MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbflimsup Structured version   Visualization version   GIF version

Theorem mbflimsup 25617
Description: The limit supremum of a sequence of measurable real-valued functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.)
Hypotheses
Ref Expression
mbflimsup.1 𝑍 = (ℤ𝑀)
mbflimsup.2 𝐺 = (𝑥𝐴 ↦ (lim sup‘(𝑛𝑍𝐵)))
mbflimsup.h 𝐻 = (𝑚 ∈ ℝ ↦ sup((((𝑛𝑍𝐵) “ (𝑚[,)+∞)) ∩ ℝ*), ℝ*, < ))
mbflimsup.3 (𝜑𝑀 ∈ ℤ)
mbflimsup.4 ((𝜑𝑥𝐴) → (lim sup‘(𝑛𝑍𝐵)) ∈ ℝ)
mbflimsup.5 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ MblFn)
mbflimsup.6 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
mbflimsup (𝜑𝐺 ∈ MblFn)
Distinct variable groups:   𝑥,𝑛,𝐴   𝐵,𝑚   𝜑,𝑛,𝑥   𝑚,𝑀   𝑚,𝑛,𝑥,𝑍
Allowed substitution hints:   𝜑(𝑚)   𝐴(𝑚)   𝐵(𝑥,𝑛)   𝐺(𝑥,𝑚,𝑛)   𝐻(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑛)

Proof of Theorem mbflimsup
Dummy variables 𝑖 𝑘 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbflimsup.2 . . 3 𝐺 = (𝑥𝐴 ↦ (lim sup‘(𝑛𝑍𝐵)))
2 mbflimsup.h . . . . . 6 𝐻 = (𝑚 ∈ ℝ ↦ sup((((𝑛𝑍𝐵) “ (𝑚[,)+∞)) ∩ ℝ*), ℝ*, < ))
3 mbflimsup.1 . . . . . . . . 9 𝑍 = (ℤ𝑀)
43fvexi 6889 . . . . . . . 8 𝑍 ∈ V
54mptex 7214 . . . . . . 7 (𝑛𝑍𝐵) ∈ V
65a1i 11 . . . . . 6 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵) ∈ V)
7 uzssz 12871 . . . . . . . . 9 (ℤ𝑀) ⊆ ℤ
83, 7eqsstri 4005 . . . . . . . 8 𝑍 ⊆ ℤ
9 zssre 12593 . . . . . . . 8 ℤ ⊆ ℝ
108, 9sstri 3968 . . . . . . 7 𝑍 ⊆ ℝ
1110a1i 11 . . . . . 6 ((𝜑𝑥𝐴) → 𝑍 ⊆ ℝ)
12 mbflimsup.3 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
133uzsup 13878 . . . . . . . 8 (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) = +∞)
1412, 13syl 17 . . . . . . 7 (𝜑 → sup(𝑍, ℝ*, < ) = +∞)
1514adantr 480 . . . . . 6 ((𝜑𝑥𝐴) → sup(𝑍, ℝ*, < ) = +∞)
162, 6, 11, 15limsupval2 15494 . . . . 5 ((𝜑𝑥𝐴) → (lim sup‘(𝑛𝑍𝐵)) = inf((𝐻𝑍), ℝ*, < ))
17 imassrn 6058 . . . . . . 7 (𝐻𝑍) ⊆ ran 𝐻
1812adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑀 ∈ ℤ)
19 mbflimsup.6 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → 𝐵 ∈ ℝ)
2019anass1rs 655 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → 𝐵 ∈ ℝ)
2120fmpttd 7104 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵):𝑍⟶ℝ)
22 mbflimsup.4 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (lim sup‘(𝑛𝑍𝐵)) ∈ ℝ)
2322ltpnfd 13135 . . . . . . . . 9 ((𝜑𝑥𝐴) → (lim sup‘(𝑛𝑍𝐵)) < +∞)
242, 3limsupgre 15495 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ (𝑛𝑍𝐵):𝑍⟶ℝ ∧ (lim sup‘(𝑛𝑍𝐵)) < +∞) → 𝐻:ℝ⟶ℝ)
2518, 21, 23, 24syl3anc 1373 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐻:ℝ⟶ℝ)
2625frnd 6713 . . . . . . 7 ((𝜑𝑥𝐴) → ran 𝐻 ⊆ ℝ)
2717, 26sstrid 3970 . . . . . 6 ((𝜑𝑥𝐴) → (𝐻𝑍) ⊆ ℝ)
2825fdmd 6715 . . . . . . . . . 10 ((𝜑𝑥𝐴) → dom 𝐻 = ℝ)
2928ineq1d 4194 . . . . . . . . 9 ((𝜑𝑥𝐴) → (dom 𝐻𝑍) = (ℝ ∩ 𝑍))
30 sseqin2 4198 . . . . . . . . . 10 (𝑍 ⊆ ℝ ↔ (ℝ ∩ 𝑍) = 𝑍)
3110, 30mpbi 230 . . . . . . . . 9 (ℝ ∩ 𝑍) = 𝑍
