Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1386 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1386.1 | ⊢ (𝜑 ↔ ∀𝑓 ∈ 𝐴 Fun 𝑓) |
bnj1386.2 | ⊢ 𝐷 = (dom 𝑓 ∩ dom 𝑔) |
bnj1386.3 | ⊢ (𝜓 ↔ (𝜑 ∧ ∀𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 (𝑓 ↾ 𝐷) = (𝑔 ↾ 𝐷))) |
bnj1386.4 | ⊢ (𝑥 ∈ 𝐴 → ∀𝑓 𝑥 ∈ 𝐴) |
Ref | Expression |
---|---|
bnj1386 | ⊢ (𝜓 → Fun ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1386.1 | . 2 ⊢ (𝜑 ↔ ∀𝑓 ∈ 𝐴 Fun 𝑓) | |
2 | bnj1386.2 | . 2 ⊢ 𝐷 = (dom 𝑓 ∩ dom 𝑔) | |
3 | bnj1386.3 | . 2 ⊢ (𝜓 ↔ (𝜑 ∧ ∀𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 (𝑓 ↾ 𝐷) = (𝑔 ↾ 𝐷))) | |
4 | bnj1386.4 | . 2 ⊢ (𝑥 ∈ 𝐴 → ∀𝑓 𝑥 ∈ 𝐴) | |
5 | biid 264 | . 2 ⊢ (∀ℎ ∈ 𝐴 Fun ℎ ↔ ∀ℎ ∈ 𝐴 Fun ℎ) | |
6 | eqid 2739 | . 2 ⊢ (dom ℎ ∩ dom 𝑔) = (dom ℎ ∩ dom 𝑔) | |
7 | biid 264 | . 2 ⊢ ((∀ℎ ∈ 𝐴 Fun ℎ ∧ ∀ℎ ∈ 𝐴 ∀𝑔 ∈ 𝐴 (ℎ ↾ (dom ℎ ∩ dom 𝑔)) = (𝑔 ↾ (dom ℎ ∩ dom 𝑔))) ↔ (∀ℎ ∈ 𝐴 Fun ℎ ∧ ∀ℎ ∈ 𝐴 ∀𝑔 ∈ 𝐴 (ℎ ↾ (dom ℎ ∩ dom 𝑔)) = (𝑔 ↾ (dom ℎ ∩ dom 𝑔)))) | |
8 | 1, 2, 3, 4, 5, 6, 7 | bnj1385 32687 | 1 ⊢ (𝜓 → Fun ∪ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∀wal 1541 = wceq 1543 ∈ wcel 2112 ∀wral 3064 ∩ cin 3883 ∪ cuni 4836 dom cdm 5579 ↾ cres 5581 Fun wfun 6409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pr 5346 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3425 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-id 5479 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-res 5591 df-iota 6373 df-fun 6417 df-fv 6423 |
This theorem is referenced by: bnj1384 32887 |
Copyright terms: Public domain | W3C validator |