻:ℝ⟶ℝ*𝐻 Fn ℝ)
5351, 52ax-mp 5 . . . . . . . . 9 𝐻 Fn ℝ
54 breq2 5106 . . . . . . . . . 10 (𝑧 = (𝐻𝑦) → ((lim sup‘(𝑛𝑍𝐵)) ≤ 𝑧 ↔ (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑦)))
5554ralima 7193 . . . . . . . . 9 ((𝐻 Fn ℝ ∧ 𝑍 ⊆ ℝ) → (∀𝑧 ∈ (𝐻𝑍)(lim sup‘(𝑛𝑍𝐵)) ≤ 𝑧 ↔ ∀𝑦𝑍 (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑦)))
5653, 11, 55sylancr 587 . . . . . . . 8 ((𝜑𝑥𝐴) → (∀𝑧 ∈ (𝐻𝑍)(lim sup‘(𝑛𝑍𝐵)) ≤ 𝑧 ↔ ∀𝑦𝑍 (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑦)))
5750, 56mpbird 257 . . . . . . 7 ((𝜑𝑥𝐴) → ∀𝑧 ∈ (𝐻𝑍)(lim sup‘(𝑛𝑍𝐵)) ≤ 𝑧)
58 breq1 5105 . . . . . . . . 9 (𝑦 = (lim sup‘(𝑛𝑍𝐵)) → (𝑦𝑧 ↔ (lim sup‘(𝑛𝑍𝐵)) ≤ 𝑧))
5958ralbidv 3156 . . . . . . . 8 (𝑦 = (lim sup‘(𝑛𝑍𝐵)) → (∀𝑧 ∈ (𝐻𝑍)𝑦𝑧 ↔ ∀𝑧 ∈ (𝐻𝑍)(lim sup‘(𝑛𝑍𝐵)) ≤ 𝑧))
6059rspcev 3585 . . . . . . 7 (((lim sup‘(𝑛𝑍𝐵)) ∈ ℝ ∧ ∀𝑧 ∈ (𝐻𝑍)(lim sup‘(𝑛𝑍𝐵)) ≤ 𝑧) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ (𝐻𝑍)𝑦𝑧)
6122, 57, 60syl2anc 584 . . . . . 6 ((𝜑𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ (𝐻𝑍)𝑦𝑧)
62 infxrre 13273 . . . . . 6 (((𝐻𝑍) ⊆ ℝ ∧ (𝐻𝑍) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ (𝐻𝑍)𝑦𝑧) → inf((𝐻𝑍), ℝ*, < ) = inf((𝐻𝑍), ℝ, < ))
6327, 41, 61, 62syl3anc 1373 . . . . 5 ((𝜑𝑥𝐴) → inf((𝐻𝑍), ℝ*, < ) = inf((𝐻𝑍), ℝ, < ))
64 df-ima 5644 . . . . . . 7 (𝐻𝑍) = ran (𝐻𝑍)
6525feqmptd 6911 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐻 = (𝑖 ∈ ℝ ↦ (𝐻𝑖)))
6665reseq1d 5938 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝐻𝑍) = ((𝑖 ∈ ℝ ↦ (𝐻𝑖)) ↾ 𝑍))
67 resmpt 5997 . . . . . . . . . . 11 (𝑍 ⊆ ℝ → ((𝑖 ∈ ℝ ↦ (𝐻𝑖)) ↾ 𝑍) = (𝑖𝑍 ↦ (𝐻𝑖)))
6810, 67ax-mp 5 . . . . . . . . . 10 ((𝑖 ∈ ℝ ↦ (𝐻𝑖)) ↾ 𝑍) = (𝑖𝑍 ↦ (𝐻𝑖))
6966, 68eqtrdi 2780 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐻𝑍) = (𝑖𝑍 ↦ (𝐻𝑖)))
7010sseli 3939 . . . . . . . . . . . . 13 (𝑖𝑍𝑖 ∈ ℝ)
71 ffvelcdm 7035 . . . . . . . . . . . . 13 ((𝐻:ℝ⟶ℝ ∧ 𝑖 ∈ ℝ) → (𝐻𝑖) ∈ ℝ)
7225, 70, 71syl2an 596 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (𝐻𝑖) ∈ ℝ)
7372rexrd 11200 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (𝐻𝑖) ∈ ℝ*)
74 simplll 774 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑛 ∈ (ℤ𝑖)) → 𝜑)
753uztrn2 12788 . . . . . . . . . . . . . . . . 17 ((𝑖𝑍𝑛 ∈ (ℤ𝑖)) → 𝑛𝑍)
7675adantll 714 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑛 ∈ (ℤ𝑖)) → 𝑛𝑍)
77 simpllr 775 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑛 ∈ (ℤ𝑖)) → 𝑥𝐴)
7874, 76, 77, 19syl12anc 836 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑛 ∈ (ℤ𝑖)) → 𝐵 ∈ ℝ)
7978fmpttd 7069 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (𝑛 ∈ (ℤ𝑖) ↦ 𝐵):(ℤ𝑖)⟶ℝ)
8079frnd 6678 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) ⊆ ℝ)
81 eqid 2729 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) = (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)
8281, 78dmmptd 6645 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → dom (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) = (ℤ𝑖))
83 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖𝑍) → 𝑖𝑍)
8483, 3eleqtrdi 2838 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖𝑍) → 𝑖 ∈ (ℤ𝑀))
