![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > blenval | Structured version Visualization version GIF version |
Description: The binary length of an integer. (Contributed by AV, 20-May-2020.) |
Ref | Expression |
---|---|
blenval | ⊢ (𝑁 ∈ 𝑉 → (#b‘𝑁) = if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-blen 48441 | . 2 ⊢ #b = (𝑛 ∈ V ↦ if(𝑛 = 0, 1, ((⌊‘(2 logb (abs‘𝑛))) + 1))) | |
2 | eqeq1 2740 | . . 3 ⊢ (𝑛 = 𝑁 → (𝑛 = 0 ↔ 𝑁 = 0)) | |
3 | fveq2 6911 | . . . . . 6 ⊢ (𝑛 = 𝑁 → (abs‘𝑛) = (abs‘𝑁)) | |
4 | 3 | oveq2d 7451 | . . . . 5 ⊢ (𝑛 = 𝑁 → (2 logb (abs‘𝑛)) = (2 logb (abs‘𝑁))) |
5 | 4 | fveq2d 6915 | . . . 4 ⊢ (𝑛 = 𝑁 → (⌊‘(2 logb (abs‘𝑛))) = (⌊‘(2 logb (abs‘𝑁)))) |
6 | 5 | oveq1d 7450 | . . 3 ⊢ (𝑛 = 𝑁 → ((⌊‘(2 logb (abs‘𝑛))) + 1) = ((⌊‘(2 logb (abs‘𝑁))) + 1)) |
7 | 2, 6 | ifbieq2d 4558 | . 2 ⊢ (𝑛 = 𝑁 → if(𝑛 = 0, 1, ((⌊‘(2 logb (abs‘𝑛))) + 1)) = if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1))) |
8 | elex 3500 | . 2 ⊢ (𝑁 ∈ 𝑉 → 𝑁 ∈ V) | |
9 | 1ex 11261 | . . . 4 ⊢ 1 ∈ V | |
10 | ovex 7468 | . . . 4 ⊢ ((⌊‘(2 logb (abs‘𝑁))) + 1) ∈ V | |
11 | 9, 10 | ifex 4582 | . . 3 ⊢ if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1)) ∈ V |
12 | 11 | a1i 11 | . 2 ⊢ (𝑁 ∈ 𝑉 → if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1)) ∈ V) |
13 | 1, 7, 8, 12 | fvmptd3 7043 | 1 ⊢ (𝑁 ∈ 𝑉 → (#b‘𝑁) = if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2107 Vcvv 3479 ifcif 4532 ‘cfv 6566 (class class class)co 7435 0cc0 11159 1c1 11160 + caddc 11162 2c2 12325 ⌊cfl 13833 abscabs 15276 logb clogb 26830 #bcblen 48440 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pr 5439 ax-1cn 11217 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3435 df-v 3481 df-dif 3967 df-un 3969 df-ss 3981 df-nul 4341 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5584 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-iota 6519 df-fun 6568 df-fv 6574 df-ov 7438 df-blen 48441 |
This theorem is referenced by: blen0 48443 blenn0 48444 |
Copyright terms: Public domain | W3C validator |