Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brttrcl2 Structured version   Visualization version   GIF version

Theorem brttrcl2 33700
Description: Characterization of elements of the transitive closure of a relation. (Contributed by Scott Fenton, 24-Aug-2024.)
Assertion
Ref Expression
brttrcl2 (𝐴t++𝑅𝐵 ↔ ∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘suc 𝑛) = 𝐵) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
Distinct variable groups:   𝐴,𝑛,𝑓,𝑎   𝐵,𝑛,𝑓,𝑎   𝑅,𝑛,𝑓,𝑎

Proof of Theorem brttrcl2
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 brttrcl 33699 . 2 (𝐴t++𝑅𝐵 ↔ ∃𝑚 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
2 df-1o 8267 . . . . . . . . 9 1o = suc ∅
32difeq2i 4050 . . . . . . . 8 (ω ∖ 1o) = (ω ∖ suc ∅)
43eleq2i 2830 . . . . . . 7 (𝑚 ∈ (ω ∖ 1o) ↔ 𝑚 ∈ (ω ∖ suc ∅))
5 peano1 7710 . . . . . . . 8 ∅ ∈ ω
6 eldifsucnn 33597 . . . . . . . 8 (∅ ∈ ω → (𝑚 ∈ (ω ∖ suc ∅) ↔ ∃𝑛 ∈ (ω ∖ ∅)𝑚 = suc 𝑛))
75, 6ax-mp 5 . . . . . . 7 (𝑚 ∈ (ω ∖ suc ∅) ↔ ∃𝑛 ∈ (ω ∖ ∅)𝑚 = suc 𝑛)
8 dif0 4303 . . . . . . . 8 (ω ∖ ∅) = ω
98rexeqi 3338 . . . . . . 7 (∃𝑛 ∈ (ω ∖ ∅)𝑚 = suc 𝑛 ↔ ∃𝑛 ∈ ω 𝑚 = suc 𝑛)
104, 7, 93bitri 296 . . . . . 6 (𝑚 ∈ (ω ∖ 1o) ↔ ∃𝑛 ∈ ω 𝑚 = suc 𝑛)
1110anbi1i 623 . . . . 5 ((𝑚 ∈ (ω ∖ 1o) ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ↔ (∃𝑛 ∈ ω 𝑚 = suc 𝑛 ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
12 r19.41v 3273 . . . . 5 (∃𝑛 ∈ ω (𝑚 = suc 𝑛 ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ↔ (∃𝑛 ∈ ω 𝑚 = suc 𝑛 ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
1311, 12bitr4i 277 . . . 4 ((𝑚 ∈ (ω ∖ 1o) ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ↔ ∃𝑛 ∈ ω (𝑚 = suc 𝑛 ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
1413exbii 1851 . . 3 (∃𝑚(𝑚 ∈ (ω ∖ 1o) ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ↔ ∃𝑚𝑛 ∈ ω (𝑚 = suc 𝑛 ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
15 df-rex 3069 . . 3 (∃𝑚 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑚(𝑚 ∈ (ω ∖ 1o) ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
16 rexcom4 3179 . . 3 (∃𝑛 ∈ ω ∃𝑚(𝑚 = suc 𝑛 ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ↔ ∃𝑚𝑛 ∈ ω (𝑚 = suc 𝑛 ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
1714, 15, 163bitr4i 302 . 2 (∃𝑚 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑛 ∈ ω ∃𝑚(𝑚 = suc 𝑛 ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
18 vex 3426 . . . . 5 𝑛 ∈ V
1918sucex 7633 . . . 4 suc 𝑛 ∈ V
20 suceq 6316 . . . . . . 7 (𝑚 = suc 𝑛 → suc 𝑚 = suc suc 𝑛)
2120fneq2d 6511 . . . . . 6 (𝑚 = suc 𝑛 → (𝑓 Fn suc 𝑚𝑓 Fn suc suc 𝑛))
22 fveqeq2 6765 . . . . . . 7 (𝑚 = suc 𝑛 → ((𝑓𝑚) = 𝐵 ↔ (𝑓‘suc 𝑛) = 𝐵))
2322anbi2d 628 . . . . . 6 (𝑚 = suc 𝑛 → (((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ↔ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘suc 𝑛) = 𝐵)))
24 raleq 3333 . . . . . 6 (𝑚 = suc 𝑛 → (∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
2521, 23, 243anbi123d 1434 . . . . 5 (𝑚 = suc 𝑛 → ((𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘suc 𝑛) = 𝐵) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
2625exbidv 1925 . . . 4 (𝑚 = suc 𝑛 → (∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘suc 𝑛) = 𝐵) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
2719, 26ceqsexv 3469 . . 3 (∃𝑚(𝑚 = suc 𝑛 ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ↔ ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘suc 𝑛) = 𝐵) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
2827rexbii 3177 . 2 (∃𝑛 ∈ ω ∃𝑚(𝑚 = suc 𝑛 ∧ ∃𝑓(𝑓 Fn suc 𝑚 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑚) = 𝐵) ∧ ∀𝑎𝑚 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ↔ ∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘suc 𝑛) = 𝐵) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
291, 17, 283bitri 296 1 (𝐴t++𝑅𝐵 ↔ ∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘suc 𝑛) = 𝐵) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  wral 3063  wrex 3064  cdif 3880  c0 4253   class class class wbr 5070  suc csuc 6253   Fn wfn 6413  cfv 6418  ωcom 7687  1oc1o 8260  t++cttrcl 33693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-ttrcl 33694
This theorem is referenced by:  ttrclss  33706  ttrclse  33713
  Copyright terms: Public domain W3C validator