Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  blen0 Structured version   Visualization version   GIF version

Theorem blen0 47346
Description: The binary length of 0. (Contributed by AV, 20-May-2020.)
Assertion
Ref Expression
blen0 (#b‘0) = 1

Proof of Theorem blen0
StepHypRef Expression
1 c0ex 11212 . . 3 0 ∈ V
2 blenval 47345 . . 3 (0 ∈ V → (#b‘0) = if(0 = 0, 1, ((⌊‘(2 logb (abs‘0))) + 1)))
31, 2ax-mp 5 . 2 (#b‘0) = if(0 = 0, 1, ((⌊‘(2 logb (abs‘0))) + 1))
4 eqid 2732 . . 3 0 = 0
54iftruei 4535 . 2 if(0 = 0, 1, ((⌊‘(2 logb (abs‘0))) + 1)) = 1
63, 5eqtri 2760 1 (#b‘0) = 1
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2106  Vcvv 3474  ifcif 4528  cfv 6543  (class class class)co 7411  0cc0 11112  1c1 11113   + caddc 11115  2c2 12271  cfl 13759  abscabs 15185   logb clogb 26493  #bcblen 47343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-mulcl 11174  ax-i2m1 11180
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7414  df-blen 47344
This theorem is referenced by:  blennn0elnn  47351  blen1b  47362  nn0sumshdiglem1  47395
  Copyright terms: Public domain W3C validator