MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brttrcl2 Structured version   Visualization version   GIF version

Theorem brttrcl2 9650
Description: Characterization of elements of the transitive closure of a relation. (Contributed by Scott Fenton, 24-Aug-2024.)
Assertion
Ref Expression
brttrcl2 (𝐴t++𝑅𝐵 ↔ ∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘suc 𝑛) = 𝐵) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
Distinct variable groups:   𝐴,𝑛,𝑓,𝑎   𝐵,𝑛,𝑓,𝑎   𝑅,𝑛,𝑓,𝑎

Proof of Theorem brttrcl2
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 brttrcl 9649 . 2 (𝐴t++𝑅𝐵 ↔ ∃𝑚 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
2 df-1o 8412 . . . . . . . . 9 1o = suc ∅
32difeq2i 4079 . . . . . . . 8 (ω ∖ 1o) = (ω ∖ suc ∅)
43eleq2i 2829 . . . . . . 7 (𝑚 ∈ (ω ∖ 1o) ↔ 𝑚 ∈ (ω ∖ suc ∅))
5 peano1 7825 . . . . . . . 8 ∅ ∈ ω
6 eldifsucnn 8610 . . . . . . . 8 (∅ ∈ ω → (𝑚 ∈ (ω ∖ suc ∅) ↔ ∃𝑛 ∈ (ω ∖ ∅)𝑚 = suc 𝑛))
75, 6ax-mp 5 . . . . . . 7 (𝑚 ∈ (ω ∖ suc ∅) ↔ ∃𝑛 ∈ (ω ∖ ∅)𝑚 = suc 𝑛)
8 dif0 4332 . . . . . . . 8 (ω ∖ ∅) = ω
98rexeqi 3312 . . . . . . 7 (∃𝑛 ∈ (ω ∖ ∅)𝑚 = suc 𝑛 ↔ ∃𝑛 ∈ ω 𝑚 = suc 𝑛)
104, 7, 93bitri 296 . . . . . 6 (𝑚 ∈ (ω ∖ 1o) ↔ ∃𝑛 ∈ ω 𝑚 = suc 𝑛)
1110anbi1i 624 . . . . 5 ((𝑚 ∈ (ω ∖ 1o) ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ↔ (∃𝑛 ∈ ω 𝑚 = suc 𝑛 ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
12 r19.41v 3185 . . . . 5 (∃𝑛 ∈ ω (𝑚 = suc 𝑛 ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ↔ (∃𝑛 ∈ ω 𝑚 = suc 𝑛 ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
1311, 12bitr4i 277 . . . 4 ((𝑚 ∈ (ω ∖ 1o) ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ↔ ∃𝑛 ∈ ω (𝑚 = suc 𝑛 ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
1413exbii 1850 . . 3 (∃𝑚(𝑚 ∈ (ω ∖ 1o) ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ↔ ∃𝑚𝑛 ∈ ω (𝑚 = suc 𝑛 ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
15 df-rex 3074 . . 3 (∃𝑚 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑚(𝑚 ∈ (ω ∖ 1o) ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
16 rexcom4 3271 . . 3 (∃𝑛 ∈ ω ∃𝑚(𝑚 = suc 𝑛 ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ↔ ∃𝑚𝑛 ∈ ω (𝑚 = suc 𝑛 ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
1714, 15, 163bitr4i 302 . 2 (∃𝑚 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑛 ∈ ω ∃𝑚(𝑚 = suc 𝑛 ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
18 vex 3449 . . . . 5 𝑛 ∈ V
1918sucex 7741 . . . 4 suc 𝑛 ∈ V
20 suceq 6383 . . . . . . 7 (𝑚 = suc 𝑛 → suc 𝑚 = suc suc 𝑛)
2120fneq2d 6596 . . . . . 6 (𝑚 = suc 𝑛 → (𝑓 Fn suc 𝑚𝑓 Fn suc suc 𝑛))
22 fveqeq2 6851 . . . . . . 7 (𝑚 = suc 𝑛 → ((𝑓𝑚) = 𝐵 ↔ (𝑓‘suc 𝑛) = 𝐵))
2322anbi2d 629 . . . . . 6 (𝑚 = suc 𝑛 → (((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ↔ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘suc 𝑛) = 𝐵)))
24 raleq 3309 . . . . . 6 (𝑚 = suc 𝑛 → (∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
2521, 23, 243anbi123d 1436 . . . . 5 (𝑚 = suc 𝑛 → ((𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘suc 𝑛) = 𝐵) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
2625exbidv 1924 . . . 4 (𝑚 = suc 𝑛 → (∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘suc 𝑛) = 𝐵) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
2719, 26ceqsexv 3494 . . 3 (∃𝑚(𝑚 = suc 𝑛 ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ↔ ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘suc 𝑛) = 𝐵) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
2827rexbii 3097 . 2 (∃𝑛 ∈ ω ∃𝑚(𝑚 = suc 𝑛 ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ↔ ∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘suc 𝑛) = 𝐵) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
291, 17, 283bitri 296 1 (𝐴t++𝑅𝐵 ↔ ∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘suc 𝑛) = 𝐵) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wral 3064  wrex 3073  cdif 3907  c0 4282   class class class wbr 5105  suc csuc 6319   Fn wfn 6491  cfv 6496  ωcom 7802  1oc1o 8405  t++cttrcl 9643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-ttrcl 9644
This theorem is referenced by:  ttrclss  9656  ttrclse  9663
  Copyright terms: Public domain W3C validator