3229, 31eqtrdi 2786 . . . . . . . 8 ((𝜑𝑥𝐴) → (dom 𝐻𝑍) = 𝑍)
33 uzid 12865 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
3412, 33syl 17 . . . . . . . . . . 11 (𝜑𝑀 ∈ (ℤ𝑀))
3534, 3eleqtrrdi 2845 . . . . . . . . . 10 (𝜑𝑀𝑍)
3635adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑀𝑍)
3736ne0d 4317 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑍 ≠ ∅)
3832, 37eqnetrd 2999 . . . . . . 7 ((𝜑𝑥𝐴) → (dom 𝐻𝑍) ≠ ∅)
39 imadisj 6067 . . . . . . . 8 ((𝐻𝑍) = ∅ ↔ (dom 𝐻𝑍) = ∅)
4039necon3bii 2984 . . . . . . 7 ((𝐻𝑍) ≠ ∅ ↔ (dom 𝐻𝑍) ≠ ∅)
4138, 40sylibr 234 . . . . . 6 ((𝜑𝑥𝐴) → (𝐻𝑍) ≠ ∅)
4222leidd 11801 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (lim sup‘(𝑛𝑍𝐵)) ≤ (lim sup‘(𝑛𝑍𝐵)))
4320rexrd 11283 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → 𝐵 ∈ ℝ*)
4443fmpttd 7104 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵):𝑍⟶ℝ*)
4522rexrd 11283 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (lim sup‘(𝑛𝑍𝐵)) ∈ ℝ*)
462limsuple 15492 . . . . . . . . . . 11 ((𝑍 ⊆ ℝ ∧ (𝑛𝑍𝐵):𝑍⟶ℝ* ∧ (lim sup‘(𝑛𝑍𝐵)) ∈ ℝ*) → ((lim sup‘(𝑛𝑍𝐵)) ≤ (lim sup‘(𝑛𝑍𝐵)) ↔ ∀𝑦 ∈ ℝ (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑦)))
4711, 44, 45, 46syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ((lim sup‘(𝑛𝑍𝐵)) ≤ (lim sup‘(𝑛𝑍𝐵)) ↔ ∀𝑦 ∈ ℝ (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑦)))
4842, 47mpbid 232 . . . . . . . . 9 ((𝜑𝑥𝐴) → ∀𝑦 ∈ ℝ (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑦))
49 ssralv 4027 . . . . . . . . 9 (𝑍 ⊆ ℝ → (∀𝑦 ∈ ℝ (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑦) → ∀𝑦𝑍 (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑦)))
5010, 48, 49mpsyl 68 . . . . . . . 8 ((𝜑𝑥𝐴) → ∀𝑦𝑍 (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑦))
512limsupgf 15489 . . . . . . . . . 10 𝐻:ℝ⟶ℝ*
52 ffn 6705 . . . . . . . . . 10 (𝐻:ℝ⟶ℝ*𝐻 Fn ℝ)
5351, 52ax-mp 5 . . . . . . . . 9 𝐻 Fn ℝ
54 breq2 5123 . . . . . . . . . 10 (𝑧 = (𝐻𝑦) → ((lim sup‘(𝑛𝑍𝐵)) ≤ 𝑧 ↔ (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑦)))
5554ralima 7228 . . . . . . . . 9 ((𝐻 Fn ℝ ∧ 𝑍 ⊆ ℝ) → (∀𝑧 ∈ (𝐻𝑍)(lim sup‘(𝑛𝑍𝐵)) ≤ 𝑧 ↔ ∀𝑦𝑍 (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑦)))
5653, 11, 55sylancr 587 . . . . . . . 8 ((𝜑𝑥𝐴) → (∀𝑧 ∈ (𝐻𝑍)(lim sup‘(𝑛𝑍𝐵)) ≤ 𝑧 ↔ ∀𝑦𝑍 (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑦)))
5750, 56mpbird 257 . . . . . . 7 ((𝜑𝑥𝐴) → ∀𝑧 ∈ (𝐻𝑍)(lim sup‘(𝑛𝑍𝐵)) ≤ 𝑧)
58 breq1 5122 . . . . . . . . 9 (𝑦 = (lim sup‘(𝑛𝑍𝐵)) → (𝑦𝑧 ↔ (lim sup‘(𝑛𝑍𝐵)) ≤ 𝑧))
5958ralbidv 3163 . . . . . . . 8 (𝑦 = (lim sup‘(𝑛𝑍𝐵)) → (∀𝑧 ∈ (𝐻𝑍)𝑦𝑧 ↔ ∀𝑧 ∈ (𝐻𝑍)(lim sup‘(𝑛𝑍𝐵)) ≤ 𝑧))
6059rspcev 3601 . . . . . . 7 (((lim sup‘(𝑛𝑍𝐵)) ∈ ℝ ∧ ∀𝑧 ∈ (𝐻𝑍)(lim sup‘(𝑛𝑍𝐵)) ≤ 𝑧) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ (𝐻𝑍)𝑦𝑧)
6122, 57, 60syl2anc 584 . . . . . 6 ((𝜑𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ (𝐻𝑍)𝑦𝑧)
62 infxrre 13351 . . . . . 6 (((𝐻𝑍) ⊆ ℝ ∧ (𝐻𝑍) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ (𝐻𝑍)𝑦𝑧) → inf((𝐻𝑍), ℝ*, < ) = inf((𝐻𝑍), ℝ, < ))
