| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > blen0 | Structured version Visualization version GIF version | ||
| Description: The binary length of 0. (Contributed by AV, 20-May-2020.) |
| Ref | Expression |
|---|---|
| blen0 | ⊢ (#b‘0) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0ex 11238 | . . 3 ⊢ 0 ∈ V | |
| 2 | blenval 48438 | . . 3 ⊢ (0 ∈ V → (#b‘0) = if(0 = 0, 1, ((⌊‘(2 logb (abs‘0))) + 1))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (#b‘0) = if(0 = 0, 1, ((⌊‘(2 logb (abs‘0))) + 1)) |
| 4 | eqid 2734 | . . 3 ⊢ 0 = 0 | |
| 5 | 4 | iftruei 4514 | . 2 ⊢ if(0 = 0, 1, ((⌊‘(2 logb (abs‘0))) + 1)) = 1 |
| 6 | 3, 5 | eqtri 2757 | 1 ⊢ (#b‘0) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∈ wcel 2107 Vcvv 3464 ifcif 4507 ‘cfv 6542 (class class class)co 7414 0cc0 11138 1c1 11139 + caddc 11141 2c2 12304 ⌊cfl 13813 abscabs 15256 logb clogb 26762 #bcblen 48436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-mulcl 11200 ax-i2m1 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-iota 6495 df-fun 6544 df-fv 6550 df-ov 7417 df-blen 48437 |
| This theorem is referenced by: blennn0elnn 48444 blen1b 48455 nn0sumshdiglem1 48488 |
| Copyright terms: Public domain | W3C validator |