85 eluzelz 12779 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (ℤ𝑀) → 𝑖 ∈ ℤ)
8684, 85syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝑍) → 𝑖 ∈ ℤ)
8786adantlr 715 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → 𝑖 ∈ ℤ)
88 uzid 12784 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ℤ → 𝑖 ∈ (ℤ𝑖))
89 ne0i 4300 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (ℤ𝑖) → (ℤ𝑖) ≠ ∅)
9087, 88, 893syl 18 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (ℤ𝑖) ≠ ∅)
9182, 90eqnetrd 2992 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → dom (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) ≠ ∅)
92 dm0rn0 5878 . . . . . . . . . . . . . . 15 (dom (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) = ∅ ↔ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) = ∅)
9392necon3bii 2977 . . . . . . . . . . . . . 14 (dom (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) ≠ ∅ ↔ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) ≠ ∅)
9491, 93sylib 218 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) ≠ ∅)
9584adantlr 715 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → 𝑖 ∈ (ℤ𝑀))
96 uzss 12792 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ (ℤ𝑀) → (ℤ𝑖) ⊆ (ℤ𝑀))
9795, 96syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (ℤ𝑖) ⊆ (ℤ𝑀))
9897, 3sseqtrrdi 3985 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (ℤ𝑖) ⊆ 𝑍)
9972leidd 11720 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (𝐻𝑖) ≤ (𝐻𝑖))
10010a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → 𝑍 ⊆ ℝ)
10144adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (𝑛𝑍𝐵):𝑍⟶ℝ*)
102 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → 𝑖𝑍)
10310, 102sselid 3941 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → 𝑖 ∈ ℝ)
1042limsupgle 15419 . . . . . . . . . . . . . . . . . . 19 (((𝑍 ⊆ ℝ ∧ (𝑛𝑍𝐵):𝑍⟶ℝ*) ∧ 𝑖 ∈ ℝ ∧ (𝐻𝑖) ∈ ℝ*) → ((𝐻𝑖) ≤ (𝐻𝑖) ↔ ∀𝑘𝑍 (𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ (𝐻𝑖))))
105100, 101, 103, 73, 104syl211anc 1378 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → ((𝐻𝑖) ≤ (𝐻𝑖) ↔ ∀𝑘𝑍 (𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ (𝐻𝑖))))
10699, 105mpbid 232 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → ∀𝑘𝑍 (𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ (𝐻𝑖)))
107 ssralv 4012 . . . . . . . . . . . . . . . . 17 ((ℤ𝑖) ⊆ 𝑍 → (∀𝑘𝑍 (𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ (𝐻𝑖)) → ∀𝑘 ∈ (ℤ𝑖)(𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ (𝐻𝑖))))
10898, 106, 107sylc 65 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → ∀𝑘 ∈ (ℤ𝑖)(𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ (𝐻𝑖)))
10998adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → (ℤ𝑖) ⊆ 𝑍)
110109resmptd 6000 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → ((𝑛𝑍𝐵) ↾ (ℤ𝑖)) = (𝑛 ∈ (ℤ𝑖) ↦ 𝐵))
111110fveq1d 6842 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → (((𝑛𝑍𝐵) ↾ (ℤ𝑖))‘𝑘) = ((𝑛 ∈ (ℤ𝑖) ↦ 𝐵)‘𝑘))
