Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > blenn0 | Structured version Visualization version GIF version |
Description: The binary length of a "number" not being 0. (Contributed by AV, 20-May-2020.) |
Ref | Expression |
---|---|
blenn0 | ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑁 ≠ 0) → (#b‘𝑁) = ((⌊‘(2 logb (abs‘𝑁))) + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | blenval 45805 | . 2 ⊢ (𝑁 ∈ 𝑉 → (#b‘𝑁) = if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1))) | |
2 | ifnefalse 4468 | . 2 ⊢ (𝑁 ≠ 0 → if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1)) = ((⌊‘(2 logb (abs‘𝑁))) + 1)) | |
3 | 1, 2 | sylan9eq 2799 | 1 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑁 ≠ 0) → (#b‘𝑁) = ((⌊‘(2 logb (abs‘𝑁))) + 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ifcif 4456 ‘cfv 6418 (class class class)co 7255 0cc0 10802 1c1 10803 + caddc 10805 2c2 11958 ⌊cfl 13438 abscabs 14873 logb clogb 25819 #bcblen 45803 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-1cn 10860 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-blen 45804 |
This theorem is referenced by: blenre 45808 blennn 45809 |
Copyright terms: Public domain | W3C validator |