Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  blennn Structured version   Visualization version   GIF version

Theorem blennn 44642
Description: The binary length of a positive integer. (Contributed by AV, 21-May-2020.)
Assertion
Ref Expression
blennn (𝑁 ∈ ℕ → (#b𝑁) = ((⌊‘(2 logb 𝑁)) + 1))

Proof of Theorem blennn
StepHypRef Expression
1 nnne0 11674 . . 3 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
2 blenn0 44640 . . 3 ((𝑁 ∈ ℕ ∧ 𝑁 ≠ 0) → (#b𝑁) = ((⌊‘(2 logb (abs‘𝑁))) + 1))
31, 2mpdan 685 . 2 (𝑁 ∈ ℕ → (#b𝑁) = ((⌊‘(2 logb (abs‘𝑁))) + 1))
4 nnre 11648 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
5 nnnn0 11907 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
65nn0ge0d 11961 . . . . . 6 (𝑁 ∈ ℕ → 0 ≤ 𝑁)
74, 6absidd 14785 . . . . 5 (𝑁 ∈ ℕ → (abs‘𝑁) = 𝑁)
87oveq2d 7175 . . . 4 (𝑁 ∈ ℕ → (2 logb (abs‘𝑁)) = (2 logb 𝑁))
98fveq2d 6677 . . 3 (𝑁 ∈ ℕ → (⌊‘(2 logb (abs‘𝑁))) = (⌊‘(2 logb 𝑁)))
109oveq1d 7174 . 2 (𝑁 ∈ ℕ → ((⌊‘(2 logb (abs‘𝑁))) + 1) = ((⌊‘(2 logb 𝑁)) + 1))
113, 10eqtrd 2859 1 (𝑁 ∈ ℕ → (#b𝑁) = ((⌊‘(2 logb 𝑁)) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2113  wne 3019  cfv 6358  (class class class)co 7159  0cc0 10540  1c1 10541   + caddc 10543  cn 11641  2c2 11695  cfl 13163  abscabs 14596   logb clogb 25345  #bcblen 44636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-sup 8909  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-seq 13373  df-exp 13433  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-blen 44637
This theorem is referenced by:  blennnelnn  44643  blenpw2  44645  blenpw2m1  44646  nnpw2blen  44647  blen1  44651  blen2  44652  blen1b  44655  blennnt2  44656  nnolog2flm1  44657  blennngt2o2  44659  blennn0e2  44661  dig2nn0ld  44671  dig2nn1st  44672
  Copyright terms: Public domain W3C validator