Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  blenval Structured version   Visualization version   GIF version

Theorem blenval 47305
Description: The binary length of an integer. (Contributed by AV, 20-May-2020.)
Assertion
Ref Expression
blenval (𝑁𝑉 → (#b𝑁) = if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1)))

Proof of Theorem blenval
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 df-blen 47304 . 2 #b = (𝑛 ∈ V ↦ if(𝑛 = 0, 1, ((⌊‘(2 logb (abs‘𝑛))) + 1)))
2 eqeq1 2737 . . 3 (𝑛 = 𝑁 → (𝑛 = 0 ↔ 𝑁 = 0))
3 fveq2 6892 . . . . . 6 (𝑛 = 𝑁 → (abs‘𝑛) = (abs‘𝑁))
43oveq2d 7425 . . . . 5 (𝑛 = 𝑁 → (2 logb (abs‘𝑛)) = (2 logb (abs‘𝑁)))
54fveq2d 6896 . . . 4 (𝑛 = 𝑁 → (⌊‘(2 logb (abs‘𝑛))) = (⌊‘(2 logb (abs‘𝑁))))
65oveq1d 7424 . . 3 (𝑛 = 𝑁 → ((⌊‘(2 logb (abs‘𝑛))) + 1) = ((⌊‘(2 logb (abs‘𝑁))) + 1))
72, 6ifbieq2d 4555 . 2 (𝑛 = 𝑁 → if(𝑛 = 0, 1, ((⌊‘(2 logb (abs‘𝑛))) + 1)) = if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1)))
8 elex 3493 . 2 (𝑁𝑉𝑁 ∈ V)
9 1ex 11210 . . . 4 1 ∈ V
10 ovex 7442 . . . 4 ((⌊‘(2 logb (abs‘𝑁))) + 1) ∈ V
119, 10ifex 4579 . . 3 if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1)) ∈ V
1211a1i 11 . 2 (𝑁𝑉 → if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1)) ∈ V)
131, 7, 8, 12fvmptd3 7022 1 (𝑁𝑉 → (#b𝑁) = if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  Vcvv 3475  ifcif 4529  cfv 6544  (class class class)co 7409  0cc0 11110  1c1 11111   + caddc 11113  2c2 12267  cfl 13755  abscabs 15181   logb clogb 26269  #bcblen 47303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-1cn 11168
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-ov 7412  df-blen 47304
This theorem is referenced by:  blen0  47306  blenn0  47307
  Copyright terms: Public domain W3C validator