| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > blenval | Structured version Visualization version GIF version | ||
| Description: The binary length of an integer. (Contributed by AV, 20-May-2020.) |
| Ref | Expression |
|---|---|
| blenval | ⊢ (𝑁 ∈ 𝑉 → (#b‘𝑁) = if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-blen 48556 | . 2 ⊢ #b = (𝑛 ∈ V ↦ if(𝑛 = 0, 1, ((⌊‘(2 logb (abs‘𝑛))) + 1))) | |
| 2 | eqeq1 2733 | . . 3 ⊢ (𝑛 = 𝑁 → (𝑛 = 0 ↔ 𝑁 = 0)) | |
| 3 | fveq2 6826 | . . . . . 6 ⊢ (𝑛 = 𝑁 → (abs‘𝑛) = (abs‘𝑁)) | |
| 4 | 3 | oveq2d 7369 | . . . . 5 ⊢ (𝑛 = 𝑁 → (2 logb (abs‘𝑛)) = (2 logb (abs‘𝑁))) |
| 5 | 4 | fveq2d 6830 | . . . 4 ⊢ (𝑛 = 𝑁 → (⌊‘(2 logb (abs‘𝑛))) = (⌊‘(2 logb (abs‘𝑁)))) |
| 6 | 5 | oveq1d 7368 | . . 3 ⊢ (𝑛 = 𝑁 → ((⌊‘(2 logb (abs‘𝑛))) + 1) = ((⌊‘(2 logb (abs‘𝑁))) + 1)) |
| 7 | 2, 6 | ifbieq2d 4505 | . 2 ⊢ (𝑛 = 𝑁 → if(𝑛 = 0, 1, ((⌊‘(2 logb (abs‘𝑛))) + 1)) = if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1))) |
| 8 | elex 3459 | . 2 ⊢ (𝑁 ∈ 𝑉 → 𝑁 ∈ V) | |
| 9 | 1ex 11130 | . . . 4 ⊢ 1 ∈ V | |
| 10 | ovex 7386 | . . . 4 ⊢ ((⌊‘(2 logb (abs‘𝑁))) + 1) ∈ V | |
| 11 | 9, 10 | ifex 4529 | . . 3 ⊢ if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1)) ∈ V |
| 12 | 11 | a1i 11 | . 2 ⊢ (𝑁 ∈ 𝑉 → if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1)) ∈ V) |
| 13 | 1, 7, 8, 12 | fvmptd3 6957 | 1 ⊢ (𝑁 ∈ 𝑉 → (#b‘𝑁) = if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ifcif 4478 ‘cfv 6486 (class class class)co 7353 0cc0 11028 1c1 11029 + caddc 11031 2c2 12201 ⌊cfl 13712 abscabs 15159 logb clogb 26690 #bcblen 48555 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-1cn 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-blen 48556 |
| This theorem is referenced by: blen0 48558 blenn0 48559 |
| Copyright terms: Public domain | W3C validator |