6327, 41, 61, 62syl3anc 1373 . . . . 5 ((𝜑𝑥𝐴) → inf((𝐻𝑍), ℝ*, < ) = inf((𝐻𝑍), ℝ, < ))
64 df-ima 5667 . . . . . . 7 (𝐻𝑍) = ran (𝐻𝑍)
6525feqmptd 6946 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐻 = (𝑖 ∈ ℝ ↦ (𝐻𝑖)))
6665reseq1d 5965 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝐻𝑍) = ((𝑖 ∈ ℝ ↦ (𝐻𝑖)) ↾ 𝑍))
67 resmpt 6024 . . . . . . . . . . 11 (𝑍 ⊆ ℝ → ((𝑖 ∈ ℝ ↦ (𝐻𝑖)) ↾ 𝑍) = (𝑖𝑍 ↦ (𝐻𝑖)))
6810, 67ax-mp 5 . . . . . . . . . 10 ((𝑖 ∈ ℝ ↦ (𝐻𝑖)) ↾ 𝑍) = (𝑖𝑍 ↦ (𝐻𝑖))
6966, 68eqtrdi 2786 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐻𝑍) = (𝑖𝑍 ↦ (𝐻𝑖)))
7010sseli 3954 . . . . . . . . . . . . 13 (𝑖𝑍𝑖 ∈ ℝ)
71 ffvelcdm 7070 . . . . . . . . . . . . 13 ((𝐻:ℝ⟶ℝ ∧ 𝑖 ∈ ℝ) → (𝐻𝑖) ∈ ℝ)
7225, 70, 71syl2an 596 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (𝐻𝑖) ∈ ℝ)
7372rexrd 11283 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (𝐻𝑖) ∈ ℝ*)
74 simplll 774 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑛 ∈ (ℤ𝑖)) → 𝜑)
753uztrn2 12869 . . . . . . . . . . . . . . . . 17 ((𝑖𝑍𝑛 ∈ (ℤ𝑖)) → 𝑛𝑍)
7675adantll 714 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑛 ∈ (ℤ𝑖)) → 𝑛𝑍)
77 simpllr 775 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑛 ∈ (ℤ𝑖)) → 𝑥𝐴)
7874, 76, 77, 19syl12anc 836 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑛 ∈ (ℤ𝑖)) → 𝐵 ∈ ℝ)
7978fmpttd 7104 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (𝑛 ∈ (ℤ𝑖) ↦ 𝐵):(ℤ𝑖)⟶ℝ)
8079frnd 6713 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) ⊆ ℝ)
81 eqid 2735 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) = (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)
8281, 78dmmptd 6682 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → dom (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) = (ℤ𝑖))
83 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖𝑍) → 𝑖𝑍)
8483, 3eleqtrdi 2844 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖𝑍) → 𝑖 ∈ (ℤ𝑀))
85 eluzelz 12860 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (ℤ𝑀) → 𝑖 ∈ ℤ)
8684, 85syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝑍) → 𝑖 ∈ ℤ)
8786adantlr 715 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → 𝑖 ∈ ℤ)
88 uzid 12865 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ℤ → 𝑖 ∈ (ℤ𝑖))
89 ne0i 4316 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (ℤ𝑖) → (ℤ𝑖) ≠ ∅)
9087, 88, 893syl 18 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (ℤ𝑖) ≠ ∅)
9182, 90eqnetrd 2999 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → dom (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) ≠ ∅)
92 dm0rn0 5904 . . . . . . . . . . . . . . 15 (dom (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) = ∅ ↔ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) = ∅)
9392necon3bii 2984 . . . . . . . . . . . . . 14 (dom (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) ≠ ∅ ↔ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) ≠ ∅)
