MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplind Structured version   Visualization version   GIF version

Theorem mplind 22094
Description: Prove a property of polynomials by "structural" induction, under a simplified model of structure which loses the sum of products structure. The commutativity condition is stronger than strictly needed. (Contributed by Stefan O'Rear, 11-Mar-2015.)
Hypotheses
Ref Expression
mplind.sk 𝐾 = (Base‘𝑅)
mplind.sv 𝑉 = (𝐼 mVar 𝑅)
mplind.sy 𝑌 = (𝐼 mPoly 𝑅)
mplind.sp + = (+g𝑌)
mplind.st · = (.r𝑌)
mplind.sc 𝐶 = (algSc‘𝑌)
mplind.sb 𝐵 = (Base‘𝑌)
mplind.p ((𝜑 ∧ (𝑥𝐻𝑦𝐻)) → (𝑥 + 𝑦) ∈ 𝐻)
mplind.t ((𝜑 ∧ (𝑥𝐻𝑦𝐻)) → (𝑥 · 𝑦) ∈ 𝐻)
mplind.s ((𝜑𝑥𝐾) → (𝐶𝑥) ∈ 𝐻)
mplind.v ((𝜑𝑥𝐼) → (𝑉𝑥) ∈ 𝐻)
mplind.x (𝜑𝑋𝐵)
mplind.i (𝜑𝐼𝑊)
mplind.r (𝜑𝑅 ∈ CRing)
Assertion
Ref Expression
mplind (𝜑𝑋𝐻)
Distinct variable groups:   𝑥,𝑦, +   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐼   𝜑,𝑥,𝑦   𝑥,𝐻,𝑦   𝑥,𝐾   𝑥, · ,𝑦   𝑥,𝑉   𝑥,𝑌,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝐼(𝑦)   𝐾(𝑦)   𝑉(𝑦)   𝑊(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem mplind
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . . . . 6 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
2 mplind.i . . . . . 6 (𝜑𝐼𝑊)
3 mplind.r . . . . . 6 (𝜑𝑅 ∈ CRing)
41, 2, 3psrassa 21993 . . . . 5 (𝜑 → (𝐼 mPwSer 𝑅) ∈ AssAlg)
5 inss2 4238 . . . . . 6 (𝐻𝐵) ⊆ 𝐵
6 mplind.sy . . . . . . . 8 𝑌 = (𝐼 mPoly 𝑅)
7 mplind.sb . . . . . . . 8 𝐵 = (Base‘𝑌)
8 crngring 20242 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
93, 8syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Ring)
101, 6, 7, 2, 9mplsubrg 22025 . . . . . . 7 (𝜑𝐵 ∈ (SubRing‘(𝐼 mPwSer 𝑅)))
11 eqid 2737 . . . . . . . 8 (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅))
1211subrgss 20572 . . . . . . 7 (𝐵 ∈ (SubRing‘(𝐼 mPwSer 𝑅)) → 𝐵 ⊆ (Base‘(𝐼 mPwSer 𝑅)))
1310, 12syl 17 . . . . . 6 (𝜑𝐵 ⊆ (Base‘(𝐼 mPwSer 𝑅)))
145, 13sstrid 3995 . . . . 5 (𝜑 → (𝐻𝐵) ⊆ (Base‘(𝐼 mPwSer 𝑅)))
15 mplind.sv . . . . . . . . 9 𝑉 = (𝐼 mVar 𝑅)
166, 15, 7, 2, 9mvrf2 22013 . . . . . . . 8 (𝜑𝑉:𝐼𝐵)
1716ffnd 6737 . . . . . . 7 (𝜑𝑉 Fn 𝐼)
18 mplind.v . . . . . . . 8 ((𝜑𝑥𝐼) → (𝑉𝑥) ∈ 𝐻)
1918ralrimiva 3146 . . . . . . 7 (𝜑 → ∀𝑥𝐼 (𝑉𝑥) ∈ 𝐻)
20 fnfvrnss 7141 . . . . . . 7 ((𝑉 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑉𝑥) ∈ 𝐻) → ran 𝑉𝐻)
2117, 19, 20syl2anc 584 . . . . . 6 (𝜑 → ran 𝑉𝐻)
2216frnd 6744 . . . . . 6 (𝜑 → ran 𝑉𝐵)
2321, 22ssind 4241 . . . . 5 (𝜑 → ran 𝑉 ⊆ (𝐻𝐵))
24 eqid 2737 . . . . . 6 (AlgSpan‘(𝐼 mPwSer 𝑅)) = (AlgSpan‘(𝐼 mPwSer 𝑅))
