MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brttrcl2 Structured version   Visualization version   GIF version

Theorem brttrcl2 9667
Description: Characterization of elements of the transitive closure of a relation. (Contributed by Scott Fenton, 24-Aug-2024.)
Assertion
Ref Expression
brttrcl2 (𝐴t++𝑅𝐵 ↔ ∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘suc 𝑛) = 𝐵) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
Distinct variable groups:   𝐴,𝑛,𝑓,𝑎   𝐵,𝑛,𝑓,𝑎   𝑅,𝑛,𝑓,𝑎

Proof of Theorem brttrcl2
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 brttrcl 9666 . 2 (𝐴t++𝑅𝐵 ↔ ∃𝑚 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
2 df-1o 8434 . . . . . . . . 9 1o = suc ∅
32difeq2i 4086 . . . . . . . 8 (ω ∖ 1o) = (ω ∖ suc ∅)
43eleq2i 2820 . . . . . . 7 (𝑚 ∈ (ω ∖ 1o) ↔ 𝑚 ∈ (ω ∖ suc ∅))
5 peano1 7865 . . . . . . . 8 ∅ ∈ ω
6 eldifsucnn 8628 . . . . . . . 8 (∅ ∈ ω → (𝑚 ∈ (ω ∖ suc ∅) ↔ ∃𝑛 ∈ (ω ∖ ∅)𝑚 = suc 𝑛))
75, 6ax-mp 5 . . . . . . 7 (𝑚 ∈ (ω ∖ suc ∅) ↔ ∃𝑛 ∈ (ω ∖ ∅)𝑚 = suc 𝑛)
8 dif0 4341 . . . . . . . 8 (ω ∖ ∅) = ω
98rexeqi 3298 . . . . . . 7 (∃𝑛 ∈ (ω ∖ ∅)𝑚 = suc 𝑛 ↔ ∃𝑛 ∈ ω 𝑚 = suc 𝑛)
104, 7, 93bitri 297 . . . . . 6 (𝑚 ∈ (ω ∖ 1o) ↔ ∃𝑛 ∈ ω 𝑚 = suc 𝑛)
1110anbi1i 624 . . . . 5 ((𝑚 ∈ (ω ∖ 1o) ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ↔ (∃𝑛 ∈ ω 𝑚 = suc 𝑛 ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
12 r19.41v 3167 . . . . 5 (∃𝑛 ∈ ω (𝑚 = suc 𝑛 ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ↔ (∃𝑛 ∈ ω 𝑚 = suc 𝑛 ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
1311, 12bitr4i 278 . . . 4 ((𝑚 ∈ (ω ∖ 1o) ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ↔ ∃𝑛 ∈ ω (𝑚 = suc 𝑛 ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
1413exbii 1848 . . 3 (∃𝑚(𝑚 ∈ (ω ∖ 1o) ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ↔ ∃𝑚𝑛 ∈ ω (𝑚 = suc 𝑛 ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
15 df-rex 3054 . . 3 (∃𝑚 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑚(𝑚 ∈ (ω ∖ 1o) ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
16 rexcom4 3264 . . 3 (∃𝑛 ∈ ω ∃𝑚(𝑚 = suc 𝑛 ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ↔ ∃𝑚𝑛 ∈ ω (𝑚 = suc 𝑛 ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
1714, 15, 163bitr4i 303 . 2 (∃𝑚 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑛 ∈ ω ∃𝑚(𝑚 = suc 𝑛 ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
18 vex 3451 . . . . 5 𝑛 ∈ V
1918sucex 7782 . . . 4 suc 𝑛 ∈ V
20 suceq 6400 . . . . . . 7 (𝑚 = suc 𝑛 → suc 𝑚 = suc suc 𝑛)
2120fneq2d 6612 . . . . . 6 (𝑚 = suc 𝑛 → (𝑓 Fn suc 𝑚𝑓 Fn suc suc 𝑛))
22 fveqeq2 6867 . . . . . . 7 (𝑚 = suc 𝑛 → ((𝑓𝑚) = 𝐵 ↔ (𝑓‘suc 𝑛) = 𝐵))
2322anbi2d 630 . . . . . 6 (𝑚 = suc 𝑛 → (((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ↔ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘suc 𝑛) = 𝐵)))
24 raleq 3296 . . . . . 6 (𝑚 = suc 𝑛 → (∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
2521, 23, 243anbi123d 1438 . . . . 5 (𝑚 = suc 𝑛 → ((𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘suc 𝑛) = 𝐵) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
2625exbidv 1921 . . . 4 (𝑚 = suc 𝑛 → (∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘suc 𝑛) = 𝐵) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
2719, 26ceqsexv 3498 . . 3 (∃𝑚(𝑚 = suc 𝑛 ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ↔ ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘suc 𝑛) = 𝐵) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
2827rexbii 3076 . 2 (∃𝑛 ∈ ω ∃𝑚(𝑚 = suc 𝑛 ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ↔ ∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘suc 𝑛) = 𝐵) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
291, 17, 283bitri 297 1 (𝐴t++𝑅𝐵 ↔ ∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘suc 𝑛) = 𝐵) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  cdif 3911  c0 4296   class class class wbr 5107  suc csuc 6334   Fn wfn 6506  cfv 6511  ωcom 7842  1oc1o 8427  t++cttrcl 9660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-ttrcl 9661
This theorem is referenced by:  ttrclss  9673  ttrclse  9680
  Copyright terms: Public domain W3C validator