Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  blenn0 Structured version   Visualization version   GIF version

Theorem blenn0 48452
Description: The binary length of a "number" not being 0. (Contributed by AV, 20-May-2020.)
Assertion
Ref Expression
blenn0 ((𝑁𝑉𝑁 ≠ 0) → (#b𝑁) = ((⌊‘(2 logb (abs‘𝑁))) + 1))

Proof of Theorem blenn0
StepHypRef Expression
1 blenval 48450 . 2 (𝑁𝑉 → (#b𝑁) = if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1)))
2 ifnefalse 4517 . 2 (𝑁 ≠ 0 → if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1)) = ((⌊‘(2 logb (abs‘𝑁))) + 1))
31, 2sylan9eq 2789 1 ((𝑁𝑉𝑁 ≠ 0) → (#b𝑁) = ((⌊‘(2 logb (abs‘𝑁))) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2931  ifcif 4505  cfv 6541  (class class class)co 7413  0cc0 11137  1c1 11138   + caddc 11140  2c2 12303  cfl 13812  abscabs 15255   logb clogb 26743  #bcblen 48448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-1cn 11195
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-iota 6494  df-fun 6543  df-fv 6549  df-ov 7416  df-blen 48449
This theorem is referenced by:  blenre  48453  blennn  48454
  Copyright terms: Public domain W3C validator