MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbflimsup Structured version   Visualization version   GIF version

Theorem mbflimsup 23652
Description: The limit supremum of a sequence of measurable real-valued functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.)
Hypotheses
Ref Expression
mbflimsup.1 𝑍 = (ℤ𝑀)
mbflimsup.2 𝐺 = (𝑥𝐴 ↦ (lim sup‘(𝑛𝑍𝐵)))
mbflimsup.h 𝐻 = (𝑚 ∈ ℝ ↦ sup((((𝑛𝑍𝐵) “ (𝑚[,)+∞)) ∩ ℝ*), ℝ*, < ))
mbflimsup.3 (𝜑𝑀 ∈ ℤ)
mbflimsup.4 ((𝜑𝑥𝐴) → (lim sup‘(𝑛𝑍𝐵)) ∈ ℝ)
mbflimsup.5 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ MblFn)
mbflimsup.6 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
mbflimsup (𝜑𝐺 ∈ MblFn)
Distinct variable groups:   𝑥,𝑛,𝐴   𝐵,𝑚   𝜑,𝑛,𝑥   𝑚,𝑀   𝑚,𝑛,𝑥,𝑍
Allowed substitution hints:   𝜑(𝑚)   𝐴(𝑚)   𝐵(𝑥,𝑛)   𝐺(𝑥,𝑚,𝑛)   𝐻(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑛)

Proof of Theorem mbflimsup
Dummy variables 𝑖 𝑘 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbflimsup.2 . . 3 𝐺 = (𝑥𝐴 ↦ (lim sup‘(𝑛𝑍𝐵)))
2 mbflimsup.h . . . . . 6 𝐻 = (𝑚 ∈ ℝ ↦ sup((((𝑛𝑍𝐵) “ (𝑚[,)+∞)) ∩ ℝ*), ℝ*, < ))
3 mbflimsup.1 . . . . . . . . 9 𝑍 = (ℤ𝑀)
43fvexi 6345 . . . . . . . 8 𝑍 ∈ V
54mptex 6632 . . . . . . 7 (𝑛𝑍𝐵) ∈ V
65a1i 11 . . . . . 6 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵) ∈ V)
7 uzssz 11912 . . . . . . . . 9 (ℤ𝑀) ⊆ ℤ
83, 7eqsstri 3784 . . . . . . . 8 𝑍 ⊆ ℤ
9 zssre 11590 . . . . . . . 8 ℤ ⊆ ℝ
108, 9sstri 3761 . . . . . . 7 𝑍 ⊆ ℝ
1110a1i 11 . . . . . 6 ((𝜑𝑥𝐴) → 𝑍 ⊆ ℝ)
12 mbflimsup.3 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
133uzsup 12869 . . . . . . . 8 (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) = +∞)
1412, 13syl 17 . . . . . . 7 (𝜑 → sup(𝑍, ℝ*, < ) = +∞)
1514adantr 466 . . . . . 6 ((𝜑𝑥𝐴) → sup(𝑍, ℝ*, < ) = +∞)
162, 6, 11, 15limsupval2 14418 . . . . 5 ((𝜑𝑥𝐴) → (lim sup‘(𝑛𝑍𝐵)) = inf((𝐻𝑍), ℝ*, < ))
17 imassrn 5617 . . . . . . 7 (𝐻𝑍) ⊆ ran 𝐻
1812adantr 466 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑀 ∈ ℤ)
19 mbflimsup.6 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → 𝐵 ∈ ℝ)
2019anass1rs 634 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → 𝐵 ∈ ℝ)
21 eqid 2771 . . . . . . . . . 10 (𝑛𝑍𝐵) = (𝑛𝑍𝐵)
2220, 21fmptd 6529 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵):𝑍⟶ℝ)
23 mbflimsup.4 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (lim sup‘(𝑛𝑍𝐵)) ∈ ℝ)
2423ltpnfd 12159 . . . . . . . . 9 ((𝜑𝑥𝐴) → (lim sup‘(𝑛𝑍𝐵)) < +∞)
252, 3limsupgre 14419 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ (𝑛𝑍𝐵):𝑍⟶ℝ ∧ (lim sup‘(𝑛𝑍𝐵)) < +∞) → 𝐻:ℝ⟶ℝ)
2618, 22, 24, 25syl3anc 1476 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐻:ℝ⟶ℝ)
2726frnd 6191 . . . . . . 7 ((𝜑𝑥𝐴) → ran 𝐻 ⊆ ℝ)
2817, 27syl5ss 3763 . . . . . 6 ((𝜑𝑥𝐴) → (𝐻𝑍) ⊆ ℝ)
2926fdmd 6193 . . . . . . . . . 10 ((𝜑𝑥𝐴) → dom 𝐻 = ℝ)
3029ineq1d 3964 . . . . . . . . 9 ((𝜑𝑥𝐴) → (dom 𝐻𝑍) = (ℝ ∩ 𝑍))
31 sseqin2 3968 . . . . . . . . . 10 (𝑍 ⊆ ℝ ↔ (ℝ ∩ 𝑍) = 𝑍)
3210, 31mpbi 220 . . . . . . . . 9 (ℝ ∩ 𝑍) = 𝑍
3330, 32syl6eq 2821 . . . . . . . 8 ((𝜑𝑥𝐴) → (dom 𝐻𝑍) = 𝑍)
34 uzid 11907 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
3512, 34syl 17 . . . . . . . . . . 11 (𝜑𝑀 ∈ (ℤ𝑀))
