![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > blenn0 | Structured version Visualization version GIF version |
Description: The binary length of a "number" not being 0. (Contributed by AV, 20-May-2020.) |
Ref | Expression |
---|---|
blenn0 | ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑁 ≠ 0) → (#b‘𝑁) = ((⌊‘(2 logb (abs‘𝑁))) + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | blenval 48224 | . 2 ⊢ (𝑁 ∈ 𝑉 → (#b‘𝑁) = if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1))) | |
2 | ifnefalse 4560 | . 2 ⊢ (𝑁 ≠ 0 → if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1)) = ((⌊‘(2 logb (abs‘𝑁))) + 1)) | |
3 | 1, 2 | sylan9eq 2794 | 1 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑁 ≠ 0) → (#b‘𝑁) = ((⌊‘(2 logb (abs‘𝑁))) + 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2103 ≠ wne 2942 ifcif 4548 ‘cfv 6572 (class class class)co 7445 0cc0 11180 1c1 11181 + caddc 11183 2c2 12344 ⌊cfl 13837 abscabs 15279 logb clogb 26816 #bcblen 48222 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-sep 5320 ax-nul 5327 ax-pr 5450 ax-1cn 11238 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-ral 3064 df-rex 3073 df-rab 3439 df-v 3484 df-dif 3973 df-un 3975 df-ss 3987 df-nul 4348 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5170 df-opab 5232 df-mpt 5253 df-id 5597 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-iota 6524 df-fun 6574 df-fv 6580 df-ov 7448 df-blen 48223 |
This theorem is referenced by: blenre 48227 blennn 48228 |
Copyright terms: Public domain | W3C validator |