9491, 93sylib 218 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) ≠ ∅)
9584adantlr 715 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → 𝑖 ∈ (ℤ𝑀))
96 uzss 12873 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ (ℤ𝑀) → (ℤ𝑖) ⊆ (ℤ𝑀))
9795, 96syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (ℤ𝑖) ⊆ (ℤ𝑀))
9897, 3sseqtrrdi 4000 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (ℤ𝑖) ⊆ 𝑍)
9972leidd 11801 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (𝐻𝑖) ≤ (𝐻𝑖))
10010a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → 𝑍 ⊆ ℝ)
10144adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (𝑛𝑍𝐵):𝑍⟶ℝ*)
102 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → 𝑖𝑍)
10310, 102sselid 3956 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → 𝑖 ∈ ℝ)
1042limsupgle 15491 . . . . . . . . . . . . . . . . . . 19 (((𝑍 ⊆ ℝ ∧ (𝑛𝑍𝐵):𝑍⟶ℝ*) ∧ 𝑖 ∈ ℝ ∧ (𝐻𝑖) ∈ ℝ*) → ((𝐻𝑖) ≤ (𝐻𝑖) ↔ ∀𝑘𝑍 (𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ (𝐻𝑖))))
105100, 101, 103, 73, 104syl211anc 1378 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → ((𝐻𝑖) ≤ (𝐻𝑖) ↔ ∀𝑘𝑍 (𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ (𝐻𝑖))))
10699, 105mpbid 232 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → ∀𝑘𝑍 (𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ (𝐻𝑖)))
107 ssralv 4027 . . . . . . . . . . . . . . . . 17 ((ℤ𝑖) ⊆ 𝑍 → (∀𝑘𝑍 (𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ (𝐻𝑖)) → ∀𝑘 ∈ (ℤ𝑖)(𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ (𝐻𝑖))))
10898, 106, 107sylc 65 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → ∀𝑘 ∈ (ℤ𝑖)(𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ (𝐻𝑖)))
10998adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → (ℤ𝑖) ⊆ 𝑍)
110109resmptd 6027 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → ((𝑛𝑍𝐵) ↾ (ℤ𝑖)) = (𝑛 ∈ (ℤ𝑖) ↦ 𝐵))
111110fveq1d 6877 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → (((𝑛𝑍𝐵) ↾ (ℤ𝑖))‘𝑘) = ((𝑛 ∈ (ℤ𝑖) ↦ 𝐵)‘𝑘))
112 fvres 6894 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (ℤ𝑖) → (((𝑛𝑍𝐵) ↾ (ℤ𝑖))‘𝑘) = ((𝑛𝑍𝐵)‘𝑘))
113112adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → (((𝑛𝑍𝐵) ↾ (ℤ𝑖))‘𝑘) = ((𝑛𝑍𝐵)‘𝑘))
114111, 113eqtr3d 2772 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → ((𝑛 ∈ (ℤ𝑖) ↦ 𝐵)‘𝑘) = ((𝑛𝑍𝐵)‘𝑘))
115114breq1d 5129 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → (((𝑛 ∈ (ℤ𝑖) ↦ 𝐵)‘𝑘) ≤ (𝐻𝑖) ↔ ((𝑛𝑍𝐵)‘𝑘) ≤ (𝐻𝑖)))
116 eluzle 12863 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (ℤ𝑖) → 𝑖𝑘)
117116adantl 481 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → 𝑖𝑘)
118 biimt 360 . . . . . . . . . . . . . . . . . . 19 (𝑖𝑘 → (((𝑛𝑍𝐵)‘𝑘) ≤ (𝐻𝑖) ↔ (𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ (𝐻𝑖))))
119117, 118syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → (((𝑛𝑍𝐵)‘𝑘) ≤ (𝐻𝑖) ↔ (𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ (𝐻𝑖))))