112 fvres 6859 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (ℤ𝑖) → (((𝑛𝑍𝐵) ↾ (ℤ𝑖))‘𝑘) = ((𝑛𝑍𝐵)‘𝑘))
113112adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → (((𝑛𝑍𝐵) ↾ (ℤ𝑖))‘𝑘) = ((𝑛𝑍𝐵)‘𝑘))
114111, 113eqtr3d 2766 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → ((𝑛 ∈ (ℤ𝑖) ↦ 𝐵)‘𝑘) = ((𝑛𝑍𝐵)‘𝑘))
115114breq1d 5112 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → (((𝑛 ∈ (ℤ𝑖) ↦ 𝐵)‘𝑘) ≤ (𝐻𝑖) ↔ ((𝑛𝑍𝐵)‘𝑘) ≤ (𝐻𝑖)))
116 eluzle 12782 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (ℤ𝑖) → 𝑖𝑘)
117116adantl 481 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → 𝑖𝑘)
118 biimt 360 . . . . . . . . . . . . . . . . . . 19 (𝑖𝑘 → (((𝑛𝑍𝐵)‘𝑘) ≤ (𝐻𝑖) ↔ (𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ (𝐻𝑖))))
119117, 118syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → (((𝑛𝑍𝐵)‘𝑘) ≤ (𝐻𝑖) ↔ (𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ (𝐻𝑖))))
120115, 119bitrd 279 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → (((𝑛 ∈ (ℤ𝑖) ↦ 𝐵)‘𝑘) ≤ (𝐻𝑖) ↔ (𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ (𝐻𝑖))))
121120ralbidva 3154 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (∀𝑘 ∈ (ℤ𝑖)((𝑛 ∈ (ℤ𝑖) ↦ 𝐵)‘𝑘) ≤ (𝐻𝑖) ↔ ∀𝑘 ∈ (ℤ𝑖)(𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ (𝐻𝑖))))
122108, 121mpbird 257 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → ∀𝑘 ∈ (ℤ𝑖)((𝑛 ∈ (ℤ𝑖) ↦ 𝐵)‘𝑘) ≤ (𝐻𝑖))
123 ffn 6670 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ (ℤ𝑖) ↦ 𝐵):(ℤ𝑖)⟶ℝ → (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) Fn (ℤ𝑖))
124 breq1 5105 . . . . . . . . . . . . . . . . 17 (𝑧 = ((𝑛 ∈ (ℤ𝑖) ↦ 𝐵)‘𝑘) → (𝑧 ≤ (𝐻𝑖) ↔ ((𝑛 ∈ (ℤ𝑖) ↦ 𝐵)‘𝑘) ≤ (𝐻𝑖)))
125124ralrn 7042 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ (ℤ𝑖) ↦ 𝐵) Fn (ℤ𝑖) → (∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧 ≤ (𝐻𝑖) ↔ ∀𝑘 ∈ (ℤ𝑖)((𝑛 ∈ (ℤ𝑖) ↦ 𝐵)‘𝑘) ≤ (𝐻𝑖)))
12679, 123, 1253syl 18 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧 ≤ (𝐻𝑖) ↔ ∀𝑘 ∈ (ℤ𝑖)((𝑛 ∈ (ℤ𝑖) ↦ 𝐵)‘𝑘) ≤ (𝐻𝑖)))
127122, 126mpbird 257 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → ∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧 ≤ (𝐻𝑖))
128 brralrspcev 5162 . . . . . . . . . . . . . 14 (((𝐻𝑖) ∈ ℝ ∧ ∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧 ≤ (𝐻𝑖)) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧𝑦)
12972, 127, 128syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧𝑦)
13080, 94, 129suprcld 12122 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ) ∈ ℝ)
131130rexrd 11200 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ) ∈ ℝ*)
13280adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ (𝑘𝑍𝑖𝑘)) → ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) ⊆ ℝ)
13394adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ (𝑘𝑍𝑖𝑘)) → ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) ≠ ∅)
134129adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ (𝑘𝑍𝑖𝑘)) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧𝑦)
1358sseli 3939 . . . . . . . . . . . . . . . . . . . 20 (𝑘𝑍𝑘 ∈ ℤ)
