Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1386 Structured version   Visualization version   GIF version

Theorem bnj1386 34825
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1386.1 (𝜑 ↔ ∀𝑓𝐴 Fun 𝑓)
bnj1386.2 𝐷 = (dom 𝑓 ∩ dom 𝑔)
bnj1386.3 (𝜓 ↔ (𝜑 ∧ ∀𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷)))
bnj1386.4 (𝑥𝐴 → ∀𝑓 𝑥𝐴)
Assertion
Ref Expression
bnj1386 (𝜓 → Fun 𝐴)
Distinct variable groups:   𝐴,𝑔,𝑥   𝑓,𝑔,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑓,𝑔)   𝜓(𝑥,𝑓,𝑔)   𝐴(𝑓)   𝐷(𝑥,𝑓,𝑔)

Proof of Theorem bnj1386
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 bnj1386.1 . 2 (𝜑 ↔ ∀𝑓𝐴 Fun 𝑓)
2 bnj1386.2 . 2 𝐷 = (dom 𝑓 ∩ dom 𝑔)
3 bnj1386.3 . 2 (𝜓 ↔ (𝜑 ∧ ∀𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷)))
4 bnj1386.4 . 2 (𝑥𝐴 → ∀𝑓 𝑥𝐴)
5 biid 261 . 2 (∀𝐴 Fun ↔ ∀𝐴 Fun )
6 eqid 2734 . 2 (dom ∩ dom 𝑔) = (dom ∩ dom 𝑔)
7 biid 261 . 2 ((∀𝐴 Fun ∧ ∀𝐴𝑔𝐴 ( ↾ (dom ∩ dom 𝑔)) = (𝑔 ↾ (dom ∩ dom 𝑔))) ↔ (∀𝐴 Fun ∧ ∀𝐴𝑔𝐴 ( ↾ (dom ∩ dom 𝑔)) = (𝑔 ↾ (dom ∩ dom 𝑔))))
81, 2, 3, 4, 5, 6, 7bnj1385 34824 1 (𝜓 → Fun 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1534   = wceq 1536  wcel 2105  wral 3058  cin 3961   cuni 4911  dom cdm 5688  cres 5690  Fun wfun 6556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-res 5700  df-iota 6515  df-fun 6564  df-fv 6570
This theorem is referenced by:  bnj1384  35024
  Copyright terms: Public domain W3C validator