2524, 11aspss 21897 . . . . 5 (((𝐼 mPwSer 𝑅) ∈ AssAlg ∧ (𝐻𝐵) ⊆ (Base‘(𝐼 mPwSer 𝑅)) ∧ ran 𝑉 ⊆ (𝐻𝐵)) → ((AlgSpan‘(𝐼 mPwSer 𝑅))‘ran 𝑉) ⊆ ((AlgSpan‘(𝐼 mPwSer 𝑅))‘(𝐻𝐵)))
264, 14, 23, 25syl3anc 1373 . . . 4 (𝜑 → ((AlgSpan‘(𝐼 mPwSer 𝑅))‘ran 𝑉) ⊆ ((AlgSpan‘(𝐼 mPwSer 𝑅))‘(𝐻𝐵)))
276, 1, 15, 24, 2, 3mplbas2 22060 . . . . 5 (𝜑 → ((AlgSpan‘(𝐼 mPwSer 𝑅))‘ran 𝑉) = (Base‘𝑌))
2827, 7eqtr4di 2795 . . . 4 (𝜑 → ((AlgSpan‘(𝐼 mPwSer 𝑅))‘ran 𝑉) = 𝐵)
295a1i 11 . . . . . . . 8 (𝜑 → (𝐻𝐵) ⊆ 𝐵)
306mplassa 22042 . . . . . . . . . . . . . 14 ((𝐼𝑊𝑅 ∈ CRing) → 𝑌 ∈ AssAlg)
312, 3, 30syl2anc 584 . . . . . . . . . . . . 13 (𝜑𝑌 ∈ AssAlg)
32 mplind.sc . . . . . . . . . . . . . 14 𝐶 = (algSc‘𝑌)
33 eqid 2737 . . . . . . . . . . . . . 14 (Scalar‘𝑌) = (Scalar‘𝑌)
3432, 33asclrhm 21910 . . . . . . . . . . . . 13 (𝑌 ∈ AssAlg → 𝐶 ∈ ((Scalar‘𝑌) RingHom 𝑌))
3531, 34syl 17 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ((Scalar‘𝑌) RingHom 𝑌))
36 eqid 2737 . . . . . . . . . . . . 13 (1r‘(Scalar‘𝑌)) = (1r‘(Scalar‘𝑌))
37 eqid 2737 . . . . . . . . . . . . 13 (1r𝑌) = (1r𝑌)
3836, 37rhm1 20489 . . . . . . . . . . . 12 (𝐶 ∈ ((Scalar‘𝑌) RingHom 𝑌) → (𝐶‘(1r‘(Scalar‘𝑌))) = (1r𝑌))
3935, 38syl 17 . . . . . . . . . . 11 (𝜑 → (𝐶‘(1r‘(Scalar‘𝑌))) = (1r𝑌))
40 fveq2 6906 . . . . . . . . . . . . 13 (𝑥 = (1r‘(Scalar‘𝑌)) → (𝐶𝑥) = (𝐶‘(1r‘(Scalar‘𝑌))))
4140eleq1d 2826 . . . . . . . . . . . 12 (𝑥 = (1r‘(Scalar‘𝑌)) → ((𝐶𝑥) ∈ 𝐻 ↔ (𝐶‘(1r‘(Scalar‘𝑌))) ∈ 𝐻))
42 mplind.s . . . . . . . . . . . . 13 ((𝜑𝑥𝐾) → (𝐶𝑥) ∈ 𝐻)
4342ralrimiva 3146 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝐾 (𝐶𝑥) ∈ 𝐻)
446, 2, 3mplsca 22033 . . . . . . . . . . . . . . 15 (𝜑𝑅 = (Scalar‘𝑌))
4544, 9eqeltrrd 2842 . . . . . . . . . . . . . 14 (𝜑 → (Scalar‘𝑌) ∈ Ring)
46 eqid 2737 . . . . . . . . . . . . . . 15 (Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌))
4746, 36ringidcl 20262 . . . . . . . . . . . . . 14 ((Scalar‘𝑌) ∈ Ring → (1r‘(Scalar‘𝑌)) ∈ (Base‘(Scalar‘𝑌)))
4845, 47syl 17 . . . . . . . . . . . . 13 (𝜑 → (1r‘(Scalar‘𝑌)) ∈ (Base‘(Scalar‘𝑌)))
49 mplind.sk . . . . . . . . . . . . . 14 𝐾 = (Base‘𝑅)
5044fveq2d 6910 . . . . . . . . . . . . . 14 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑌)))
5149, 50eqtrid 2789 . . . . . . . . . . . . 13 (𝜑𝐾 = (Base‘(Scalar‘𝑌)))
5248, 51eleqtrrd 2844 . . . . . . . . . . . 12 (𝜑 → (1r‘(Scalar‘𝑌)) ∈ 𝐾)
5341, 43, 52rspcdva 3623 . . . . . . . . . . 11 (𝜑 → (𝐶‘(1r‘(Scalar‘𝑌))) ∈ 𝐻)
5439, 53eqeltrrd 2842 . . . . . . . . . 10 (𝜑 → (1r𝑌) ∈ 𝐻)
55 assaring 21881 . . . . . . . . . . . 12 (𝑌 ∈ AssAlg → 𝑌 ∈ Ring)
5631, 55syl 17 . . . . . . . . . . 11 (𝜑𝑌 ∈ Ring)
577, 37ringidcl 20262 . . . . . . . . . . 11 (𝑌 ∈ Ring → (1r𝑌) ∈ 𝐵)
