| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > blen0 | Structured version Visualization version GIF version | ||
| Description: The binary length of 0. (Contributed by AV, 20-May-2020.) |
| Ref | Expression |
|---|---|
| blen0 | ⊢ (#b‘0) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0ex 11186 | . . 3 ⊢ 0 ∈ V | |
| 2 | blenval 48493 | . . 3 ⊢ (0 ∈ V → (#b‘0) = if(0 = 0, 1, ((⌊‘(2 logb (abs‘0))) + 1))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (#b‘0) = if(0 = 0, 1, ((⌊‘(2 logb (abs‘0))) + 1)) |
| 4 | eqid 2730 | . . 3 ⊢ 0 = 0 | |
| 5 | 4 | iftruei 4503 | . 2 ⊢ if(0 = 0, 1, ((⌊‘(2 logb (abs‘0))) + 1)) = 1 |
| 6 | 3, 5 | eqtri 2753 | 1 ⊢ (#b‘0) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3455 ifcif 4496 ‘cfv 6519 (class class class)co 7394 0cc0 11086 1c1 11087 + caddc 11089 2c2 12252 ⌊cfl 13764 abscabs 15210 logb clogb 26681 #bcblen 48491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-mulcl 11148 ax-i2m1 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-iota 6472 df-fun 6521 df-fv 6527 df-ov 7397 df-blen 48492 |
| This theorem is referenced by: blennn0elnn 48499 blen1b 48510 nn0sumshdiglem1 48543 |
| Copyright terms: Public domain | W3C validator |