3635, 3syl6eleqr 2861 . . . . . . . . . 10 (𝜑𝑀𝑍)
3736adantr 466 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑀𝑍)
3837ne0d 4070 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑍 ≠ ∅)
3933, 38eqnetrd 3010 . . . . . . 7 ((𝜑𝑥𝐴) → (dom 𝐻𝑍) ≠ ∅)
40 imadisj 5624 . . . . . . . 8 ((𝐻𝑍) = ∅ ↔ (dom 𝐻𝑍) = ∅)
4140necon3bii 2995 . . . . . . 7 ((𝐻𝑍) ≠ ∅ ↔ (dom 𝐻𝑍) ≠ ∅)
4239, 41sylibr 224 . . . . . 6 ((𝜑𝑥𝐴) → (𝐻𝑍) ≠ ∅)
4323leidd 10799 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (lim sup‘(𝑛𝑍𝐵)) ≤ (lim sup‘(𝑛𝑍𝐵)))
4420rexrd 10294 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → 𝐵 ∈ ℝ*)
4544, 21fmptd 6529 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵):𝑍⟶ℝ*)
4623rexrd 10294 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (lim sup‘(𝑛𝑍𝐵)) ∈ ℝ*)
472limsuple 14416 . . . . . . . . . . 11 ((𝑍 ⊆ ℝ ∧ (𝑛𝑍𝐵):𝑍⟶ℝ* ∧ (lim sup‘(𝑛𝑍𝐵)) ∈ ℝ*) → ((lim sup‘(𝑛𝑍𝐵)) ≤ (lim sup‘(𝑛𝑍𝐵)) ↔ ∀𝑦 ∈ ℝ (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑦)))
4811, 45, 46, 47syl3anc 1476 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ((lim sup‘(𝑛𝑍𝐵)) ≤ (lim sup‘(𝑛𝑍𝐵)) ↔ ∀𝑦 ∈ ℝ (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑦)))
4943, 48mpbid 222 . . . . . . . . 9 ((𝜑𝑥𝐴) → ∀𝑦 ∈ ℝ (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑦))
50 ssralv 3815 . . . . . . . . 9 (𝑍 ⊆ ℝ → (∀𝑦 ∈ ℝ (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑦) → ∀𝑦𝑍 (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑦)))
5110, 49, 50mpsyl 68 . . . . . . . 8 ((𝜑𝑥𝐴) → ∀𝑦𝑍 (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑦))
522limsupgf 14413 . . . . . . . . . 10 𝐻:ℝ⟶ℝ*
53 ffn 6184 . . . . . . . . . 10 (𝐻:ℝ⟶ℝ*𝐻 Fn ℝ)
5452, 53ax-mp 5 . . . . . . . . 9 𝐻 Fn ℝ
55 breq2 4791 . . . . . . . . . 10 (𝑧 = (𝐻𝑦) → ((lim sup‘(𝑛𝑍𝐵)) ≤ 𝑧 ↔ (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑦)))
5655ralima 6643 . . . . . . . . 9 ((𝐻 Fn ℝ ∧ 𝑍 ⊆ ℝ) → (∀𝑧 ∈ (𝐻𝑍)(lim sup‘(𝑛𝑍𝐵)) ≤ 𝑧 ↔ ∀𝑦𝑍 (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑦)))
5754, 11, 56sylancr 575 . . . . . . . 8 ((𝜑𝑥𝐴) → (∀𝑧 ∈ (𝐻𝑍)(lim sup‘(𝑛𝑍𝐵)) ≤ 𝑧 ↔ ∀𝑦𝑍 (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑦)))
5851, 57mpbird 247 . . . . . . 7 ((𝜑𝑥𝐴) → ∀𝑧 ∈ (𝐻𝑍)(lim sup‘(𝑛𝑍𝐵)) ≤ 𝑧)
59 breq1 4790 . . . . . . . . 9 (𝑦 = (lim sup‘(𝑛𝑍𝐵)) → (𝑦𝑧 ↔ (lim sup‘(𝑛𝑍𝐵)) ≤ 𝑧))
6059ralbidv 3135 . . . . . . . 8 (𝑦 = (lim sup‘(𝑛𝑍𝐵)) → (∀𝑧 ∈ (𝐻𝑍)𝑦𝑧 ↔ ∀𝑧 ∈ (𝐻𝑍)(lim sup‘(𝑛𝑍𝐵)) ≤ 𝑧))
6160rspcev 3460 . . . . . . 7 (((lim sup‘(𝑛𝑍𝐵)) ∈ ℝ ∧ ∀𝑧 ∈ (𝐻𝑍)(lim sup‘(𝑛𝑍𝐵)) ≤ 𝑧) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ (𝐻𝑍)𝑦𝑧)
6223, 58, 61syl2anc 573 . . . . . 6 ((𝜑𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ (𝐻𝑍)𝑦𝑧)
63 infxrre 12370 . . . . . 6 (((𝐻𝑍) ⊆ ℝ ∧ (𝐻𝑍) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ (𝐻𝑍)𝑦𝑧) → inf((𝐻𝑍), ℝ*, < ) = inf((𝐻𝑍), ℝ, < ))
6428, 42, 62, 63syl3anc 1476 . . . . 5 ((𝜑𝑥𝐴) → inf((𝐻𝑍), ℝ*, < ) = inf((𝐻𝑍), ℝ, < ))
65 df-ima 5263 . . . . . . 7 (𝐻𝑍) = ran (𝐻𝑍)
6626feqmptd 6393 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐻 = (𝑖 ∈ ℝ ↦ (𝐻𝑖)))
6766reseq1d 5532 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝐻𝑍) = ((𝑖 ∈ ℝ ↦ (𝐻𝑖)) ↾ 𝑍))