120115, 119bitrd 279 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → (((𝑛 ∈ (ℤ𝑖) ↦ 𝐵)‘𝑘) ≤ (𝐻𝑖) ↔ (𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ (𝐻𝑖))))
121120ralbidva 3161 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (∀𝑘 ∈ (ℤ𝑖)((𝑛 ∈ (ℤ𝑖) ↦ 𝐵)‘𝑘) ≤ (𝐻𝑖) ↔ ∀𝑘 ∈ (ℤ𝑖)(𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ (𝐻𝑖))))
122108, 121mpbird 257 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → ∀𝑘 ∈ (ℤ𝑖)((𝑛 ∈ (ℤ𝑖) ↦ 𝐵)‘𝑘) ≤ (𝐻𝑖))
123 ffn 6705 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ (ℤ𝑖) ↦ 𝐵):(ℤ𝑖)⟶ℝ → (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) Fn (ℤ𝑖))
124 breq1 5122 . . . . . . . . . . . . . . . . 17 (𝑧 = ((𝑛 ∈ (ℤ𝑖) ↦ 𝐵)‘𝑘) → (𝑧 ≤ (𝐻𝑖) ↔ ((𝑛 ∈ (ℤ𝑖) ↦ 𝐵)‘𝑘) ≤ (𝐻𝑖)))
125124ralrn 7077 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ (ℤ𝑖) ↦ 𝐵) Fn (ℤ𝑖) → (∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧 ≤ (𝐻𝑖) ↔ ∀𝑘 ∈ (ℤ𝑖)((𝑛 ∈ (ℤ𝑖) ↦ 𝐵)‘𝑘) ≤ (𝐻𝑖)))
12679, 123, 1253syl 18 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧 ≤ (𝐻𝑖) ↔ ∀𝑘 ∈ (ℤ𝑖)((𝑛 ∈ (ℤ𝑖) ↦ 𝐵)‘𝑘) ≤ (𝐻𝑖)))
127122, 126mpbird 257 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → ∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧 ≤ (𝐻𝑖))
128 brralrspcev 5179 . . . . . . . . . . . . . 14 (((𝐻𝑖) ∈ ℝ ∧ ∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧 ≤ (𝐻𝑖)) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧𝑦)
12972, 127, 128syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧𝑦)
13080, 94, 129suprcld 12203 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ) ∈ ℝ)
131130rexrd 11283 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ) ∈ ℝ*)
13280adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ (𝑘𝑍𝑖𝑘)) → ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) ⊆ ℝ)
13394adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ (𝑘𝑍𝑖𝑘)) → ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) ≠ ∅)
134129adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ (𝑘𝑍𝑖𝑘)) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧𝑦)
1358sseli 3954 . . . . . . . . . . . . . . . . . . . 20 (𝑘𝑍𝑘 ∈ ℤ)
136 eluz 12864 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (ℤ𝑖) ↔ 𝑖𝑘))
13787, 135, 136syl2an 596 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑘𝑍) → (𝑘 ∈ (ℤ𝑖) ↔ 𝑖𝑘))
138137biimprd 248 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑘𝑍) → (𝑖𝑘𝑘 ∈ (ℤ𝑖)))
139138impr 454 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ (𝑘𝑍𝑖𝑘)) → 𝑘 ∈ (ℤ𝑖))
140139, 114syldan 591 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ (𝑘𝑍𝑖𝑘)) → ((𝑛 ∈ (ℤ𝑖) ↦ 𝐵)‘𝑘) = ((𝑛𝑍𝐵)‘𝑘))
14179adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ (𝑘𝑍𝑖𝑘)) → (𝑛 ∈ (ℤ𝑖) ↦ 𝐵):(ℤ𝑖)⟶ℝ)
142141, 123syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ (𝑘𝑍𝑖𝑘)) → (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) Fn (ℤ𝑖))
