MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegle0 Structured version   Visualization version   GIF version

Theorem mdegle0 24654
Description: A polynomial has nonpositive degree iff it is a constant. (Contributed by Stefan O'Rear, 29-Mar-2015.)
Hypotheses
Ref Expression
mdegaddle.y 𝑌 = (𝐼 mPoly 𝑅)
mdegaddle.d 𝐷 = (𝐼 mDeg 𝑅)
mdegaddle.i (𝜑𝐼𝑉)
mdegaddle.r (𝜑𝑅 ∈ Ring)
mdegle0.b 𝐵 = (Base‘𝑌)
mdegle0.a 𝐴 = (algSc‘𝑌)
mdegle0.f (𝜑𝐹𝐵)
Assertion
Ref Expression
mdegle0 (𝜑 → ((𝐷𝐹) ≤ 0 ↔ 𝐹 = (𝐴‘(𝐹‘(𝐼 × {0})))))

Proof of Theorem mdegle0
Dummy variables 𝑥 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdegle0.f . . 3 (𝜑𝐹𝐵)
2 0xr 10664 . . 3 0 ∈ ℝ*
3 mdegaddle.d . . . 4 𝐷 = (𝐼 mDeg 𝑅)
4 mdegaddle.y . . . 4 𝑌 = (𝐼 mPoly 𝑅)
5 mdegle0.b . . . 4 𝐵 = (Base‘𝑌)
6 eqid 2820 . . . 4 (0g𝑅) = (0g𝑅)
7 eqid 2820 . . . 4 {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} = {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}
8 eqid 2820 . . . 4 (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) = (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))
93, 4, 5, 6, 7, 8mdegleb 24641 . . 3 ((𝐹𝐵 ∧ 0 ∈ ℝ*) → ((𝐷𝐹) ≤ 0 ↔ ∀𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} (0 < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) → (𝐹𝑥) = (0g𝑅))))
101, 2, 9sylancl 588 . 2 (𝜑 → ((𝐷𝐹) ≤ 0 ↔ ∀𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} (0 < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) → (𝐹𝑥) = (0g𝑅))))
11 mdegaddle.i . . . . . . . . . 10 (𝜑𝐼𝑉)
127, 8tdeglem1 24635 . . . . . . . . . 10 (𝐼𝑉 → (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)):{𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶ℕ0)
1311, 12syl 17 . . . . . . . . 9 (𝜑 → (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)):{𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶ℕ0)
1413ffvelrnda 6825 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) ∈ ℕ0)
15 nn0re 11883 . . . . . . . . 9 (((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) ∈ ℕ0 → ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) ∈ ℝ)
16 nn0ge0 11899 . . . . . . . . 9 (((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) ∈ ℕ0 → 0 ≤ ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥))
1715, 16jca 514 . . . . . . . 8 (((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) ∈ ℕ0 → (((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) ∈ ℝ ∧ 0 ≤ ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥)))
18 ne0gt0 10721 . . . . . . . 8 ((((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) ∈ ℝ ∧ 0 ≤ ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥)) → (((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) ≠ 0 ↔ 0 < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥)))
1914, 17, 183syl 18 . . . . . . 7 ((𝜑𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) ≠ 0 ↔ 0 < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥)))
207, 8tdeglem4 24637 . . . . . . . . 9 ((𝐼𝑉𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) = 0 ↔ 𝑥 = (𝐼 × {0})))
2111, 20sylan 582 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) = 0 ↔ 𝑥 = (𝐼 × {0})))
2221necon3abid 3042 . . . . . . 7 ((𝜑𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) ≠ 0 ↔ ¬ 𝑥 = (𝐼 × {0})))
2319, 22bitr3d 283 . . . . . 6 ((𝜑𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (0 < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) ↔ ¬ 𝑥 = (𝐼 × {0})))
2423imbi1d 344 . . . . 5 ((𝜑𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((0 < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) → (𝐹𝑥) = (0g𝑅)) ↔ (¬ 𝑥 = (𝐼 × {0}) → (𝐹𝑥) = (0g𝑅))))
