MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin71num Structured version   Visualization version   GIF version

Theorem fin71num 9897
Description: A well-orderable set is VII-finite iff it is I-finite. Thus, even without choice, on the class of well-orderable sets all eight definitions of finite set coincide. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
fin71num (𝐴 ∈ dom card → (𝐴 ∈ FinVII𝐴 ∈ Fin))

Proof of Theorem fin71num
StepHypRef Expression
1 isfin7-2 9896 . 2 (𝐴 ∈ dom card → (𝐴 ∈ FinVII ↔ (𝐴 ∈ dom card → 𝐴 ∈ Fin)))
2 biimt 364 . 2 (𝐴 ∈ dom card → (𝐴 ∈ Fin ↔ (𝐴 ∈ dom card → 𝐴 ∈ Fin)))
31, 2bitr4d 285 1 (𝐴 ∈ dom card → (𝐴 ∈ FinVII𝐴 ∈ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wcel 2114  dom cdm 5525  Fincfn 8555  cardccrd 9437  FinVIIcfin7 9784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-om 7600  df-1o 8131  df-er 8320  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-card 9441  df-fin7 9791
This theorem is referenced by:  fin2so  35387
  Copyright terms: Public domain W3C validator