68 resmpt 5589 . . . . . . . . . . 11 (𝑍 ⊆ ℝ → ((𝑖 ∈ ℝ ↦ (𝐻𝑖)) ↾ 𝑍) = (𝑖𝑍 ↦ (𝐻𝑖)))
6910, 68ax-mp 5 . . . . . . . . . 10 ((𝑖 ∈ ℝ ↦ (𝐻𝑖)) ↾ 𝑍) = (𝑖𝑍 ↦ (𝐻𝑖))
7067, 69syl6eq 2821 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐻𝑍) = (𝑖𝑍 ↦ (𝐻𝑖)))
7110sseli 3748 . . . . . . . . . . . . 13 (𝑖𝑍𝑖 ∈ ℝ)
72 ffvelrn 6502 . . . . . . . . . . . . 13 ((𝐻:ℝ⟶ℝ ∧ 𝑖 ∈ ℝ) → (𝐻𝑖) ∈ ℝ)
7326, 71, 72syl2an 583 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (𝐻𝑖) ∈ ℝ)
7473rexrd 10294 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (𝐻𝑖) ∈ ℝ*)
75 simplll 758 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑛 ∈ (ℤ𝑖)) → 𝜑)
763uztrn2 11910 . . . . . . . . . . . . . . . . 17 ((𝑖𝑍𝑛 ∈ (ℤ𝑖)) → 𝑛𝑍)
7776adantll 693 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑛 ∈ (ℤ𝑖)) → 𝑛𝑍)
78 simpllr 760 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑛 ∈ (ℤ𝑖)) → 𝑥𝐴)
7975, 77, 78, 19syl12anc 1474 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑛 ∈ (ℤ𝑖)) → 𝐵 ∈ ℝ)
80 eqid 2771 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) = (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)
8179, 80fmptd 6529 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (𝑛 ∈ (ℤ𝑖) ↦ 𝐵):(ℤ𝑖)⟶ℝ)
8281frnd 6191 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) ⊆ ℝ)
8380, 79dmmptd 6163 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → dom (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) = (ℤ𝑖))
84 simpr 471 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖𝑍) → 𝑖𝑍)
8584, 3syl6eleq 2860 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖𝑍) → 𝑖 ∈ (ℤ𝑀))
86 eluzelz 11902 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (ℤ𝑀) → 𝑖 ∈ ℤ)
8785, 86syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝑍) → 𝑖 ∈ ℤ)
8887adantlr 694 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → 𝑖 ∈ ℤ)
89 uzid 11907 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ℤ → 𝑖 ∈ (ℤ𝑖))
90 ne0i 4069 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (ℤ𝑖) → (ℤ𝑖) ≠ ∅)
9188, 89, 903syl 18 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (ℤ𝑖) ≠ ∅)
9283, 91eqnetrd 3010 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → dom (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) ≠ ∅)
93 dm0rn0 5479 . . . . . . . . . . . . . . 15 (dom (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) = ∅ ↔ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) = ∅)
9493necon3bii 2995 . . . . . . . . . . . . . 14 (dom (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) ≠ ∅ ↔ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) ≠ ∅)
9592, 94sylib 208 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) ≠ ∅)
9685adantlr 694 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → 𝑖 ∈ (ℤ𝑀))
97 uzss 11913 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ (ℤ𝑀) → (ℤ𝑖) ⊆ (ℤ𝑀))
9896, 97syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (ℤ𝑖) ⊆ (ℤ𝑀))
9998, 3syl6sseqr 3801 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (ℤ𝑖) ⊆ 𝑍)
10073leidd 10799 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (𝐻𝑖) ≤ (𝐻𝑖))
