MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegle0 Structured version   Visualization version   GIF version

Theorem mdegle0 25242
Description: A polynomial has nonpositive degree iff it is a constant. (Contributed by Stefan O'Rear, 29-Mar-2015.)
Hypotheses
Ref Expression
mdegaddle.y 𝑌 = (𝐼 mPoly 𝑅)
mdegaddle.d 𝐷 = (𝐼 mDeg 𝑅)
mdegaddle.i (𝜑𝐼𝑉)
mdegaddle.r (𝜑𝑅 ∈ Ring)
mdegle0.b 𝐵 = (Base‘𝑌)
mdegle0.a 𝐴 = (algSc‘𝑌)
mdegle0.f (𝜑𝐹𝐵)
Assertion
Ref Expression
mdegle0 (𝜑 → ((𝐷𝐹) ≤ 0 ↔ 𝐹 = (𝐴‘(𝐹‘(𝐼 × {0})))))

Proof of Theorem mdegle0
Dummy variables 𝑥 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdegle0.f . . 3 (𝜑𝐹𝐵)
2 0xr 11022 . . 3 0 ∈ ℝ*
3 mdegaddle.d . . . 4 𝐷 = (𝐼 mDeg 𝑅)
4 mdegaddle.y . . . 4 𝑌 = (𝐼 mPoly 𝑅)
5 mdegle0.b . . . 4 𝐵 = (Base‘𝑌)
6 eqid 2738 . . . 4 (0g𝑅) = (0g𝑅)
7 eqid 2738 . . . 4 {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} = {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}
8 eqid 2738 . . . 4 (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) = (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))
93, 4, 5, 6, 7, 8mdegleb 25229 . . 3 ((𝐹𝐵 ∧ 0 ∈ ℝ*) → ((𝐷𝐹) ≤ 0 ↔ ∀𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} (0 < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) → (𝐹𝑥) = (0g𝑅))))
101, 2, 9sylancl 586 . 2 (𝜑 → ((𝐷𝐹) ≤ 0 ↔ ∀𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} (0 < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) → (𝐹𝑥) = (0g𝑅))))
117, 8tdeglem1 25220 . . . . . . . . . 10 (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)):{𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶ℕ0
1211a1i 11 . . . . . . . . 9 (𝜑 → (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)):{𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶ℕ0)
1312ffvelrnda 6961 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) ∈ ℕ0)
14 nn0re 12242 . . . . . . . . 9 (((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) ∈ ℕ0 → ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) ∈ ℝ)
15 nn0ge0 12258 . . . . . . . . 9 (((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) ∈ ℕ0 → 0 ≤ ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥))
1614, 15jca 512 . . . . . . . 8 (((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) ∈ ℕ0 → (((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) ∈ ℝ ∧ 0 ≤ ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥)))
17 ne0gt0 11080 . . . . . . . 8 ((((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) ∈ ℝ ∧ 0 ≤ ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥)) → (((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) ≠ 0 ↔ 0 < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥)))
1813, 16, 173syl 18 . . . . . . 7 ((𝜑𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) ≠ 0 ↔ 0 < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥)))
197, 8tdeglem4 25224 . . . . . . . . 9 (𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} → (((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) = 0 ↔ 𝑥 = (𝐼 × {0})))
2019adantl 482 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) = 0 ↔ 𝑥 = (𝐼 × {0})))
2120necon3abid 2980 . . . . . . 7 ((𝜑𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) ≠ 0 ↔ ¬ 𝑥 = (𝐼 × {0})))
2218, 21bitr3d 280 . . . . . 6 ((𝜑𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (0 < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) ↔ ¬ 𝑥 = (𝐼 × {0})))
2322imbi1d 342 . . . . 5 ((𝜑𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((0 < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) → (𝐹𝑥) = (0g𝑅)) ↔ (¬ 𝑥 = (𝐼 × {0}) → (𝐹𝑥) = (0g𝑅))))
24 eqeq2 2750 . . . . . . . 8 ((𝐹‘(𝐼 × {0})) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅)) → ((𝐹𝑥) = (𝐹‘(𝐼 × {0})) ↔ (𝐹𝑥) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅))))
2524bibi1d 344 . . . . . . 7 ((𝐹‘(𝐼 × {0})) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅)) → (((𝐹𝑥) = (𝐹‘(𝐼 × {0})) ↔ (¬ 𝑥 = (𝐼 × {0}) → (𝐹𝑥) = (0g𝑅))) ↔ ((𝐹𝑥) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅)) ↔ (¬ 𝑥 = (𝐼 × {0}) → (𝐹𝑥) = (0g𝑅)))))
26 eqeq2 2750 . . . . . . . 8 ((0g𝑅) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅)) → ((𝐹𝑥) = (0g𝑅) ↔ (𝐹𝑥) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅))))
2726bibi1d 344 . . . . . . 7 ((0g𝑅) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅)) → (((𝐹𝑥) = (0g𝑅) ↔ (¬ 𝑥 = (𝐼 × {0}) → (𝐹𝑥) = (0g𝑅))) ↔ ((𝐹𝑥) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅)) ↔ (¬ 𝑥 = (𝐼 × {0}) → (𝐹𝑥) = (0g𝑅)))))
