MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegle0 Structured version   Visualization version   GIF version

Theorem mdegle0 24236
Description: A polynomial has nonpositive degree iff it is a constant. (Contributed by Stefan O'Rear, 29-Mar-2015.)
Hypotheses
Ref Expression
mdegaddle.y 𝑌 = (𝐼 mPoly 𝑅)
mdegaddle.d 𝐷 = (𝐼 mDeg 𝑅)
mdegaddle.i (𝜑𝐼𝑉)
mdegaddle.r (𝜑𝑅 ∈ Ring)
mdegle0.b 𝐵 = (Base‘𝑌)
mdegle0.a 𝐴 = (algSc‘𝑌)
mdegle0.f (𝜑𝐹𝐵)
Assertion
Ref Expression
mdegle0 (𝜑 → ((𝐷𝐹) ≤ 0 ↔ 𝐹 = (𝐴‘(𝐹‘(𝐼 × {0})))))

Proof of Theorem mdegle0
Dummy variables 𝑥 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdegle0.f . . 3 (𝜑𝐹𝐵)
2 0xr 10403 . . 3 0 ∈ ℝ*
3 mdegaddle.d . . . 4 𝐷 = (𝐼 mDeg 𝑅)
4 mdegaddle.y . . . 4 𝑌 = (𝐼 mPoly 𝑅)
5 mdegle0.b . . . 4 𝐵 = (Base‘𝑌)
6 eqid 2825 . . . 4 (0g𝑅) = (0g𝑅)
7 eqid 2825 . . . 4 {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} = {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}
8 eqid 2825 . . . 4 (𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) = (𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))
93, 4, 5, 6, 7, 8mdegleb 24223 . . 3 ((𝐹𝐵 ∧ 0 ∈ ℝ*) → ((𝐷𝐹) ≤ 0 ↔ ∀𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} (0 < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) → (𝐹𝑥) = (0g𝑅))))
101, 2, 9sylancl 580 . 2 (𝜑 → ((𝐷𝐹) ≤ 0 ↔ ∀𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} (0 < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) → (𝐹𝑥) = (0g𝑅))))
11 mdegaddle.i . . . . . . . . . 10 (𝜑𝐼𝑉)
127, 8tdeglem1 24217 . . . . . . . . . 10 (𝐼𝑉 → (𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)):{𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶ℕ0)
1311, 12syl 17 . . . . . . . . 9 (𝜑 → (𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)):{𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶ℕ0)
1413ffvelrnda 6608 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) ∈ ℕ0)
15 nn0re 11628 . . . . . . . . 9 (((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) ∈ ℕ0 → ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) ∈ ℝ)
16 nn0ge0 11645 . . . . . . . . 9 (((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) ∈ ℕ0 → 0 ≤ ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥))
1715, 16jca 507 . . . . . . . 8 (((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) ∈ ℕ0 → (((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) ∈ ℝ ∧ 0 ≤ ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥)))
18 ne0gt0 10461 . . . . . . . 8 ((((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) ∈ ℝ ∧ 0 ≤ ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥)) → (((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) ≠ 0 ↔ 0 < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥)))
1914, 17, 183syl 18 . . . . . . 7 ((𝜑𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) ≠ 0 ↔ 0 < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥)))
207, 8tdeglem4 24219 . . . . . . . . 9 ((𝐼𝑉𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) = 0 ↔ 𝑥 = (𝐼 × {0})))
2111, 20sylan 575 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) = 0 ↔ 𝑥 = (𝐼 × {0})))
2221necon3abid 3035 . . . . . . 7 ((𝜑𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) ≠ 0 ↔ ¬ 𝑥 = (𝐼 × {0})))
2319, 22bitr3d 273 . . . . . 6 ((𝜑𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (0 < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) ↔ ¬ 𝑥 = (𝐼 × {0})))