143 fnfvelrn 7069 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ (ℤ𝑖) ↦ 𝐵) Fn (ℤ𝑖) ∧ 𝑘 ∈ (ℤ𝑖)) → ((𝑛 ∈ (ℤ𝑖) ↦ 𝐵)‘𝑘) ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵))
144142, 139, 143syl2anc 584 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ (𝑘𝑍𝑖𝑘)) → ((𝑛 ∈ (ℤ𝑖) ↦ 𝐵)‘𝑘) ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵))
145140, 144eqeltrrd 2835 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ (𝑘𝑍𝑖𝑘)) → ((𝑛𝑍𝐵)‘𝑘) ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵))
146132, 133, 134, 145suprubd 12202 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ (𝑘𝑍𝑖𝑘)) → ((𝑛𝑍𝐵)‘𝑘) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ))
147146expr 456 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑘𝑍) → (𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )))
148147ralrimiva 3132 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → ∀𝑘𝑍 (𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )))
1492limsupgle 15491 . . . . . . . . . . . . 13 (((𝑍 ⊆ ℝ ∧ (𝑛𝑍𝐵):𝑍⟶ℝ*) ∧ 𝑖 ∈ ℝ ∧ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ) ∈ ℝ*) → ((𝐻𝑖) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ) ↔ ∀𝑘𝑍 (𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ))))
150100, 101, 103, 131, 149syl211anc 1378 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → ((𝐻𝑖) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ) ↔ ∀𝑘𝑍 (𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ))))
151148, 150mpbird 257 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (𝐻𝑖) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ))
152 suprleub 12206 . . . . . . . . . . . . 13 (((ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) ⊆ ℝ ∧ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧𝑦) ∧ (𝐻𝑖) ∈ ℝ) → (sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ) ≤ (𝐻𝑖) ↔ ∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧 ≤ (𝐻𝑖)))
15380, 94, 129, 72, 152syl31anc 1375 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ) ≤ (𝐻𝑖) ↔ ∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧 ≤ (𝐻𝑖)))
154127, 153mpbird 257 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ) ≤ (𝐻𝑖))
15573, 131, 151, 154xrletrid 13169 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (𝐻𝑖) = sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ))
156155mpteq2dva 5214 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑖𝑍 ↦ (𝐻𝑖)) = (𝑖𝑍 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )))
15769, 156eqtrd 2770 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝐻𝑍) = (𝑖𝑍 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )))
158157rneqd 5918 . . . . . . 7 ((𝜑𝑥𝐴) → ran (𝐻𝑍) = ran (𝑖𝑍 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )))
15964, 158eqtrid 2782 . . . . . 6 ((𝜑𝑥𝐴) → (𝐻𝑍) = ran (𝑖𝑍 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )))