10110a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → 𝑍 ⊆ ℝ)
10245adantr 466 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (𝑛𝑍𝐵):𝑍⟶ℝ*)
103 simpr 471 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → 𝑖𝑍)
10410, 103sseldi 3750 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → 𝑖 ∈ ℝ)
1052limsupgle 14415 . . . . . . . . . . . . . . . . . . 19 (((𝑍 ⊆ ℝ ∧ (𝑛𝑍𝐵):𝑍⟶ℝ*) ∧ 𝑖 ∈ ℝ ∧ (𝐻𝑖) ∈ ℝ*) → ((𝐻𝑖) ≤ (𝐻𝑖) ↔ ∀𝑘𝑍 (𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ (𝐻𝑖))))
106101, 102, 104, 74, 105syl211anc 1482 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → ((𝐻𝑖) ≤ (𝐻𝑖) ↔ ∀𝑘𝑍 (𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ (𝐻𝑖))))
107100, 106mpbid 222 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → ∀𝑘𝑍 (𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ (𝐻𝑖)))
108 ssralv 3815 . . . . . . . . . . . . . . . . 17 ((ℤ𝑖) ⊆ 𝑍 → (∀𝑘𝑍 (𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ (𝐻𝑖)) → ∀𝑘 ∈ (ℤ𝑖)(𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ (𝐻𝑖))))
10999, 107, 108sylc 65 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → ∀𝑘 ∈ (ℤ𝑖)(𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ (𝐻𝑖)))
11099adantr 466 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → (ℤ𝑖) ⊆ 𝑍)
111110resmptd 5592 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → ((𝑛𝑍𝐵) ↾ (ℤ𝑖)) = (𝑛 ∈ (ℤ𝑖) ↦ 𝐵))
112111fveq1d 6335 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → (((𝑛𝑍𝐵) ↾ (ℤ𝑖))‘𝑘) = ((𝑛 ∈ (ℤ𝑖) ↦ 𝐵)‘𝑘))
113 fvres 6350 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (ℤ𝑖) → (((𝑛𝑍𝐵) ↾ (ℤ𝑖))‘𝑘) = ((𝑛𝑍𝐵)‘𝑘))
114113adantl 467 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → (((𝑛𝑍𝐵) ↾ (ℤ𝑖))‘𝑘) = ((𝑛𝑍𝐵)‘𝑘))
115112, 114eqtr3d 2807 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → ((𝑛 ∈ (ℤ𝑖) ↦ 𝐵)‘𝑘) = ((𝑛𝑍𝐵)‘𝑘))
116115breq1d 4797 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → (((𝑛 ∈ (ℤ𝑖) ↦ 𝐵)‘𝑘) ≤ (𝐻𝑖) ↔ ((𝑛𝑍𝐵)‘𝑘) ≤ (𝐻𝑖)))
117 eluzle 11905 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (ℤ𝑖) → 𝑖𝑘)
118117adantl 467 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → 𝑖𝑘)
119 biimt 349 . . . . . . . . . . . . . . . . . . 19 (𝑖𝑘 → (((𝑛𝑍𝐵)‘𝑘) ≤ (𝐻𝑖) ↔ (𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ (𝐻𝑖))))
120118, 119syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → (((𝑛𝑍𝐵)‘𝑘) ≤ (𝐻𝑖) ↔ (𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ (𝐻𝑖))))
121116, 120bitrd 268 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → (((𝑛 ∈ (ℤ𝑖) ↦ 𝐵)‘𝑘) ≤ (𝐻𝑖) ↔ (𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ (𝐻𝑖))))
122121ralbidva 3134 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (∀𝑘 ∈ (ℤ𝑖)((𝑛 ∈ (ℤ𝑖) ↦ 𝐵)‘𝑘) ≤ (𝐻𝑖) ↔ ∀𝑘 ∈ (ℤ𝑖)(𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ (𝐻𝑖))))
123109, 122mpbird 247 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → ∀𝑘 ∈ (ℤ𝑖)((𝑛 ∈ (ℤ𝑖) ↦ 𝐵)‘𝑘) ≤ (𝐻𝑖))
124 ffn 6184 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ (ℤ𝑖) ↦ 𝐵):(ℤ𝑖)⟶ℝ → (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) Fn (ℤ𝑖))
125 breq1 4790 . . . . . . . . . . . . . . . . 17 (𝑧 = ((𝑛 ∈ (ℤ𝑖) ↦ 𝐵)‘𝑘) → (𝑧 ≤ (𝐻𝑖) ↔ ((𝑛 ∈ (ℤ𝑖) ↦ 𝐵)‘𝑘) ≤ (𝐻𝑖)))