2423imbi1d 333 . . . . 5 ((𝜑𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((0 < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) → (𝐹𝑥) = (0g𝑅)) ↔ (¬ 𝑥 = (𝐼 × {0}) → (𝐹𝑥) = (0g𝑅))))
25 eqeq2 2836 . . . . . . . 8 ((𝐹‘(𝐼 × {0})) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅)) → ((𝐹𝑥) = (𝐹‘(𝐼 × {0})) ↔ (𝐹𝑥) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅))))
2625bibi1d 335 . . . . . . 7 ((𝐹‘(𝐼 × {0})) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅)) → (((𝐹𝑥) = (𝐹‘(𝐼 × {0})) ↔ (¬ 𝑥 = (𝐼 × {0}) → (𝐹𝑥) = (0g𝑅))) ↔ ((𝐹𝑥) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅)) ↔ (¬ 𝑥 = (𝐼 × {0}) → (𝐹𝑥) = (0g𝑅)))))
27 eqeq2 2836 . . . . . . . 8 ((0g𝑅) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅)) → ((𝐹𝑥) = (0g𝑅) ↔ (𝐹𝑥) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅))))
2827bibi1d 335 . . . . . . 7 ((0g𝑅) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅)) → (((𝐹𝑥) = (0g𝑅) ↔ (¬ 𝑥 = (𝐼 × {0}) → (𝐹𝑥) = (0g𝑅))) ↔ ((𝐹𝑥) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅)) ↔ (¬ 𝑥 = (𝐼 × {0}) → (𝐹𝑥) = (0g𝑅)))))
29 fveq2 6433 . . . . . . . . 9 (𝑥 = (𝐼 × {0}) → (𝐹𝑥) = (𝐹‘(𝐼 × {0})))
30 pm2.24 122 . . . . . . . . 9 (𝑥 = (𝐼 × {0}) → (¬ 𝑥 = (𝐼 × {0}) → (𝐹𝑥) = (0g𝑅)))
3129, 302thd 257 . . . . . . . 8 (𝑥 = (𝐼 × {0}) → ((𝐹𝑥) = (𝐹‘(𝐼 × {0})) ↔ (¬ 𝑥 = (𝐼 × {0}) → (𝐹𝑥) = (0g𝑅))))
3231adantl 475 . . . . . . 7 ((𝜑𝑥 = (𝐼 × {0})) → ((𝐹𝑥) = (𝐹‘(𝐼 × {0})) ↔ (¬ 𝑥 = (𝐼 × {0}) → (𝐹𝑥) = (0g𝑅))))
33 biimt 352 . . . . . . . 8 𝑥 = (𝐼 × {0}) → ((𝐹𝑥) = (0g𝑅) ↔ (¬ 𝑥 = (𝐼 × {0}) → (𝐹𝑥) = (0g𝑅))))
3433adantl 475 . . . . . . 7 ((𝜑 ∧ ¬ 𝑥 = (𝐼 × {0})) → ((𝐹𝑥) = (0g𝑅) ↔ (¬ 𝑥 = (𝐼 × {0}) → (𝐹𝑥) = (0g𝑅))))
3526, 28, 32, 34ifbothda 4343 . . . . . 6 (𝜑 → ((𝐹𝑥) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅)) ↔ (¬ 𝑥 = (𝐼 × {0}) → (𝐹𝑥) = (0g𝑅))))
3635adantr 474 . . . . 5 ((𝜑𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝐹𝑥) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅)) ↔ (¬ 𝑥 = (𝐼 × {0}) → (𝐹𝑥) = (0g𝑅))))
3724, 36bitr4d 274 . . . 4 ((𝜑𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((0 < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) → (𝐹𝑥) = (0g𝑅)) ↔ (𝐹𝑥) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅))))
3837ralbidva 3194 . . 3 (𝜑 → (∀𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} (0 < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) → (𝐹𝑥) = (0g𝑅)) ↔ ∀𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} (𝐹𝑥) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅))))
39 eqid 2825 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
404, 39, 5, 7, 1mplelf 19794 . . . . . 6 (𝜑𝐹:{𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
4140feqmptd 6496 . . . . 5 (𝜑𝐹 = (𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (𝐹𝑥)))
42 mdegle0.a . . . . . 6 𝐴 = (algSc‘𝑌)
43 mdegaddle.r . . . . . 6 (𝜑𝑅 ∈ Ring)
447psrbag0 19854 . . . . . . . 8 (𝐼𝑉 → (𝐼 × {0}) ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
4511, 44syl 17 . . . . . . 7 (𝜑 → (𝐼 × {0}) ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
4640, 45ffvelrnd 6609 . . . . . 6 (𝜑 → (𝐹‘(𝐼 × {0})) ∈ (Base‘𝑅))
474, 7, 6, 39, 42, 11, 43, 46mplascl 19856 . . . . 5 (𝜑 → (𝐴‘(𝐹‘(𝐼 × {0}))) = (𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅))))
4841, 47eqeq12d 2840 . . . 4 (𝜑 → (𝐹 = (𝐴‘(𝐹‘(𝐼 × {0}))) ↔ (𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (𝐹𝑥)) = (𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅)))))
