Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  blenval Structured version   Visualization version   GIF version

Theorem blenval 48493
Description: The binary length of an integer. (Contributed by AV, 20-May-2020.)
Assertion
Ref Expression
blenval (𝑁𝑉 → (#b𝑁) = if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1)))

Proof of Theorem blenval
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 df-blen 48492 . 2 #b = (𝑛 ∈ V ↦ if(𝑛 = 0, 1, ((⌊‘(2 logb (abs‘𝑛))) + 1)))
2 eqeq1 2734 . . 3 (𝑛 = 𝑁 → (𝑛 = 0 ↔ 𝑁 = 0))
3 fveq2 6865 . . . . . 6 (𝑛 = 𝑁 → (abs‘𝑛) = (abs‘𝑁))
43oveq2d 7410 . . . . 5 (𝑛 = 𝑁 → (2 logb (abs‘𝑛)) = (2 logb (abs‘𝑁)))
54fveq2d 6869 . . . 4 (𝑛 = 𝑁 → (⌊‘(2 logb (abs‘𝑛))) = (⌊‘(2 logb (abs‘𝑁))))
65oveq1d 7409 . . 3 (𝑛 = 𝑁 → ((⌊‘(2 logb (abs‘𝑛))) + 1) = ((⌊‘(2 logb (abs‘𝑁))) + 1))
72, 6ifbieq2d 4523 . 2 (𝑛 = 𝑁 → if(𝑛 = 0, 1, ((⌊‘(2 logb (abs‘𝑛))) + 1)) = if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1)))
8 elex 3476 . 2 (𝑁𝑉𝑁 ∈ V)
9 1ex 11188 . . . 4 1 ∈ V
10 ovex 7427 . . . 4 ((⌊‘(2 logb (abs‘𝑁))) + 1) ∈ V
119, 10ifex 4547 . . 3 if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1)) ∈ V
1211a1i 11 . 2 (𝑁𝑉 → if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1)) ∈ V)
131, 7, 8, 12fvmptd3 6998 1 (𝑁𝑉 → (#b𝑁) = if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3455  ifcif 4496  cfv 6519  (class class class)co 7394  0cc0 11086  1c1 11087   + caddc 11089  2c2 12252  cfl 13764  abscabs 15210   logb clogb 26681  #bcblen 48491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395  ax-1cn 11144
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-iota 6472  df-fun 6521  df-fv 6527  df-ov 7397  df-blen 48492
This theorem is referenced by:  blen0  48494  blenn0  48495
  Copyright terms: Public domain W3C validator