Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1386 Structured version   Visualization version   GIF version

Theorem bnj1386 34130
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1386.1 (𝜑 ↔ ∀𝑓𝐴 Fun 𝑓)
bnj1386.2 𝐷 = (dom 𝑓 ∩ dom 𝑔)
bnj1386.3 (𝜓 ↔ (𝜑 ∧ ∀𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷)))
bnj1386.4 (𝑥𝐴 → ∀𝑓 𝑥𝐴)
Assertion
Ref Expression
bnj1386 (𝜓 → Fun 𝐴)
Distinct variable groups:   𝐴,𝑔,𝑥   𝑓,𝑔,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑓,𝑔)   𝜓(𝑥,𝑓,𝑔)   𝐴(𝑓)   𝐷(𝑥,𝑓,𝑔)

Proof of Theorem bnj1386
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 bnj1386.1 . 2 (𝜑 ↔ ∀𝑓𝐴 Fun 𝑓)
2 bnj1386.2 . 2 𝐷 = (dom 𝑓 ∩ dom 𝑔)
3 bnj1386.3 . 2 (𝜓 ↔ (𝜑 ∧ ∀𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷)))
4 bnj1386.4 . 2 (𝑥𝐴 → ∀𝑓 𝑥𝐴)
5 biid 260 . 2 (∀𝐴 Fun ↔ ∀𝐴 Fun )
6 eqid 2732 . 2 (dom ∩ dom 𝑔) = (dom ∩ dom 𝑔)
7 biid 260 . 2 ((∀𝐴 Fun ∧ ∀𝐴𝑔𝐴 ( ↾ (dom ∩ dom 𝑔)) = (𝑔 ↾ (dom ∩ dom 𝑔))) ↔ (∀𝐴 Fun ∧ ∀𝐴𝑔𝐴 ( ↾ (dom ∩ dom 𝑔)) = (𝑔 ↾ (dom ∩ dom 𝑔))))
81, 2, 3, 4, 5, 6, 7bnj1385 34129 1 (𝜓 → Fun 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1539   = wceq 1541  wcel 2106  wral 3061  cin 3947   cuni 4908  dom cdm 5676  cres 5678  Fun wfun 6537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-res 5688  df-iota 6495  df-fun 6545  df-fv 6551
This theorem is referenced by:  bnj1384  34329
  Copyright terms: Public domain W3C validator