Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1386 Structured version   Visualization version   GIF version

Theorem bnj1386 34830
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1386.1 (𝜑 ↔ ∀𝑓𝐴 Fun 𝑓)
bnj1386.2 𝐷 = (dom 𝑓 ∩ dom 𝑔)
bnj1386.3 (𝜓 ↔ (𝜑 ∧ ∀𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷)))
bnj1386.4 (𝑥𝐴 → ∀𝑓 𝑥𝐴)
Assertion
Ref Expression
bnj1386 (𝜓 → Fun 𝐴)
Distinct variable groups:   𝐴,𝑔,𝑥   𝑓,𝑔,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑓,𝑔)   𝜓(𝑥,𝑓,𝑔)   𝐴(𝑓)   𝐷(𝑥,𝑓,𝑔)

Proof of Theorem bnj1386
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 bnj1386.1 . 2 (𝜑 ↔ ∀𝑓𝐴 Fun 𝑓)
2 bnj1386.2 . 2 𝐷 = (dom 𝑓 ∩ dom 𝑔)
3 bnj1386.3 . 2 (𝜓 ↔ (𝜑 ∧ ∀𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷)))
4 bnj1386.4 . 2 (𝑥𝐴 → ∀𝑓 𝑥𝐴)
5 biid 261 . 2 (∀𝐴 Fun ↔ ∀𝐴 Fun )
6 eqid 2730 . 2 (dom ∩ dom 𝑔) = (dom ∩ dom 𝑔)
7 biid 261 . 2 ((∀𝐴 Fun ∧ ∀𝐴𝑔𝐴 ( ↾ (dom ∩ dom 𝑔)) = (𝑔 ↾ (dom ∩ dom 𝑔))) ↔ (∀𝐴 Fun ∧ ∀𝐴𝑔𝐴 ( ↾ (dom ∩ dom 𝑔)) = (𝑔 ↾ (dom ∩ dom 𝑔))))
81, 2, 3, 4, 5, 6, 7bnj1385 34829 1 (𝜓 → Fun 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  wral 3045  cin 3916   cuni 4874  dom cdm 5641  cres 5643  Fun wfun 6508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-res 5653  df-iota 6467  df-fun 6516  df-fv 6522
This theorem is referenced by:  bnj1384  35029
  Copyright terms: Public domain W3C validator