136 eluz 12783 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (ℤ𝑖) ↔ 𝑖𝑘))
13787, 135, 136syl2an 596 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑘𝑍) → (𝑘 ∈ (ℤ𝑖) ↔ 𝑖𝑘))
138137biimprd 248 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑘𝑍) → (𝑖𝑘𝑘 ∈ (ℤ𝑖)))
139138impr 454 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ (𝑘𝑍𝑖𝑘)) → 𝑘 ∈ (ℤ𝑖))
140139, 114syldan 591 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ (𝑘𝑍𝑖𝑘)) → ((𝑛 ∈ (ℤ𝑖) ↦ 𝐵)‘𝑘) = ((𝑛𝑍𝐵)‘𝑘))
14179adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ (𝑘𝑍𝑖𝑘)) → (𝑛 ∈ (ℤ𝑖) ↦ 𝐵):(ℤ𝑖)⟶ℝ)
142141, 123syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ (𝑘𝑍𝑖𝑘)) → (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) Fn (ℤ𝑖))
143 fnfvelrn 7034 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ (ℤ𝑖) ↦ 𝐵) Fn (ℤ𝑖) ∧ 𝑘 ∈ (ℤ𝑖)) → ((𝑛 ∈ (ℤ𝑖) ↦ 𝐵)‘𝑘) ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵))
144142, 139, 143syl2anc 584 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ (𝑘𝑍𝑖𝑘)) → ((𝑛 ∈ (ℤ𝑖) ↦ 𝐵)‘𝑘) ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵))
145140, 144eqeltrrd 2829 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ (𝑘𝑍𝑖𝑘)) → ((𝑛𝑍𝐵)‘𝑘) ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵))
146132, 133, 134, 145suprubd 12121 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ (𝑘𝑍𝑖𝑘)) → ((𝑛𝑍𝐵)‘𝑘) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ))
147146expr 456 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑘𝑍) → (𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )))
148147ralrimiva 3125 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → ∀𝑘𝑍 (𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )))
1492limsupgle 15419 . . . . . . . . . . . . 13 (((𝑍 ⊆ ℝ ∧ (𝑛𝑍𝐵):𝑍⟶ℝ*) ∧ 𝑖 ∈ ℝ ∧ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ) ∈ ℝ*) → ((𝐻𝑖) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ) ↔ ∀𝑘𝑍 (𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ))))
150100, 101, 103, 131, 149syl211anc 1378 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → ((𝐻𝑖) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ) ↔ ∀𝑘𝑍 (𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ))))
151148, 150mpbird 257 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (𝐻𝑖) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ))
152 suprleub 12125 . . . . . . . . . . . . 13 (((ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) ⊆ ℝ ∧ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧𝑦) ∧ (𝐻𝑖) ∈ ℝ) → (sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ) ≤ (𝐻𝑖) ↔ ∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧 ≤ (𝐻𝑖)))
15380, 94, 129, 72, 152syl31anc 1375 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ) ≤ (𝐻𝑖) ↔ ∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧 ≤ (𝐻𝑖)))
154127, 153mpbird 257 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ) ≤ (𝐻𝑖))
15573, 131, 151, 154xrletrid 13091 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (𝐻𝑖) = sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ))