28 fveq2 6774 . . . . . . . . 9 (𝑥 = (𝐼 × {0}) → (𝐹𝑥) = (𝐹‘(𝐼 × {0})))
29 pm2.24 124 . . . . . . . . 9 (𝑥 = (𝐼 × {0}) → (¬ 𝑥 = (𝐼 × {0}) → (𝐹𝑥) = (0g𝑅)))
3028, 292thd 264 . . . . . . . 8 (𝑥 = (𝐼 × {0}) → ((𝐹𝑥) = (𝐹‘(𝐼 × {0})) ↔ (¬ 𝑥 = (𝐼 × {0}) → (𝐹𝑥) = (0g𝑅))))
3130adantl 482 . . . . . . 7 ((𝜑𝑥 = (𝐼 × {0})) → ((𝐹𝑥) = (𝐹‘(𝐼 × {0})) ↔ (¬ 𝑥 = (𝐼 × {0}) → (𝐹𝑥) = (0g𝑅))))
32 biimt 361 . . . . . . . 8 𝑥 = (𝐼 × {0}) → ((𝐹𝑥) = (0g𝑅) ↔ (¬ 𝑥 = (𝐼 × {0}) → (𝐹𝑥) = (0g𝑅))))
3332adantl 482 . . . . . . 7 ((𝜑 ∧ ¬ 𝑥 = (𝐼 × {0})) → ((𝐹𝑥) = (0g𝑅) ↔ (¬ 𝑥 = (𝐼 × {0}) → (𝐹𝑥) = (0g𝑅))))
3425, 27, 31, 33ifbothda 4497 . . . . . 6 (𝜑 → ((𝐹𝑥) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅)) ↔ (¬ 𝑥 = (𝐼 × {0}) → (𝐹𝑥) = (0g𝑅))))
3534adantr 481 . . . . 5 ((𝜑𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝐹𝑥) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅)) ↔ (¬ 𝑥 = (𝐼 × {0}) → (𝐹𝑥) = (0g𝑅))))
3623, 35bitr4d 281 . . . 4 ((𝜑𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((0 < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) → (𝐹𝑥) = (0g𝑅)) ↔ (𝐹𝑥) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅))))
3736ralbidva 3111 . . 3 (𝜑 → (∀𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} (0 < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) → (𝐹𝑥) = (0g𝑅)) ↔ ∀𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} (𝐹𝑥) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅))))
38 eqid 2738 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
394, 38, 5, 7, 1mplelf 21204 . . . . . 6 (𝜑𝐹:{𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
4039feqmptd 6837 . . . . 5 (𝜑𝐹 = (𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (𝐹𝑥)))
41 mdegle0.a . . . . . 6 𝐴 = (algSc‘𝑌)
42 mdegaddle.i . . . . . 6 (𝜑𝐼𝑉)
43 mdegaddle.r . . . . . 6 (𝜑𝑅 ∈ Ring)
447psrbag0 21270 . . . . . . . 8 (𝐼𝑉 → (𝐼 × {0}) ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
4542, 44syl 17 . . . . . . 7 (𝜑 → (𝐼 × {0}) ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
4639, 45ffvelrnd 6962 . . . . . 6 (𝜑 → (𝐹‘(𝐼 × {0})) ∈ (Base‘𝑅))
474, 7, 6, 38, 41, 42, 43, 46mplascl 21272 . . . . 5 (𝜑 → (𝐴‘(𝐹‘(𝐼 × {0}))) = (𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅))))
4840, 47eqeq12d 2754 . . . 4 (𝜑 → (𝐹 = (𝐴‘(𝐹‘(𝐼 × {0}))) ↔ (𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (𝐹𝑥)) = (𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅)))))
49 fvex 6787 . . . . . 6 (𝐹𝑥) ∈ V
5049rgenw 3076 . . . . 5 𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} (𝐹𝑥) ∈ V
51 mpteqb 6894 . . . . 5 (∀𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} (𝐹𝑥) ∈ V → ((𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (𝐹𝑥)) = (𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅))) ↔ ∀𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} (𝐹𝑥) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅))))
5250, 51mp1i 13 . . . 4 (𝜑 → ((𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (𝐹𝑥)) = (𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅))) ↔ ∀𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} (𝐹𝑥) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅))))
5348, 52bitrd 278 . . 3 (𝜑 → (𝐹 = (𝐴‘(𝐹‘(𝐼 × {0}))) ↔ ∀𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} (𝐹𝑥) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅))))
5437, 53bitr4d 281 . 2 (𝜑 → (∀𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} (0 < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) → (𝐹𝑥) = (0g𝑅)) ↔ 𝐹 = (𝐴‘(𝐹‘(𝐼 × {0})))))
5510, 54bitrd 278 1 (𝜑 → ((𝐷𝐹) ≤ 0 ↔ 𝐹 = (𝐴‘(𝐹‘(𝐼 × {0})))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  {crab 3068  Vcvv 3432  ifcif 4459  {csn 4561   class class class wbr 5074  cmpt 5157   × cxp 5587  ccnv 5588  cima 5592  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615  Fincfn 8733  cr 10870  0cc0 10871  *cxr 11008   < clt 11009  cle 11010  cn 11973  0cn0 12233  Basecbs 16912  0gc0g 17150   Σg cgsu 17151  Ringcrg 19783  fldccnfld 20597  algSccascl 21059   mPoly cmpl 21109   mDeg cmdg 25215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-ofr 7534  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-0g 17152  df-gsum 17153  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-grp 18580  df-minusg 18581  df-mulg 18701  df-subg 18752  df-ghm 18832  df-cntz 18923  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-subrg 20022  df-cnfld 20598  df-ascl 21062  df-psr 21112  df-mpl 21114  df-mdeg 25217
This theorem is referenced by:  deg1le0  25276
  Copyright terms: Public domain W3C validator