| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > blen0 | Structured version Visualization version GIF version | ||
| Description: The binary length of 0. (Contributed by AV, 20-May-2020.) |
| Ref | Expression |
|---|---|
| blen0 | ⊢ (#b‘0) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0ex 11168 | . . 3 ⊢ 0 ∈ V | |
| 2 | blenval 48560 | . . 3 ⊢ (0 ∈ V → (#b‘0) = if(0 = 0, 1, ((⌊‘(2 logb (abs‘0))) + 1))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (#b‘0) = if(0 = 0, 1, ((⌊‘(2 logb (abs‘0))) + 1)) |
| 4 | eqid 2729 | . . 3 ⊢ 0 = 0 | |
| 5 | 4 | iftruei 4495 | . 2 ⊢ if(0 = 0, 1, ((⌊‘(2 logb (abs‘0))) + 1)) = 1 |
| 6 | 3, 5 | eqtri 2752 | 1 ⊢ (#b‘0) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3447 ifcif 4488 ‘cfv 6511 (class class class)co 7387 0cc0 11068 1c1 11069 + caddc 11071 2c2 12241 ⌊cfl 13752 abscabs 15200 logb clogb 26674 #bcblen 48558 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-mulcl 11130 ax-i2m1 11136 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-blen 48559 |
| This theorem is referenced by: blennn0elnn 48566 blen1b 48577 nn0sumshdiglem1 48610 |
| Copyright terms: Public domain | W3C validator |