Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > blenval | Structured version Visualization version GIF version |
Description: The binary length of an integer. (Contributed by AV, 20-May-2020.) |
Ref | Expression |
---|---|
blenval | ⊢ (𝑁 ∈ 𝑉 → (#b‘𝑁) = if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-blen 45349 | . 2 ⊢ #b = (𝑛 ∈ V ↦ if(𝑛 = 0, 1, ((⌊‘(2 logb (abs‘𝑛))) + 1))) | |
2 | eqeq1 2762 | . . 3 ⊢ (𝑛 = 𝑁 → (𝑛 = 0 ↔ 𝑁 = 0)) | |
3 | fveq2 6658 | . . . . . 6 ⊢ (𝑛 = 𝑁 → (abs‘𝑛) = (abs‘𝑁)) | |
4 | 3 | oveq2d 7166 | . . . . 5 ⊢ (𝑛 = 𝑁 → (2 logb (abs‘𝑛)) = (2 logb (abs‘𝑁))) |
5 | 4 | fveq2d 6662 | . . . 4 ⊢ (𝑛 = 𝑁 → (⌊‘(2 logb (abs‘𝑛))) = (⌊‘(2 logb (abs‘𝑁)))) |
6 | 5 | oveq1d 7165 | . . 3 ⊢ (𝑛 = 𝑁 → ((⌊‘(2 logb (abs‘𝑛))) + 1) = ((⌊‘(2 logb (abs‘𝑁))) + 1)) |
7 | 2, 6 | ifbieq2d 4446 | . 2 ⊢ (𝑛 = 𝑁 → if(𝑛 = 0, 1, ((⌊‘(2 logb (abs‘𝑛))) + 1)) = if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1))) |
8 | elex 3428 | . 2 ⊢ (𝑁 ∈ 𝑉 → 𝑁 ∈ V) | |
9 | 1ex 10675 | . . . 4 ⊢ 1 ∈ V | |
10 | ovex 7183 | . . . 4 ⊢ ((⌊‘(2 logb (abs‘𝑁))) + 1) ∈ V | |
11 | 9, 10 | ifex 4470 | . . 3 ⊢ if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1)) ∈ V |
12 | 11 | a1i 11 | . 2 ⊢ (𝑁 ∈ 𝑉 → if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1)) ∈ V) |
13 | 1, 7, 8, 12 | fvmptd3 6782 | 1 ⊢ (𝑁 ∈ 𝑉 → (#b‘𝑁) = if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ifcif 4420 ‘cfv 6335 (class class class)co 7150 0cc0 10575 1c1 10576 + caddc 10578 2c2 11729 ⌊cfl 13209 abscabs 14641 logb clogb 25449 #bcblen 45348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 ax-1cn 10633 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-iota 6294 df-fun 6337 df-fv 6343 df-ov 7153 df-blen 45349 |
This theorem is referenced by: blen0 45351 blenn0 45352 |
Copyright terms: Public domain | W3C validator |