160159infeq1d 9488 . . . . 5 ((𝜑𝑥𝐴) → inf((𝐻𝑍), ℝ, < ) = inf(ran (𝑖𝑍 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )), ℝ, < ))
16116, 63, 1603eqtrd 2774 . . . 4 ((𝜑𝑥𝐴) → (lim sup‘(𝑛𝑍𝐵)) = inf(ran (𝑖𝑍 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )), ℝ, < ))
162161mpteq2dva 5214 . . 3 (𝜑 → (𝑥𝐴 ↦ (lim sup‘(𝑛𝑍𝐵))) = (𝑥𝐴 ↦ inf(ran (𝑖𝑍 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )), ℝ, < )))
1631, 162eqtrid 2782 . 2 (𝜑𝐺 = (𝑥𝐴 ↦ inf(ran (𝑖𝑍 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )), ℝ, < )))
164 eqid 2735 . . 3 (𝑥𝐴 ↦ inf(ran (𝑖𝑍 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )), ℝ, < )) = (𝑥𝐴 ↦ inf(ran (𝑖𝑍 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )), ℝ, < ))
165 eqid 2735 . . . 4 (ℤ𝑖) = (ℤ𝑖)
166 eqid 2735 . . . 4 (𝑥𝐴 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )) = (𝑥𝐴 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ))
167 simpll 766 . . . . 5 (((𝜑𝑖𝑍) ∧ 𝑛 ∈ (ℤ𝑖)) → 𝜑)
16875adantll 714 . . . . 5 (((𝜑𝑖𝑍) ∧ 𝑛 ∈ (ℤ𝑖)) → 𝑛𝑍)
169 mbflimsup.5 . . . . 5 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ MblFn)
170167, 168, 169syl2anc 584 . . . 4 (((𝜑𝑖𝑍) ∧ 𝑛 ∈ (ℤ𝑖)) → (𝑥𝐴𝐵) ∈ MblFn)
171 simpll 766 . . . . 5 (((𝜑𝑖𝑍) ∧ (𝑛 ∈ (ℤ𝑖) ∧ 𝑥𝐴)) → 𝜑)
17275ad2ant2lr 748 . . . . 5 (((𝜑𝑖𝑍) ∧ (𝑛 ∈ (ℤ𝑖) ∧ 𝑥𝐴)) → 𝑛𝑍)
173 simprr 772 . . . . 5 (((𝜑𝑖𝑍) ∧ (𝑛 ∈ (ℤ𝑖) ∧ 𝑥𝐴)) → 𝑥𝐴)
174171, 172, 173, 19syl12anc 836 . . . 4 (((𝜑𝑖𝑍) ∧ (𝑛 ∈ (ℤ𝑖) ∧ 𝑥𝐴)) → 𝐵 ∈ ℝ)
17578ralrimiva 3132 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → ∀𝑛 ∈ (ℤ𝑖)𝐵 ∈ ℝ)
176 breq1 5122 . . . . . . . . 9 (𝑧 = 𝐵 → (𝑧𝑦𝐵𝑦))
17781, 176ralrnmptw 7083 . . . . . . . 8 (∀𝑛 ∈ (ℤ𝑖)𝐵 ∈ ℝ → (∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧𝑦 ↔ ∀𝑛 ∈ (ℤ𝑖)𝐵𝑦))
178175, 177syl 17 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧𝑦 ↔ ∀𝑛 ∈ (ℤ𝑖)𝐵𝑦))
179178rexbidv 3164 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑛 ∈ (ℤ𝑖)𝐵𝑦))
180129, 179mpbid 232 . . . . 5 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ (ℤ𝑖)𝐵𝑦)
181180an32s 652 . . . 4 (((𝜑𝑖𝑍) ∧ 𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ (ℤ𝑖)𝐵𝑦)
182165, 166, 86, 170, 174, 181mbfsup 25615 . . 3 ((𝜑𝑖𝑍) → (𝑥𝐴 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )) ∈ MblFn)
183130an32s 652 . . . 4 (((𝜑𝑖𝑍) ∧ 𝑥𝐴) → sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ) ∈ ℝ)
184183anasss 466 . . 3 ((𝜑 ∧ (𝑖𝑍𝑥𝐴)) → sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ) ∈ ℝ)
1852limsuple 15492 . . . . . . . 8 ((𝑍 ⊆ ℝ ∧ (𝑛𝑍𝐵):𝑍⟶ℝ* ∧ (lim sup‘(𝑛𝑍𝐵)) ∈ ℝ*) → ((lim sup‘(𝑛𝑍𝐵)) ≤ (lim sup‘(𝑛𝑍𝐵)) ↔ ∀𝑖 ∈ ℝ (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑖)))
18611, 44, 45, 185syl3anc 1373 . . . . . . 7 ((𝜑𝑥𝐴) → ((lim sup‘(𝑛𝑍𝐵)) ≤ (lim sup‘(𝑛𝑍𝐵)) ↔ ∀𝑖 ∈ ℝ (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑖)))
18742, 186mpbid 232 . . . . . 6 ((𝜑𝑥𝐴) → ∀𝑖 ∈ ℝ (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑖))