5856, 57syl 17 . . . . . . . . . 10 (𝜑 → (1r𝑌) ∈ 𝐵)
5954, 58elind 4200 . . . . . . . . 9 (𝜑 → (1r𝑌) ∈ (𝐻𝐵))
6059ne0d 4342 . . . . . . . 8 (𝜑 → (𝐻𝐵) ≠ ∅)
61 elinel1 4201 . . . . . . . . . . . . . . 15 (𝑧 ∈ (𝐻𝐵) → 𝑧𝐻)
62 elinel1 4201 . . . . . . . . . . . . . . 15 (𝑤 ∈ (𝐻𝐵) → 𝑤𝐻)
6361, 62anim12i 613 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝐻𝐵) ∧ 𝑤 ∈ (𝐻𝐵)) → (𝑧𝐻𝑤𝐻))
64 mplind.p . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝐻𝑦𝐻)) → (𝑥 + 𝑦) ∈ 𝐻)
6564caovclg 7625 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝐻𝑤𝐻)) → (𝑧 + 𝑤) ∈ 𝐻)
6663, 65sylan2 593 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧 ∈ (𝐻𝐵) ∧ 𝑤 ∈ (𝐻𝐵))) → (𝑧 + 𝑤) ∈ 𝐻)
67 assalmod 21880 . . . . . . . . . . . . . . . . 17 (𝑌 ∈ AssAlg → 𝑌 ∈ LMod)
6831, 67syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑌 ∈ LMod)
69 lmodgrp 20865 . . . . . . . . . . . . . . . 16 (𝑌 ∈ LMod → 𝑌 ∈ Grp)
7068, 69syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑌 ∈ Grp)
7170adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧 ∈ (𝐻𝐵) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑌 ∈ Grp)
72 simprl 771 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑧 ∈ (𝐻𝐵) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑧 ∈ (𝐻𝐵))
7372elin2d 4205 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧 ∈ (𝐻𝐵) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑧𝐵)
74 simprr 773 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑧 ∈ (𝐻𝐵) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑤 ∈ (𝐻𝐵))
7574elin2d 4205 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧 ∈ (𝐻𝐵) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑤𝐵)
76 mplind.sp . . . . . . . . . . . . . . 15 + = (+g𝑌)
777, 76grpcl 18959 . . . . . . . . . . . . . 14 ((𝑌 ∈ Grp ∧ 𝑧𝐵𝑤𝐵) → (𝑧 + 𝑤) ∈ 𝐵)
7871, 73, 75, 77syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧 ∈ (𝐻𝐵) ∧ 𝑤 ∈ (𝐻𝐵))) → (𝑧 + 𝑤) ∈ 𝐵)
7966, 78elind 4200 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧 ∈ (𝐻𝐵) ∧ 𝑤 ∈ (𝐻𝐵))) → (𝑧 + 𝑤) ∈ (𝐻𝐵))
8079anassrs 467 . . . . . . . . . . 11 (((𝜑𝑧 ∈ (𝐻𝐵)) ∧ 𝑤 ∈ (𝐻𝐵)) → (𝑧 + 𝑤) ∈ (𝐻𝐵))
8180ralrimiva 3146 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐻𝐵)) → ∀𝑤 ∈ (𝐻𝐵)(𝑧 + 𝑤) ∈ (𝐻𝐵))
82 mplind.st . . . . . . . . . . . . 13 · = (.r𝑌)
83 eqid 2737 . . . . . . . . . . . . 13 (invg𝑌) = (invg𝑌)
8456adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐻𝐵)) → 𝑌 ∈ Ring)
85 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐻𝐵)) → 𝑧 ∈ (𝐻𝐵))
8685elin2d 4205 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐻𝐵)) → 𝑧𝐵)
877, 82, 37, 83, 84, 86ringnegl 20299 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐻𝐵)) → (((invg𝑌)‘(1r𝑌)) · 𝑧) = ((invg𝑌)‘𝑧))