25 eqeq2 2832 . . . . . . . 8 ((𝐹‘(𝐼 × {0})) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅)) → ((𝐹𝑥) = (𝐹‘(𝐼 × {0})) ↔ (𝐹𝑥) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅))))
2625bibi1d 346 . . . . . . 7 ((𝐹‘(𝐼 × {0})) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅)) → (((𝐹𝑥) = (𝐹‘(𝐼 × {0})) ↔ (¬ 𝑥 = (𝐼 × {0}) → (𝐹𝑥) = (0g𝑅))) ↔ ((𝐹𝑥) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅)) ↔ (¬ 𝑥 = (𝐼 × {0}) → (𝐹𝑥) = (0g𝑅)))))
27 eqeq2 2832 . . . . . . . 8 ((0g𝑅) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅)) → ((𝐹𝑥) = (0g𝑅) ↔ (𝐹𝑥) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅))))
2827bibi1d 346 . . . . . . 7 ((0g𝑅) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅)) → (((𝐹𝑥) = (0g𝑅) ↔ (¬ 𝑥 = (𝐼 × {0}) → (𝐹𝑥) = (0g𝑅))) ↔ ((𝐹𝑥) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅)) ↔ (¬ 𝑥 = (𝐼 × {0}) → (𝐹𝑥) = (0g𝑅)))))
29 fveq2 6644 . . . . . . . . 9 (𝑥 = (𝐼 × {0}) → (𝐹𝑥) = (𝐹‘(𝐼 × {0})))
30 pm2.24 124 . . . . . . . . 9 (𝑥 = (𝐼 × {0}) → (¬ 𝑥 = (𝐼 × {0}) → (𝐹𝑥) = (0g𝑅)))
3129, 302thd 267 . . . . . . . 8 (𝑥 = (𝐼 × {0}) → ((𝐹𝑥) = (𝐹‘(𝐼 × {0})) ↔ (¬ 𝑥 = (𝐼 × {0}) → (𝐹𝑥) = (0g𝑅))))
3231adantl 484 . . . . . . 7 ((𝜑𝑥 = (𝐼 × {0})) → ((𝐹𝑥) = (𝐹‘(𝐼 × {0})) ↔ (¬ 𝑥 = (𝐼 × {0}) → (𝐹𝑥) = (0g𝑅))))
33 biimt 363 . . . . . . . 8 𝑥 = (𝐼 × {0}) → ((𝐹𝑥) = (0g𝑅) ↔ (¬ 𝑥 = (𝐼 × {0}) → (𝐹𝑥) = (0g𝑅))))
3433adantl 484 . . . . . . 7 ((𝜑 ∧ ¬ 𝑥 = (𝐼 × {0})) → ((𝐹𝑥) = (0g𝑅) ↔ (¬ 𝑥 = (𝐼 × {0}) → (𝐹𝑥) = (0g𝑅))))
3526, 28, 32, 34ifbothda 4478 . . . . . 6 (𝜑 → ((𝐹𝑥) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅)) ↔ (¬ 𝑥 = (𝐼 × {0}) → (𝐹𝑥) = (0g𝑅))))
3635adantr 483 . . . . 5 ((𝜑𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝐹𝑥) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅)) ↔ (¬ 𝑥 = (𝐼 × {0}) → (𝐹𝑥) = (0g𝑅))))
3724, 36bitr4d 284 . . . 4 ((𝜑𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((0 < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) → (𝐹𝑥) = (0g𝑅)) ↔ (𝐹𝑥) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅))))
3837ralbidva 3183 . . 3 (𝜑 → (∀𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} (0 < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) → (𝐹𝑥) = (0g𝑅)) ↔ ∀𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} (𝐹𝑥) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅))))
39 eqid 2820 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
404, 39, 5, 7, 1mplelf 20186 . . . . . 6 (𝜑𝐹:{𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
4140feqmptd 6707 . . . . 5 (𝜑𝐹 = (𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (𝐹𝑥)))
42 mdegle0.a . . . . . 6 𝐴 = (algSc‘𝑌)
43 mdegaddle.r . . . . . 6 (𝜑𝑅 ∈ Ring)
447psrbag0 20247 . . . . . . . 8 (𝐼𝑉 → (𝐼 × {0}) ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
4511, 44syl 17 . . . . . . 7 (𝜑 → (𝐼 × {0}) ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
4640, 45ffvelrnd 6826 . . . . . 6 (𝜑 → (𝐹‘(𝐼 × {0})) ∈ (Base‘𝑅))
474, 7, 6, 39, 42, 11, 43, 46mplascl 20249 . . . . 5 (𝜑 → (𝐴‘(𝐹‘(𝐼 × {0}))) = (𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅))))
4841, 47eqeq12d 2836 . . . 4 (𝜑 → (𝐹 = (𝐴‘(𝐹‘(𝐼 × {0}))) ↔ (𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (𝐹𝑥)) = (𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅)))))
49 fvex 6657 . . . . . 6 (𝐹𝑥) ∈ V
5049rgenw 3137 . . . . 5 𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} (𝐹𝑥) ∈ V
51 mpteqb 6761 . . . . 5 (∀𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} (𝐹𝑥) ∈ V → ((𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (𝐹𝑥)) = (𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅))) ↔ ∀𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} (𝐹𝑥) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅))))