188 ssralv 4027 . . . . . 6 (𝑍 ⊆ ℝ → (∀𝑖 ∈ ℝ (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑖) → ∀𝑖𝑍 (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑖)))
18910, 187, 188mpsyl 68 . . . . 5 ((𝜑𝑥𝐴) → ∀𝑖𝑍 (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑖))
190155breq2d 5131 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → ((lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑖) ↔ (lim sup‘(𝑛𝑍𝐵)) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )))
191190ralbidva 3161 . . . . 5 ((𝜑𝑥𝐴) → (∀𝑖𝑍 (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑖) ↔ ∀𝑖𝑍 (lim sup‘(𝑛𝑍𝐵)) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )))
192189, 191mpbid 232 . . . 4 ((𝜑𝑥𝐴) → ∀𝑖𝑍 (lim sup‘(𝑛𝑍𝐵)) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ))
193 breq1 5122 . . . . . 6 (𝑦 = (lim sup‘(𝑛𝑍𝐵)) → (𝑦 ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ) ↔ (lim sup‘(𝑛𝑍𝐵)) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )))
194193ralbidv 3163 . . . . 5 (𝑦 = (lim sup‘(𝑛𝑍𝐵)) → (∀𝑖𝑍 𝑦 ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ) ↔ ∀𝑖𝑍 (lim sup‘(𝑛𝑍𝐵)) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )))
195194rspcev 3601 . . . 4 (((lim sup‘(𝑛𝑍𝐵)) ∈ ℝ ∧ ∀𝑖𝑍 (lim sup‘(𝑛𝑍𝐵)) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )) → ∃𝑦 ∈ ℝ ∀𝑖𝑍 𝑦 ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ))
19622, 192, 195syl2anc 584 . . 3 ((𝜑𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑖𝑍 𝑦 ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ))
1973, 164, 12, 182, 184, 196mbfinf 25616 . 2 (𝜑 → (𝑥𝐴 ↦ inf(ran (𝑖𝑍 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )), ℝ, < )) ∈ MblFn)
198163, 197eqeltrd 2834 1 (𝜑𝐺 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  Vcvv 3459  cin 3925  wss 3926  c0 4308   class class class wbr 5119  cmpt 5201  dom cdm 5654  ran crn 5655  cres 5656  cima 5657   Fn wfn 6525  wf 6526  cfv 6530  (class class class)co 7403  supcsup 9450  infcinf 9451  cr 11126  +∞cpnf 11264  *cxr 11266   < clt 11267  cle 11268  cz 12586  cuz 12850  [,)cico 13362  lim supclsp 15484  MblFncmbf 25565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cc 10447  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-oadd 8482  df-omul 8483  df-er 8717  df-map 8840  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9452  df-inf 9453  df-oi 9522  df-dju 9913  df-card 9951  df-acn 9954  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-n0 12500  df-z 12587  df-uz 12851  df-q 12963  df-rp 13007  df-xadd 13127  df-ioo 13364  df-ioc 13365  df-ico 13366  df-icc 13367  df-fz 13523  df-fzo 13670  df-fl 13807  df-seq 14018  df-exp 14078  df-hash 14347  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-limsup 15485  df-clim 15502  df-rlim 15503  df-sum 15701  df-xmet 21306  df-met 21307  df-ovol 25415  df-vol 25416  df-mbf 25570
This theorem is referenced by:  mbflimlem  25618
  Copyright terms: Public domain W3C validator