88 simpl 482 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐻𝐵)) → 𝜑)
89 rhmghm 20484 . . . . . . . . . . . . . . . . . 18 (𝐶 ∈ ((Scalar‘𝑌) RingHom 𝑌) → 𝐶 ∈ ((Scalar‘𝑌) GrpHom 𝑌))
9035, 89syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐶 ∈ ((Scalar‘𝑌) GrpHom 𝑌))
91 eqid 2737 . . . . . . . . . . . . . . . . . 18 (invg‘(Scalar‘𝑌)) = (invg‘(Scalar‘𝑌))
9246, 91, 83ghminv 19241 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ ((Scalar‘𝑌) GrpHom 𝑌) ∧ (1r‘(Scalar‘𝑌)) ∈ (Base‘(Scalar‘𝑌))) → (𝐶‘((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌)))) = ((invg𝑌)‘(𝐶‘(1r‘(Scalar‘𝑌)))))
9390, 48, 92syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐶‘((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌)))) = ((invg𝑌)‘(𝐶‘(1r‘(Scalar‘𝑌)))))
9439fveq2d 6910 . . . . . . . . . . . . . . . 16 (𝜑 → ((invg𝑌)‘(𝐶‘(1r‘(Scalar‘𝑌)))) = ((invg𝑌)‘(1r𝑌)))
9593, 94eqtrd 2777 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶‘((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌)))) = ((invg𝑌)‘(1r𝑌)))
96 fveq2 6906 . . . . . . . . . . . . . . . . 17 (𝑥 = ((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌))) → (𝐶𝑥) = (𝐶‘((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌)))))
9796eleq1d 2826 . . . . . . . . . . . . . . . 16 (𝑥 = ((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌))) → ((𝐶𝑥) ∈ 𝐻 ↔ (𝐶‘((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌)))) ∈ 𝐻))
98 ringgrp 20235 . . . . . . . . . . . . . . . . . . 19 ((Scalar‘𝑌) ∈ Ring → (Scalar‘𝑌) ∈ Grp)
9945, 98syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (Scalar‘𝑌) ∈ Grp)
10046, 91grpinvcl 19005 . . . . . . . . . . . . . . . . . 18 (((Scalar‘𝑌) ∈ Grp ∧ (1r‘(Scalar‘𝑌)) ∈ (Base‘(Scalar‘𝑌))) → ((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌))) ∈ (Base‘(Scalar‘𝑌)))
10199, 48, 100syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝜑 → ((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌))) ∈ (Base‘(Scalar‘𝑌)))
102101, 51eleqtrrd 2844 . . . . . . . . . . . . . . . 16 (𝜑 → ((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌))) ∈ 𝐾)
10397, 43, 102rspcdva 3623 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶‘((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌)))) ∈ 𝐻)
10495, 103eqeltrrd 2842 . . . . . . . . . . . . . 14 (𝜑 → ((invg𝑌)‘(1r𝑌)) ∈ 𝐻)
105104adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐻𝐵)) → ((invg𝑌)‘(1r𝑌)) ∈ 𝐻)
10685elin1d 4204 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐻𝐵)) → 𝑧𝐻)