126125ralrn 6507 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ (ℤ𝑖) ↦ 𝐵) Fn (ℤ𝑖) → (∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧 ≤ (𝐻𝑖) ↔ ∀𝑘 ∈ (ℤ𝑖)((𝑛 ∈ (ℤ𝑖) ↦ 𝐵)‘𝑘) ≤ (𝐻𝑖)))
12781, 124, 1263syl 18 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧 ≤ (𝐻𝑖) ↔ ∀𝑘 ∈ (ℤ𝑖)((𝑛 ∈ (ℤ𝑖) ↦ 𝐵)‘𝑘) ≤ (𝐻𝑖)))
128123, 127mpbird 247 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → ∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧 ≤ (𝐻𝑖))
129 breq2 4791 . . . . . . . . . . . . . . . 16 (𝑦 = (𝐻𝑖) → (𝑧𝑦𝑧 ≤ (𝐻𝑖)))
130129ralbidv 3135 . . . . . . . . . . . . . . 15 (𝑦 = (𝐻𝑖) → (∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧𝑦 ↔ ∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧 ≤ (𝐻𝑖)))
131130rspcev 3460 . . . . . . . . . . . . . 14 (((𝐻𝑖) ∈ ℝ ∧ ∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧 ≤ (𝐻𝑖)) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧𝑦)
13273, 128, 131syl2anc 573 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧𝑦)
133 suprcl 11188 . . . . . . . . . . . . 13 ((ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) ⊆ ℝ ∧ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧𝑦) → sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ) ∈ ℝ)
13482, 95, 132, 133syl3anc 1476 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ) ∈ ℝ)
135134rexrd 10294 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ) ∈ ℝ*)
13682adantr 466 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ (𝑘𝑍𝑖𝑘)) → ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) ⊆ ℝ)
13795adantr 466 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ (𝑘𝑍𝑖𝑘)) → ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) ≠ ∅)
138132adantr 466 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ (𝑘𝑍𝑖𝑘)) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧𝑦)
1398sseli 3748 . . . . . . . . . . . . . . . . . . . 20 (𝑘𝑍𝑘 ∈ ℤ)
140 eluz 11906 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (ℤ𝑖) ↔ 𝑖𝑘))
14188, 139, 140syl2an 583 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑘𝑍) → (𝑘 ∈ (ℤ𝑖) ↔ 𝑖𝑘))
142141biimprd 238 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑘𝑍) → (𝑖𝑘𝑘 ∈ (ℤ𝑖)))
143142impr 442 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ (𝑘𝑍𝑖𝑘)) → 𝑘 ∈ (ℤ𝑖))
144143, 115syldan 579 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ (𝑘𝑍𝑖𝑘)) → ((𝑛 ∈ (ℤ𝑖) ↦ 𝐵)‘𝑘) = ((𝑛𝑍𝐵)‘𝑘))
14581adantr 466 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ (𝑘𝑍𝑖𝑘)) → (𝑛 ∈ (ℤ𝑖) ↦ 𝐵):(ℤ𝑖)⟶ℝ)
146145, 124syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ (𝑘𝑍𝑖𝑘)) → (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) Fn (ℤ𝑖))
147 fnfvelrn 6501 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ (ℤ𝑖) ↦ 𝐵) Fn (ℤ𝑖) ∧ 𝑘 ∈ (ℤ𝑖)) → ((𝑛 ∈ (ℤ𝑖) ↦ 𝐵)‘𝑘) ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵))
148146, 143, 147syl2anc 573 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ (𝑘𝑍𝑖𝑘)) → ((𝑛 ∈ (ℤ𝑖) ↦ 𝐵)‘𝑘) ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵))
149144, 148eqeltrrd 2851 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ (𝑘𝑍𝑖𝑘)) → ((𝑛𝑍𝐵)‘𝑘) ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵))
