| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > blen0 | Structured version Visualization version GIF version | ||
| Description: The binary length of 0. (Contributed by AV, 20-May-2020.) |
| Ref | Expression |
|---|---|
| blen0 | ⊢ (#b‘0) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0ex 11103 | . . 3 ⊢ 0 ∈ V | |
| 2 | blenval 48602 | . . 3 ⊢ (0 ∈ V → (#b‘0) = if(0 = 0, 1, ((⌊‘(2 logb (abs‘0))) + 1))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (#b‘0) = if(0 = 0, 1, ((⌊‘(2 logb (abs‘0))) + 1)) |
| 4 | eqid 2731 | . . 3 ⊢ 0 = 0 | |
| 5 | 4 | iftruei 4482 | . 2 ⊢ if(0 = 0, 1, ((⌊‘(2 logb (abs‘0))) + 1)) = 1 |
| 6 | 3, 5 | eqtri 2754 | 1 ⊢ (#b‘0) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 Vcvv 3436 ifcif 4475 ‘cfv 6481 (class class class)co 7346 0cc0 11003 1c1 11004 + caddc 11006 2c2 12177 ⌊cfl 13691 abscabs 15138 logb clogb 26699 #bcblen 48600 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-mulcl 11065 ax-i2m1 11071 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-blen 48601 |
| This theorem is referenced by: blennn0elnn 48608 blen1b 48619 nn0sumshdiglem1 48652 |
| Copyright terms: Public domain | W3C validator |