| Step | Hyp | Ref
| Expression |
| 1 | | brttrcl 9753 |
. 2
⊢ (𝐴t++𝑅𝐵 ↔ ∃𝑚 ∈ (ω ∖
1o)∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑚) = 𝐵) ∧ ∀𝑎 ∈ 𝑚 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) |
| 2 | | df-1o 8506 |
. . . . . . . . 9
⊢
1o = suc ∅ |
| 3 | 2 | difeq2i 4123 |
. . . . . . . 8
⊢ (ω
∖ 1o) = (ω ∖ suc ∅) |
| 4 | 3 | eleq2i 2833 |
. . . . . . 7
⊢ (𝑚 ∈ (ω ∖
1o) ↔ 𝑚
∈ (ω ∖ suc ∅)) |
| 5 | | peano1 7910 |
. . . . . . . 8
⊢ ∅
∈ ω |
| 6 | | eldifsucnn 8702 |
. . . . . . . 8
⊢ (∅
∈ ω → (𝑚
∈ (ω ∖ suc ∅) ↔ ∃𝑛 ∈ (ω ∖ ∅)𝑚 = suc 𝑛)) |
| 7 | 5, 6 | ax-mp 5 |
. . . . . . 7
⊢ (𝑚 ∈ (ω ∖ suc
∅) ↔ ∃𝑛
∈ (ω ∖ ∅)𝑚 = suc 𝑛) |
| 8 | | dif0 4378 |
. . . . . . . 8
⊢ (ω
∖ ∅) = ω |
| 9 | 8 | rexeqi 3325 |
. . . . . . 7
⊢
(∃𝑛 ∈
(ω ∖ ∅)𝑚
= suc 𝑛 ↔ ∃𝑛 ∈ ω 𝑚 = suc 𝑛) |
| 10 | 4, 7, 9 | 3bitri 297 |
. . . . . 6
⊢ (𝑚 ∈ (ω ∖
1o) ↔ ∃𝑛 ∈ ω 𝑚 = suc 𝑛) |
| 11 | 10 | anbi1i 624 |
. . . . 5
⊢ ((𝑚 ∈ (ω ∖
1o) ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑚) = 𝐵) ∧ ∀𝑎 ∈ 𝑚 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) ↔ (∃𝑛 ∈ ω 𝑚 = suc 𝑛 ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑚) = 𝐵) ∧ ∀𝑎 ∈ 𝑚 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)))) |
| 12 | | r19.41v 3189 |
. . . . 5
⊢
(∃𝑛 ∈
ω (𝑚 = suc 𝑛 ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑚) = 𝐵) ∧ ∀𝑎 ∈ 𝑚 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) ↔ (∃𝑛 ∈ ω 𝑚 = suc 𝑛 ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑚) = 𝐵) ∧ ∀𝑎 ∈ 𝑚 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)))) |
| 13 | 11, 12 | bitr4i 278 |
. . . 4
⊢ ((𝑚 ∈ (ω ∖
1o) ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑚) = 𝐵) ∧ ∀𝑎 ∈ 𝑚 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) ↔ ∃𝑛 ∈ ω (𝑚 = suc 𝑛 ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑚) = 𝐵) ∧ ∀𝑎 ∈ 𝑚 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)))) |
| 14 | 13 | exbii 1848 |
. . 3
⊢
(∃𝑚(𝑚 ∈ (ω ∖
1o) ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑚) = 𝐵) ∧ ∀𝑎 ∈ 𝑚 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) ↔ ∃𝑚∃𝑛 ∈ ω (𝑚 = suc 𝑛 ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑚) = 𝐵) ∧ ∀𝑎 ∈ 𝑚 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)))) |
| 15 | | df-rex 3071 |
. . 3
⊢
(∃𝑚 ∈
(ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑚) = 𝐵) ∧ ∀𝑎 ∈ 𝑚 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑚(𝑚 ∈ (ω ∖ 1o) ∧
∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑚) = 𝐵) ∧ ∀𝑎 ∈ 𝑚 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)))) |
| 16 | | rexcom4 3288 |
. . 3
⊢
(∃𝑛 ∈