150 suprub 11189 . . . . . . . . . . . . . . 15 (((ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) ⊆ ℝ ∧ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧𝑦) ∧ ((𝑛𝑍𝐵)‘𝑘) ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)) → ((𝑛𝑍𝐵)‘𝑘) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ))
151136, 137, 138, 149, 150syl31anc 1479 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ (𝑘𝑍𝑖𝑘)) → ((𝑛𝑍𝐵)‘𝑘) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ))
152151expr 444 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐴) ∧ 𝑖𝑍) ∧ 𝑘𝑍) → (𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )))
153152ralrimiva 3115 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → ∀𝑘𝑍 (𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )))
1542limsupgle 14415 . . . . . . . . . . . . 13 (((𝑍 ⊆ ℝ ∧ (𝑛𝑍𝐵):𝑍⟶ℝ*) ∧ 𝑖 ∈ ℝ ∧ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ) ∈ ℝ*) → ((𝐻𝑖) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ) ↔ ∀𝑘𝑍 (𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ))))
155101, 102, 104, 135, 154syl211anc 1482 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → ((𝐻𝑖) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ) ↔ ∀𝑘𝑍 (𝑖𝑘 → ((𝑛𝑍𝐵)‘𝑘) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ))))
156153, 155mpbird 247 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (𝐻𝑖) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ))
157 suprleub 11194 . . . . . . . . . . . . 13 (((ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) ⊆ ℝ ∧ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧𝑦) ∧ (𝐻𝑖) ∈ ℝ) → (sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ) ≤ (𝐻𝑖) ↔ ∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧 ≤ (𝐻𝑖)))
15882, 95, 132, 73, 157syl31anc 1479 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ) ≤ (𝐻𝑖) ↔ ∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧 ≤ (𝐻𝑖)))
159128, 158mpbird 247 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ) ≤ (𝐻𝑖))
16074, 135, 156, 159xrletrid 12190 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (𝐻𝑖) = sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ))
161160mpteq2dva 4879 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑖𝑍 ↦ (𝐻𝑖)) = (𝑖𝑍 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )))
16270, 161eqtrd 2805 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝐻𝑍) = (𝑖𝑍 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )))
163162rneqd 5490 . . . . . . 7 ((𝜑𝑥𝐴) → ran (𝐻𝑍) = ran (𝑖𝑍 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )))
16465, 163syl5eq 2817 . . . . . 6 ((𝜑𝑥𝐴) → (𝐻𝑍) = ran (𝑖𝑍 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )))
165164infeq1d 8542 . . . . 5 ((𝜑𝑥𝐴) → inf((𝐻𝑍), ℝ, < ) = inf(ran (𝑖𝑍 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )), ℝ, < ))
16616, 64, 1653eqtrd 2809 . . . 4 ((𝜑𝑥𝐴) → (lim sup‘(𝑛𝑍𝐵)) = inf(ran (𝑖𝑍 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )), ℝ, < ))
167166mpteq2dva 4879 . . 3 (𝜑 → (𝑥𝐴 ↦ (lim sup‘(𝑛𝑍𝐵))) = (𝑥𝐴 ↦ inf(ran (𝑖𝑍 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )), ℝ, < )))
