Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  blenn0 Structured version   Visualization version   GIF version

Theorem blenn0 48604
Description: The binary length of a "number" not being 0. (Contributed by AV, 20-May-2020.)
Assertion
Ref Expression
blenn0 ((𝑁𝑉𝑁 ≠ 0) → (#b𝑁) = ((⌊‘(2 logb (abs‘𝑁))) + 1))

Proof of Theorem blenn0
StepHypRef Expression
1 blenval 48602 . 2 (𝑁𝑉 → (#b𝑁) = if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1)))
2 ifnefalse 4487 . 2 (𝑁 ≠ 0 → if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1)) = ((⌊‘(2 logb (abs‘𝑁))) + 1))
31, 2sylan9eq 2786 1 ((𝑁𝑉𝑁 ≠ 0) → (#b𝑁) = ((⌊‘(2 logb (abs‘𝑁))) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  ifcif 4475  cfv 6481  (class class class)co 7346  0cc0 11003  1c1 11004   + caddc 11006  2c2 12177  cfl 13691  abscabs 15138   logb clogb 26699  #bcblen 48600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-1cn 11061
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-blen 48601
This theorem is referenced by:  blenre  48605  blennn  48606
  Copyright terms: Public domain W3C validator