49 fvex 6446 . . . . . 6 (𝐹𝑥) ∈ V
5049rgenw 3133 . . . . 5 𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} (𝐹𝑥) ∈ V
51 mpteqb 6546 . . . . 5 (∀𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} (𝐹𝑥) ∈ V → ((𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (𝐹𝑥)) = (𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅))) ↔ ∀𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} (𝐹𝑥) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅))))
5250, 51mp1i 13 . . . 4 (𝜑 → ((𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (𝐹𝑥)) = (𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅))) ↔ ∀𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} (𝐹𝑥) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅))))
5348, 52bitrd 271 . . 3 (𝜑 → (𝐹 = (𝐴‘(𝐹‘(𝐼 × {0}))) ↔ ∀𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} (𝐹𝑥) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅))))
5438, 53bitr4d 274 . 2 (𝜑 → (∀𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} (0 < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) → (𝐹𝑥) = (0g𝑅)) ↔ 𝐹 = (𝐴‘(𝐹‘(𝐼 × {0})))))
5510, 54bitrd 271 1 (𝜑 → ((𝐷𝐹) ≤ 0 ↔ 𝐹 = (𝐴‘(𝐹‘(𝐼 × {0})))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386   = wceq 1656  wcel 2164  wne 2999  wral 3117  {crab 3121  Vcvv 3414  ifcif 4306  {csn 4397   class class class wbr 4873  cmpt 4952   × cxp 5340  ccnv 5341  cima 5345  wf 6119  cfv 6123  (class class class)co 6905  𝑚 cmap 8122  Fincfn 8222  cr 10251  0cc0 10252  *cxr 10390   < clt 10391  cle 10392  cn 11350  0cn0 11618  Basecbs 16222  0gc0g 16453   Σg cgsu 16454  Ringcrg 18901  algSccascl 19672   mPoly cmpl 19714  fldccnfld 20106   mDeg cmdg 24212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-inf2 8815  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330  ax-addf 10331  ax-mulf 10332
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-iin 4743  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-se 5302  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-isom 6132  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-of 7157  df-ofr 7158  df-om 7327  df-1st 7428  df-2nd 7429  df-supp 7560  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-2o 7827  df-oadd 7830  df-er 8009  df-map 8124  df-pm 8125  df-ixp 8176  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-fsupp 8545  df-sup 8617  df-oi 8684  df-card 9078  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-2 11414  df-3 11415  df-4 11416  df-5 11417  df-6 11418  df-7 11419  df-8 11420  df-9 11421  df-n0 11619  df-z 11705  df-dec 11822  df-uz 11969  df-fz 12620  df-fzo 12761  df-seq 13096  df-hash 13411  df-struct 16224  df-ndx 16225  df-slot 16226  df-base 16228  df-sets 16229  df-ress 16230  df-plusg 16318  df-mulr 16319  df-starv 16320  df-sca 16321  df-vsca 16322  df-tset 16324  df-ple 16325  df-ds 16327  df-unif 16328  df-0g 16455  df-gsum 16456  df-mre 16599  df-mrc 16600  df-acs 16602  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-mhm 17688  df-submnd 17689  df-grp 17779  df-minusg 17780  df-mulg 17895  df-subg 17942  df-ghm 18009  df-cntz 18100  df-cmn 18548  df-abl 18549  df-mgp 18844  df-ur 18856  df-ring 18903  df-cring 18904  df-subrg 19134  df-ascl 19675  df-psr 19717  df-mpl 19719  df-cnfld 20107  df-mdeg 24214
This theorem is referenced by:  deg1le0  24270
  Copyright terms: Public domain W3C validator