1681, 167syl5eq 2817 . 2 (𝜑𝐺 = (𝑥𝐴 ↦ inf(ran (𝑖𝑍 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )), ℝ, < )))
169 eqid 2771 . . 3 (𝑥𝐴 ↦ inf(ran (𝑖𝑍 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )), ℝ, < )) = (𝑥𝐴 ↦ inf(ran (𝑖𝑍 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )), ℝ, < ))
170 eqid 2771 . . . 4 (ℤ𝑖) = (ℤ𝑖)
171 eqid 2771 . . . 4 (𝑥𝐴 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )) = (𝑥𝐴 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ))
172 simpll 750 . . . . 5 (((𝜑𝑖𝑍) ∧ 𝑛 ∈ (ℤ𝑖)) → 𝜑)
17376adantll 693 . . . . 5 (((𝜑𝑖𝑍) ∧ 𝑛 ∈ (ℤ𝑖)) → 𝑛𝑍)
174 mbflimsup.5 . . . . 5 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ MblFn)
175172, 173, 174syl2anc 573 . . . 4 (((𝜑𝑖𝑍) ∧ 𝑛 ∈ (ℤ𝑖)) → (𝑥𝐴𝐵) ∈ MblFn)
176 simpll 750 . . . . 5 (((𝜑𝑖𝑍) ∧ (𝑛 ∈ (ℤ𝑖) ∧ 𝑥𝐴)) → 𝜑)
17776ad2ant2lr 742 . . . . 5 (((𝜑𝑖𝑍) ∧ (𝑛 ∈ (ℤ𝑖) ∧ 𝑥𝐴)) → 𝑛𝑍)
178 simprr 756 . . . . 5 (((𝜑𝑖𝑍) ∧ (𝑛 ∈ (ℤ𝑖) ∧ 𝑥𝐴)) → 𝑥𝐴)
179176, 177, 178, 19syl12anc 1474 . . . 4 (((𝜑𝑖𝑍) ∧ (𝑛 ∈ (ℤ𝑖) ∧ 𝑥𝐴)) → 𝐵 ∈ ℝ)
18079ralrimiva 3115 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → ∀𝑛 ∈ (ℤ𝑖)𝐵 ∈ ℝ)
181 breq1 4790 . . . . . . . . 9 (𝑧 = 𝐵 → (𝑧𝑦𝐵𝑦))
18280, 181ralrnmpt 6513 . . . . . . . 8 (∀𝑛 ∈ (ℤ𝑖)𝐵 ∈ ℝ → (∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧𝑦 ↔ ∀𝑛 ∈ (ℤ𝑖)𝐵𝑦))
183180, 182syl 17 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧𝑦 ↔ ∀𝑛 ∈ (ℤ𝑖)𝐵𝑦))
184183rexbidv 3200 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → (∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵)𝑧𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑛 ∈ (ℤ𝑖)𝐵𝑦))
185132, 184mpbid 222 . . . . 5 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ (ℤ𝑖)𝐵𝑦)
186185an32s 631 . . . 4 (((𝜑𝑖𝑍) ∧ 𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ (ℤ𝑖)𝐵𝑦)
187170, 171, 87, 175, 179, 186mbfsup 23650 . . 3 ((𝜑𝑖𝑍) → (𝑥𝐴 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )) ∈ MblFn)
188134an32s 631 . . . 4 (((𝜑𝑖𝑍) ∧ 𝑥𝐴) → sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ) ∈ ℝ)
189188anasss 452 . . 3 ((𝜑 ∧ (𝑖𝑍𝑥𝐴)) → sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ) ∈ ℝ)
1902limsuple 14416 . . . . . . . 8 ((𝑍 ⊆ ℝ ∧ (𝑛𝑍𝐵):𝑍⟶ℝ* ∧ (lim sup‘(𝑛𝑍𝐵)) ∈ ℝ*) → ((lim sup‘(𝑛𝑍𝐵)) ≤ (lim sup‘(𝑛𝑍𝐵)) ↔ ∀𝑖 ∈ ℝ (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑖)))
19111, 45, 46, 190syl3anc 1476 . . . . . . 7 ((𝜑𝑥𝐴) → ((lim sup‘(𝑛𝑍𝐵)) ≤ (lim sup‘(𝑛𝑍𝐵)) ↔ ∀𝑖 ∈ ℝ (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑖)))
19243, 191mpbid 222 . . . . . 6 ((𝜑𝑥𝐴) → ∀𝑖 ∈ ℝ (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑖))
193 ssralv 3815 . . . . . 6 (𝑍 ⊆ ℝ → (∀𝑖 ∈ ℝ (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑖) → ∀𝑖𝑍 (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑖)))
19410, 192, 193mpsyl 68 . . . . 5 ((𝜑𝑥𝐴) → ∀𝑖𝑍 (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑖))
195160breq2d 4799 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑖𝑍) → ((lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑖) ↔ (lim sup‘(𝑛𝑍𝐵)) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )))
196195ralbidva 3134 . . . . 5 ((𝜑𝑥𝐴) → (∀𝑖𝑍 (lim sup‘(𝑛𝑍𝐵)) ≤ (𝐻𝑖) ↔ ∀𝑖𝑍 (lim sup‘(𝑛𝑍𝐵)) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )))
