Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > blen0 | Structured version Visualization version GIF version |
Description: The binary length of 0. (Contributed by AV, 20-May-2020.) |
Ref | Expression |
---|---|
blen0 | ⊢ (#b‘0) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0ex 10969 | . . 3 ⊢ 0 ∈ V | |
2 | blenval 45917 | . . 3 ⊢ (0 ∈ V → (#b‘0) = if(0 = 0, 1, ((⌊‘(2 logb (abs‘0))) + 1))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (#b‘0) = if(0 = 0, 1, ((⌊‘(2 logb (abs‘0))) + 1)) |
4 | eqid 2738 | . . 3 ⊢ 0 = 0 | |
5 | 4 | iftruei 4466 | . 2 ⊢ if(0 = 0, 1, ((⌊‘(2 logb (abs‘0))) + 1)) = 1 |
6 | 3, 5 | eqtri 2766 | 1 ⊢ (#b‘0) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 Vcvv 3432 ifcif 4459 ‘cfv 6433 (class class class)co 7275 0cc0 10871 1c1 10872 + caddc 10874 2c2 12028 ⌊cfl 13510 abscabs 14945 logb clogb 25914 #bcblen 45915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-mulcl 10933 ax-i2m1 10939 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-blen 45916 |
This theorem is referenced by: blennn0elnn 45923 blen1b 45934 nn0sumshdiglem1 45967 |
Copyright terms: Public domain | W3C validator |