156155mpteq2dva 5195 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑖𝑍 ↦ (𝐻𝑖)) = (𝑖𝑍 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )))
15769, 156eqtrd 2764 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝐻𝑍) = (𝑖𝑍 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )))
158157rneqd 5891 . . . . . . 7 ((𝜑𝑥𝐴) → ran (𝐻𝑍) = ran (𝑖𝑍 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )))
15964, 158eqtrid 2776 . . . . . 6 ((𝜑𝑥𝐴) → (𝐻𝑍) = ran (𝑖𝑍 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )))
160159infeq1d 9405 . . . . 5 ((𝜑𝑥𝐴) → inf((𝐻𝑍), ℝ, < ) = inf(ran (𝑖𝑍 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )), ℝ, < ))
16116, 63, 1603eqtrd 2768 . . . 4 ((𝜑𝑥𝐴) → (lim sup‘(𝑛𝑍𝐵)) = inf(ran (𝑖𝑍 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )), ℝ, < ))
162161mpteq2dva 5195 . . 3 (𝜑 → (𝑥𝐴 ↦ (lim sup‘(𝑛𝑍𝐵))) = (𝑥𝐴 ↦ inf(ran (𝑖𝑍 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )), ℝ, < )))
1631, 162eqtrid 2776 . 2 (𝜑𝐺 = (𝑥𝐴 ↦ inf(ran (𝑖𝑍 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )), ℝ, < )))
164 eqid 2729 . . 3 (𝑥𝐴 ↦ inf(ran (𝑖𝑍 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )), ℝ, < )) = (𝑥𝐴 ↦ inf(ran (𝑖𝑍 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )), ℝ, < ))
165 eqid 2729 . . . 4 (ℤ𝑖) = (ℤ𝑖)
166 eqid 2729 . . . 4 (𝑥𝐴 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )) = (𝑥𝐴 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ))
167 simpll 766 . . . . 5 (((𝜑𝑖𝑍) ∧ 𝑛 ∈ (ℤ𝑖)) → 𝜑)
16875adantll 714 . . . . 5 (((𝜑𝑖𝑍) ∧ 𝑛 ∈ (ℤ𝑖)) → 𝑛𝑍)
169 mbflimsup.5 . . . . 5 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ MblFn)
170167, 168, 169syl2anc 584 . . . 4 (((𝜑𝑖𝑍) ∧ 𝑛 ∈ (ℤ𝑖)) → (𝑥𝐴𝐵) ∈ MblFn)
171 simpll 766 . . . . 5 (((𝜑𝑖𝑍) ∧ (𝑛 ∈ (ℤ𝑖) ∧ 𝑥𝐴)) → 𝜑)
17275ad2ant2lr 748 . . . . 5 (((𝜑𝑖𝑍) ∧ (𝑛 ∈ (ℤ𝑖) ∧ 𝑥𝐴)) → 𝑛𝑍)
173 simprr 772 . . . . 5 (((𝜑𝑖𝑍) ∧ (𝑛 ∈ (ℤ𝑖) ∧ 𝑥𝐴)) → 𝑥𝐴)
174171, 172, 173, 19syl12anc 836 . . . 4 (((𝜑𝑖𝑍) ∧ (𝑛 ∈ (ℤ𝑖) ∧ 𝑥𝐴)) → 𝐵 ∈ ℝ)
17578ralrimiva 3125 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → ∀𝑛 ∈ (ℤ𝑖)𝐵 ∈ ℝ)
176 breq1 5105 . . . . . . . . 9 (𝑧 = 𝐵 → (𝑧𝑦𝐵𝑦))
17781, 176ralrnmptw 7048 . . . . . . . 8 (∀𝑛 ∈ (ℤ𝑖)𝐵 ∈ ℝ → (∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧𝑦 ↔ ∀𝑛 ∈ (ℤ𝑖)𝐵𝑦))
178175, 177syl 17 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧𝑦 ↔ ∀𝑛 ∈ (ℤ𝑖)𝐵𝑦))
179178rexbidv 3157 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑛 ∈ (ℤ𝑖)𝐵𝑦))
180129, 179mpbid 232 . . . . 5 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ (ℤ𝑖)𝐵𝑦)
181180an32s 652 . . . 4 (((𝜑𝑖𝑍) ∧ 𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ (ℤ𝑖)𝐵𝑦)
182165, 166, 86, 170, 174, 181mbfsup 25541 . . 3 ((𝜑𝑖𝑍) → (𝑥𝐴 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )) ∈ MblFn)
183130an32s 652 . . . 4 (((𝜑𝑖𝑍) ∧ 𝑥𝐴) → sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ) ∈ ℝ)
184183anasss 466 . . 3 ((𝜑 ∧ (𝑖𝑍𝑥𝐴)) → sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ) ∈ ℝ)