5250, 51mp1i 13 . . . 4 (𝜑 → ((𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (𝐹𝑥)) = (𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅))) ↔ ∀𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} (𝐹𝑥) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅))))
5348, 52bitrd 281 . . 3 (𝜑 → (𝐹 = (𝐴‘(𝐹‘(𝐼 × {0}))) ↔ ∀𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} (𝐹𝑥) = if(𝑥 = (𝐼 × {0}), (𝐹‘(𝐼 × {0})), (0g𝑅))))
5438, 53bitr4d 284 . 2 (𝜑 → (∀𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} (0 < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) → (𝐹𝑥) = (0g𝑅)) ↔ 𝐹 = (𝐴‘(𝐹‘(𝐼 × {0})))))
5510, 54bitrd 281 1 (𝜑 → ((𝐷𝐹) ≤ 0 ↔ 𝐹 = (𝐴‘(𝐹‘(𝐼 × {0})))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3006  wral 3125  {crab 3129  Vcvv 3473  ifcif 4441  {csn 4541   class class class wbr 5040  cmpt 5120   × cxp 5527  ccnv 5528  cima 5532  wf 6325  cfv 6329  (class class class)co 7131  m cmap 8382  Fincfn 8485  cr 10512  0cc0 10513  *cxr 10650   < clt 10651  cle 10652  cn 11614  0cn0 11874  Basecbs 16459  0gc0g 16689   Σg cgsu 16690  Ringcrg 19273  algSccascl 20057   mPoly cmpl 20106  fldccnfld 20518   mDeg cmdg 24630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5240  ax-pr 5304  ax-un 7437  ax-cnex 10569  ax-resscn 10570  ax-1cn 10571  ax-icn 10572  ax-addcl 10573  ax-addrcl 10574  ax-mulcl 10575  ax-mulrcl 10576  ax-mulcom 10577  ax-addass 10578  ax-mulass 10579  ax-distr 10580  ax-i2m1 10581  ax-1ne0 10582  ax-1rid 10583  ax-rnegex 10584  ax-rrecex 10585  ax-cnre 10586  ax-pre-lttri 10587  ax-pre-lttrn 10588  ax-pre-ltadd 10589  ax-pre-mulgt0 10590  ax-pre-sup 10591  ax-addf 10592  ax-mulf 10593
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3752  df-csb 3860  df-dif 3915  df-un 3917  df-in 3919  df-ss 3928  df-pss 3930  df-nul 4268  df-if 4442  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4813  df-int 4851  df-iun 4895  df-iin 4896  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5434  df-eprel 5439  df-po 5448  df-so 5449  df-fr 5488  df-se 5489  df-we 5490  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-pred 6122  df-ord 6168  df-on 6169  df-lim 6170  df-suc 6171  df-iota 6288  df-fun 6331  df-fn 6332  df-f 6333  df-f1 6334  df-fo 6335  df-f1o 6336  df-fv 6337  df-isom 6338  df-riota 7089  df-ov 7134  df-oprab 7135  df-mpo 7136  df-of 7385  df-ofr 7386  df-om 7557  df-1st 7665  df-2nd 7666  df-supp 7807  df-wrecs 7923  df-recs 7984  df-rdg 8022  df-1o 8078  df-2o 8079  df-oadd 8082  df-er 8265  df-map 8384  df-pm 8385  df-ixp 8438  df-en 8486  df-dom 8487  df-sdom 8488  df-fin 8489  df-fsupp 8810  df-sup 8882  df-oi 8950  df-card 9344  df-pnf 10653  df-mnf 10654  df-xr 10655  df-ltxr 10656  df-le 10657  df-sub 10848  df-neg 10849  df-nn 11615  df-2 11677  df-3 11678  df-4 11679  df-5 11680  df-6 11681  df-7 11682  df-8 11683  df-9 11684  df-n0 11875  df-z 11959  df-dec 12076  df-uz 12221  df-fz 12875  df-fzo 13016  df-seq 13352  df-hash 13674  df-struct 16461  df-ndx 16462  df-slot 16463  df-base 16465  df-sets 16466  df-ress 16467  df-plusg 16554  df-mulr 16555  df-starv 16556  df-sca 16557  df-vsca 16558  df-tset 16560  df-ple 16561  df-ds 16563  df-unif 16564  df-0g 16691  df-gsum 16692  df-mre 16833  df-mrc 16834  df-acs 16836  df-mgm 17828  df-sgrp 17877  df-mnd 17888  df-mhm 17932  df-submnd 17933  df-grp 18082  df-minusg 18083  df-mulg 18201  df-subg 18252  df-ghm 18332  df-cntz 18423  df-cmn 18884  df-abl 18885  df-mgp 19216  df-ur 19228  df-ring 19275  df-cring 19276  df-subrg 19506  df-ascl 20060  df-psr 20109  df-mpl 20111  df-cnfld 20519  df-mdeg 24632
This theorem is referenced by:  deg1le0  24688
  Copyright terms: Public domain W3C validator