197194, 196mpbid 222 . . . 4 ((𝜑𝑥𝐴) → ∀𝑖𝑍 (lim sup‘(𝑛𝑍𝐵)) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ))
198 breq1 4790 . . . . . 6 (𝑦 = (lim sup‘(𝑛𝑍𝐵)) → (𝑦 ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ) ↔ (lim sup‘(𝑛𝑍𝐵)) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )))
199198ralbidv 3135 . . . . 5 (𝑦 = (lim sup‘(𝑛𝑍𝐵)) → (∀𝑖𝑍 𝑦 ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ) ↔ ∀𝑖𝑍 (lim sup‘(𝑛𝑍𝐵)) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )))
200199rspcev 3460 . . . 4 (((lim sup‘(𝑛𝑍𝐵)) ∈ ℝ ∧ ∀𝑖𝑍 (lim sup‘(𝑛𝑍𝐵)) ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )) → ∃𝑦 ∈ ℝ ∀𝑖𝑍 𝑦 ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ))
20123, 197, 200syl2anc 573 . . 3 ((𝜑𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑖𝑍 𝑦 ≤ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < ))
2023, 169, 12, 187, 189, 201mbfinf 23651 . 2 (𝜑 → (𝑥𝐴 ↦ inf(ran (𝑖𝑍 ↦ sup(ran (𝑛 ∈ (ℤ𝑖) ↦ 𝐵), ℝ, < )), ℝ, < )) ∈ MblFn)
203168, 202eqeltrd 2850 1 (𝜑𝐺 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wne 2943  wral 3061  wrex 3062  Vcvv 3351  cin 3722  wss 3723  c0 4063   class class class wbr 4787  cmpt 4864  dom cdm 5250  ran crn 5251  cres 5252  cima 5253   Fn wfn 6025  wf 6026  cfv 6030  (class class class)co 6795  supcsup 8505  infcinf 8506  cr 10140  +∞cpnf 10276  *cxr 10278   < clt 10279  cle 10280  cz 11583  cuz 11892  [,)cico 12381  lim supclsp 14408  MblFncmbf 23601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7099  ax-inf2 8705  ax-cc 9462  ax-cnex 10197  ax-resscn 10198  ax-1cn 10199  ax-icn 10200  ax-addcl 10201  ax-addrcl 10202  ax-mulcl 10203  ax-mulrcl 10204  ax-mulcom 10205  ax-addass 10206  ax-mulass 10207  ax-distr 10208  ax-i2m1 10209  ax-1ne0 10210  ax-1rid 10211  ax-rnegex 10212  ax-rrecex 10213  ax-cnre 10214  ax-pre-lttri 10215  ax-pre-lttrn 10216  ax-pre-ltadd 10217  ax-pre-mulgt0 10218  ax-pre-sup 10219
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-disj 4756  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6756  df-ov 6798  df-oprab 6799  df-mpt2 6800  df-of 7047  df-om 7216  df-1st 7318  df-2nd 7319  df-wrecs 7562  df-recs 7624  df-rdg 7662  df-1o 7716  df-2o 7717  df-oadd 7720  df-omul 7721  df-er 7899  df-map 8014  df-pm 8015  df-en 8113  df-dom 8114  df-sdom 8115  df-fin 8116  df-sup 8507  df-inf 8508  df-oi 8574  df-card 8968  df-acn 8971  df-cda 9195  df-pnf 10281  df-mnf 10282  df-xr 10283  df-ltxr 10284  df-le 10285  df-sub 10473  df-neg 10474  df-div 10890  df-nn 11226  df-2 11284  df-3 11285  df-n0 11499  df-z 11584  df-uz 11893  df-q 11996  df-rp 12035  df-xadd 12151  df-ioo 12383  df-ioc 12384  df-ico 12385  df-icc 12386  df-fz 12533  df-fzo 12673  df-fl 12800  df-seq 13008  df-exp 13067  df-hash 13321  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-limsup 14409  df-clim 14426  df-rlim 14427  df-sum 14624  df-xmet 19953  df-met 19954  df-ovol 23451  df-vol 23452  df-mbf 23606
This theorem is referenced by:  mbflimlem  23653
  Copyright terms: Public domain W3C validator