ω ∃𝑚(𝑚 = suc 𝑛 ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑚) = 𝐵) ∧ ∀𝑎 ∈ 𝑚 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) ↔ ∃𝑚∃𝑛 ∈ ω (𝑚 = suc 𝑛 ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑚) = 𝐵) ∧ ∀𝑎 ∈ 𝑚 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)))) |
| 17 | 14, 15, 16 | 3bitr4i 303 |
. 2
⊢
(∃𝑚 ∈
(ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑚) = 𝐵) ∧ ∀𝑎 ∈ 𝑚 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑛 ∈ ω ∃𝑚(𝑚 = suc 𝑛 ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑚) = 𝐵) ∧ ∀𝑎 ∈ 𝑚 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)))) |
| 18 | | vex 3484 |
. . . . 5
⊢ 𝑛 ∈ V |
| 19 | 18 | sucex 7826 |
. . . 4
⊢ suc 𝑛 ∈ V |
| 20 | | suceq 6450 |
. . . . . . 7
⊢ (𝑚 = suc 𝑛 → suc 𝑚 = suc suc 𝑛) |
| 21 | 20 | fneq2d 6662 |
. . . . . 6
⊢ (𝑚 = suc 𝑛 → (𝑓 Fn suc 𝑚 ↔ 𝑓 Fn suc suc 𝑛)) |
| 22 | | fveqeq2 6915 |
. . . . . . 7
⊢ (𝑚 = suc 𝑛 → ((𝑓‘𝑚) = 𝐵 ↔ (𝑓‘suc 𝑛) = 𝐵)) |
| 23 | 22 | anbi2d 630 |
. . . . . 6
⊢ (𝑚 = suc 𝑛 → (((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑚) = 𝐵) ↔ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘suc 𝑛) = 𝐵))) |
| 24 | | raleq 3323 |
. . . . . 6
⊢ (𝑚 = suc 𝑛 → (∀𝑎 ∈ 𝑚 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎) ↔ ∀𝑎 ∈ suc 𝑛(𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) |
| 25 | 21, 23, 24 | 3anbi123d 1438 |
. . . . 5
⊢ (𝑚 = suc 𝑛 → ((𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑚) = 𝐵) ∧ ∀𝑎 ∈ 𝑚 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘suc 𝑛) = 𝐵) ∧ ∀𝑎 ∈ suc 𝑛(𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)))) |
| 26 | 25 | exbidv 1921 |
. . . 4
⊢ (𝑚 = suc 𝑛 → (∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑚) = 𝐵) ∧ ∀𝑎 ∈ 𝑚 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘suc 𝑛) = 𝐵) ∧ ∀𝑎 ∈ suc 𝑛(𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)))) |
| 27 | 19, 26 | ceqsexv 3532 |
. . 3
⊢
(∃𝑚(𝑚 = suc 𝑛 ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑚) = 𝐵) ∧ ∀𝑎 ∈ 𝑚 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) ↔ ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘suc 𝑛) = 𝐵) ∧ ∀𝑎 ∈ suc 𝑛(𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) |
| 28 | 27 | rexbii 3094 |
. 2
⊢
(∃𝑛 ∈
ω ∃𝑚(𝑚 = suc 𝑛 ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑚) = 𝐵) ∧ ∀𝑎 ∈ 𝑚 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) ↔ ∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘suc 𝑛) = 𝐵) ∧ ∀𝑎 ∈ suc 𝑛(𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) |
| 29 | 1, 17, 28 | 3bitri 297 |
1
⊢ (𝐴t++𝑅𝐵 ↔ ∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘suc 𝑛) = 𝐵) ∧ ∀𝑎 ∈ suc 𝑛(𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) |