![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnmptf | Structured version Visualization version GIF version |
Description: The maps-to notation defines a function with domain. (Contributed by NM, 9-Apr-2013.) (Revised by Thierry Arnoux, 10-May-2017.) |
Ref | Expression |
---|---|
mptfnf.0 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
fnmptf | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3509 | . . 3 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ V) | |
2 | 1 | ralimi 3089 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 𝐵 ∈ V) |
3 | mptfnf.0 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
4 | 3 | mptfnf 6715 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ V ↔ (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) |
5 | 2, 4 | sylib 218 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Ⅎwnfc 2893 ∀wral 3067 Vcvv 3488 ↦ cmpt 5249 Fn wfn 6568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-fun 6575 df-fn 6576 |
This theorem is referenced by: offval2f 7729 esumgsum 34009 esumc 34015 bj-mptval 37083 aks4d1p1p5 42032 rfovcnvf1od 43966 dssmapf1od 43983 ntrrn 44084 dssmapntrcls 44090 |
Copyright terms: Public domain | W3C validator |