Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > blenn0 | Structured version Visualization version GIF version |
Description: The binary length of a "number" not being 0. (Contributed by AV, 20-May-2020.) |
Ref | Expression |
---|---|
blenn0 | ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑁 ≠ 0) → (#b‘𝑁) = ((⌊‘(2 logb (abs‘𝑁))) + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | blenval 45350 | . 2 ⊢ (𝑁 ∈ 𝑉 → (#b‘𝑁) = if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1))) | |
2 | ifnefalse 4432 | . 2 ⊢ (𝑁 ≠ 0 → if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1)) = ((⌊‘(2 logb (abs‘𝑁))) + 1)) | |
3 | 1, 2 | sylan9eq 2813 | 1 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑁 ≠ 0) → (#b‘𝑁) = ((⌊‘(2 logb (abs‘𝑁))) + 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 ifcif 4420 ‘cfv 6335 (class class class)co 7150 0cc0 10575 1c1 10576 + caddc 10578 2c2 11729 ⌊cfl 13209 abscabs 14641 logb clogb 25449 #bcblen 45348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 ax-1cn 10633 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-iota 6294 df-fun 6337 df-fv 6343 df-ov 7153 df-blen 45349 |
This theorem is referenced by: blenre 45353 blennn 45354 |
Copyright terms: Public domain | W3C validator |