1852limsuple 15420 . . . . . . . 8 ((𝑍 ⊆ ℝ ∧ (𝑛𝑍𝐵):𝑍⟶ℝ* ∧ (lim sup‘(𝑛𝑍𝐵)) ∈ ℝ*) → ((lim sup‘(𝑛𝑍𝐵)) ≤ (lim sup‘(𝑛𝑍𝐵)) ↔ ∀𝑖 ∈ ℝ (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑖)))
18611, 44, 45, 185syl3anc 1373 . . . . . . 7 ((𝜑𝑥𝐴) → ((lim sup‘(𝑛𝑍𝐵)) ≤ (lim sup‘(𝑛𝑍𝐵)) ↔ ∀𝑖 ∈ ℝ (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑖)))
18742, 186mpbid 232 . . . . . 6 ((𝜑𝑥𝐴) → ∀𝑖 ∈ ℝ (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑖))
188 ssralv 4012 . . . . . 6 (𝑍 ⊆ ℝ → (∀𝑖 ∈ ℝ (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑖) → ∀𝑖𝑍 (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑖)))
18910, 187, 188mpsyl 68 . . . . 5 ((𝜑𝑥𝐴) → ∀𝑖𝑍 (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑖))
190155breq2d 5114 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → ((lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑖) ↔ (lim sup‘(𝑛𝑍𝐵)) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )))
191190ralbidva 3154 . . . . 5 ((𝜑𝑥𝐴) → (∀𝑖𝑍 (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑖) ↔ ∀𝑖𝑍 (lim sup‘(𝑛𝑍𝐵)) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )))
192189, 191mpbid 232 . . . 4 ((𝜑𝑥𝐴) → ∀𝑖𝑍 (lim sup‘(𝑛𝑍𝐵)) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ))
193 breq1 5105 . . . . . 6 (𝑦 = (lim sup‘(𝑛𝑍𝐵)) → (𝑦 ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ) ↔ (lim sup‘(𝑛𝑍𝐵)) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )))
194193ralbidv 3156 . . . . 5 (𝑦 = (lim sup‘(𝑛𝑍𝐵)) → (∀𝑖𝑍 𝑦 ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ) ↔ ∀𝑖𝑍 (lim sup‘(𝑛𝑍𝐵)) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )))
195194rspcev 3585 . . . 4 (((lim sup‘(𝑛𝑍𝐵)) ∈ ℝ ∧ ∀𝑖𝑍 (lim sup‘(𝑛𝑍𝐵)) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )) → ∃𝑦 ∈ ℝ ∀𝑖𝑍 𝑦 ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ))
19622, 192, 195syl2anc 584 . . 3 ((𝜑𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑖𝑍 𝑦 ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ))
1973, 164, 12, 182, 184, 196mbfinf 25542 . 2 (𝜑 → (𝑥𝐴 ↦ inf(ran (𝑖𝑍 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )), ℝ, < )) ∈ MblFn)
198163, 197eqeltrd 2828 1 (𝜑𝐺 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3444  cin 3910  wss 3911  c0 4292   class class class wbr 5102  cmpt 5183  dom cdm 5631  ran crn 5632  cres 5633  cima 5634   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  supcsup 9367  infcinf 9368  cr 11043  +∞cpnf 11181  *cxr 11183   < clt 11184  cle 11185  cz 12505  cuz 12769  [,)cico 13284  lim supclsp 15412  MblFncmbf 25491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cc 10364  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-disj 5070  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-omul 8416  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-acn 9871  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-xadd 13049  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-xmet 21233  df-met 21234  df-ovol 25341  df-vol 25342  df-mbf 25496
This theorem is referenced by:  mbflimlem  25544
  Copyright terms: Public domain W3C validator