![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1386 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1386.1 | ⊢ (𝜑 ↔ ∀𝑓 ∈ 𝐴 Fun 𝑓) |
bnj1386.2 | ⊢ 𝐷 = (dom 𝑓 ∩ dom 𝑔) |
bnj1386.3 | ⊢ (𝜓 ↔ (𝜑 ∧ ∀𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 (𝑓 ↾ 𝐷) = (𝑔 ↾ 𝐷))) |
bnj1386.4 | ⊢ (𝑥 ∈ 𝐴 → ∀𝑓 𝑥 ∈ 𝐴) |
Ref | Expression |
---|---|
bnj1386 | ⊢ (𝜓 → Fun ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1386.1 | . 2 ⊢ (𝜑 ↔ ∀𝑓 ∈ 𝐴 Fun 𝑓) | |
2 | bnj1386.2 | . 2 ⊢ 𝐷 = (dom 𝑓 ∩ dom 𝑔) | |
3 | bnj1386.3 | . 2 ⊢ (𝜓 ↔ (𝜑 ∧ ∀𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 (𝑓 ↾ 𝐷) = (𝑔 ↾ 𝐷))) | |
4 | bnj1386.4 | . 2 ⊢ (𝑥 ∈ 𝐴 → ∀𝑓 𝑥 ∈ 𝐴) | |
5 | biid 261 | . 2 ⊢ (∀ℎ ∈ 𝐴 Fun ℎ ↔ ∀ℎ ∈ 𝐴 Fun ℎ) | |
6 | eqid 2734 | . 2 ⊢ (dom ℎ ∩ dom 𝑔) = (dom ℎ ∩ dom 𝑔) | |
7 | biid 261 | . 2 ⊢ ((∀ℎ ∈ 𝐴 Fun ℎ ∧ ∀ℎ ∈ 𝐴 ∀𝑔 ∈ 𝐴 (ℎ ↾ (dom ℎ ∩ dom 𝑔)) = (𝑔 ↾ (dom ℎ ∩ dom 𝑔))) ↔ (∀ℎ ∈ 𝐴 Fun ℎ ∧ ∀ℎ ∈ 𝐴 ∀𝑔 ∈ 𝐴 (ℎ ↾ (dom ℎ ∩ dom 𝑔)) = (𝑔 ↾ (dom ℎ ∩ dom 𝑔)))) | |
8 | 1, 2, 3, 4, 5, 6, 7 | bnj1385 34824 | 1 ⊢ (𝜓 → Fun ∪ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1534 = wceq 1536 ∈ wcel 2105 ∀wral 3058 ∩ cin 3961 ∪ cuni 4911 dom cdm 5688 ↾ cres 5690 Fun wfun 6556 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-res 5700 df-iota 6515 df-fun 6564 df-fv 6570 |
This theorem is referenced by: bnj1384 35024 |
Copyright terms: Public domain | W3C validator |