| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > blenval | Structured version Visualization version GIF version | ||
| Description: The binary length of an integer. (Contributed by AV, 20-May-2020.) |
| Ref | Expression |
|---|---|
| blenval | ⊢ (𝑁 ∈ 𝑉 → (#b‘𝑁) = if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-blen 48492 | . 2 ⊢ #b = (𝑛 ∈ V ↦ if(𝑛 = 0, 1, ((⌊‘(2 logb (abs‘𝑛))) + 1))) | |
| 2 | eqeq1 2734 | . . 3 ⊢ (𝑛 = 𝑁 → (𝑛 = 0 ↔ 𝑁 = 0)) | |
| 3 | fveq2 6865 | . . . . . 6 ⊢ (𝑛 = 𝑁 → (abs‘𝑛) = (abs‘𝑁)) | |
| 4 | 3 | oveq2d 7410 | . . . . 5 ⊢ (𝑛 = 𝑁 → (2 logb (abs‘𝑛)) = (2 logb (abs‘𝑁))) |
| 5 | 4 | fveq2d 6869 | . . . 4 ⊢ (𝑛 = 𝑁 → (⌊‘(2 logb (abs‘𝑛))) = (⌊‘(2 logb (abs‘𝑁)))) |
| 6 | 5 | oveq1d 7409 | . . 3 ⊢ (𝑛 = 𝑁 → ((⌊‘(2 logb (abs‘𝑛))) + 1) = ((⌊‘(2 logb (abs‘𝑁))) + 1)) |
| 7 | 2, 6 | ifbieq2d 4523 | . 2 ⊢ (𝑛 = 𝑁 → if(𝑛 = 0, 1, ((⌊‘(2 logb (abs‘𝑛))) + 1)) = if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1))) |
| 8 | elex 3476 | . 2 ⊢ (𝑁 ∈ 𝑉 → 𝑁 ∈ V) | |
| 9 | 1ex 11188 | . . . 4 ⊢ 1 ∈ V | |
| 10 | ovex 7427 | . . . 4 ⊢ ((⌊‘(2 logb (abs‘𝑁))) + 1) ∈ V | |
| 11 | 9, 10 | ifex 4547 | . . 3 ⊢ if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1)) ∈ V |
| 12 | 11 | a1i 11 | . 2 ⊢ (𝑁 ∈ 𝑉 → if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1)) ∈ V) |
| 13 | 1, 7, 8, 12 | fvmptd3 6998 | 1 ⊢ (𝑁 ∈ 𝑉 → (#b‘𝑁) = if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3455 ifcif 4496 ‘cfv 6519 (class class class)co 7394 0cc0 11086 1c1 11087 + caddc 11089 2c2 12252 ⌊cfl 13764 abscabs 15210 logb clogb 26681 #bcblen 48491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 ax-1cn 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-iota 6472 df-fun 6521 df-fv 6527 df-ov 7397 df-blen 48492 |
| This theorem is referenced by: blen0 48494 blenn0 48495 |
| Copyright terms: Public domain | W3C validator |