107 mplind.t . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝐻𝑦𝐻)) → (𝑥 · 𝑦) ∈ 𝐻)
108107caovclg 7625 . . . . . . . . . . . . 13 ((𝜑 ∧ (((invg𝑌)‘(1r𝑌)) ∈ 𝐻𝑧𝐻)) → (((invg𝑌)‘(1r𝑌)) · 𝑧) ∈ 𝐻)
10988, 105, 106, 108syl12anc 837 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐻𝐵)) → (((invg𝑌)‘(1r𝑌)) · 𝑧) ∈ 𝐻)
11087, 109eqeltrrd 2842 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐻𝐵)) → ((invg𝑌)‘𝑧) ∈ 𝐻)
11170adantr 480 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐻𝐵)) → 𝑌 ∈ Grp)
1127, 83grpinvcl 19005 . . . . . . . . . . . 12 ((𝑌 ∈ Grp ∧ 𝑧𝐵) → ((invg𝑌)‘𝑧) ∈ 𝐵)
113111, 86, 112syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐻𝐵)) → ((invg𝑌)‘𝑧) ∈ 𝐵)
114110, 113elind 4200 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐻𝐵)) → ((invg𝑌)‘𝑧) ∈ (𝐻𝐵))
11581, 114jca 511 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐻𝐵)) → (∀𝑤 ∈ (𝐻𝐵)(𝑧 + 𝑤) ∈ (𝐻𝐵) ∧ ((invg𝑌)‘𝑧) ∈ (𝐻𝐵)))
116115ralrimiva 3146 . . . . . . . 8 (𝜑 → ∀𝑧 ∈ (𝐻𝐵)(∀𝑤 ∈ (𝐻𝐵)(𝑧 + 𝑤) ∈ (𝐻𝐵) ∧ ((invg𝑌)‘𝑧) ∈ (𝐻𝐵)))
1177, 76, 83issubg2 19159 . . . . . . . . 9 (𝑌 ∈ Grp → ((𝐻𝐵) ∈ (SubGrp‘𝑌) ↔ ((𝐻𝐵) ⊆ 𝐵 ∧ (𝐻𝐵) ≠ ∅ ∧ ∀𝑧 ∈ (𝐻𝐵)(∀𝑤 ∈ (𝐻𝐵)(𝑧 + 𝑤) ∈ (𝐻𝐵) ∧ ((invg𝑌)‘𝑧) ∈ (𝐻𝐵)))))
11870, 117syl 17 . . . . . . . 8 (𝜑 → ((𝐻𝐵) ∈ (SubGrp‘𝑌) ↔ ((𝐻𝐵) ⊆ 𝐵 ∧ (𝐻𝐵) ≠ ∅ ∧ ∀𝑧 ∈ (𝐻𝐵)(∀𝑤 ∈ (𝐻𝐵)(𝑧 + 𝑤) ∈ (𝐻𝐵) ∧ ((invg𝑌)‘𝑧) ∈ (𝐻𝐵)))))
11929, 60, 116, 118mpbir3and 1343 . . . . . . 7 (𝜑 → (𝐻𝐵) ∈ (SubGrp‘𝑌))
120 elinel1 4201 . . . . . . . . . . 11 (𝑥 ∈ (𝐻𝐵) → 𝑥𝐻)
121 elinel1 4201 . . . . . . . . . . 11 (𝑦 ∈ (𝐻𝐵) → 𝑦𝐻)
122120, 121anim12i 613 . . . . . . . . . 10 ((𝑥 ∈ (𝐻𝐵) ∧ 𝑦 ∈ (𝐻𝐵)) → (𝑥𝐻𝑦𝐻))
123122, 107sylan2 593 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝐻𝐵) ∧ 𝑦 ∈ (𝐻𝐵))) → (𝑥 · 𝑦) ∈ 𝐻)
12456adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (𝐻𝐵) ∧ 𝑦 ∈ (𝐻𝐵))) → 𝑌 ∈ Ring)
125 simprl 771 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (𝐻𝐵) ∧ 𝑦 ∈ (𝐻𝐵))) → 𝑥 ∈ (𝐻𝐵))
126125elin2d 4205 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (𝐻𝐵) ∧ 𝑦 ∈ (𝐻𝐵))) → 𝑥𝐵)
127 simprr 773 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (𝐻𝐵) ∧ 𝑦 ∈ (𝐻𝐵))) → 𝑦 ∈ (𝐻𝐵))
128127elin2d 4205 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (𝐻𝐵) ∧ 𝑦 ∈ (𝐻𝐵))) → 𝑦𝐵)
1297, 82ringcl 20247 . . . . . . . . . 10 ((𝑌 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → (𝑥 · 𝑦) ∈ 𝐵)
130124, 126, 128, 129syl3anc 1373 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝐻𝐵) ∧ 𝑦 ∈ (𝐻𝐵))) → (𝑥 · 𝑦) ∈ 𝐵)
131123, 130elind 4200 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝐻𝐵) ∧ 𝑦 ∈ (𝐻𝐵))) → (𝑥 · 𝑦) ∈ (𝐻𝐵))
132131ralrimivva 3202 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (𝐻𝐵)∀𝑦 ∈ (𝐻𝐵)(𝑥 · 𝑦) ∈ (𝐻𝐵))
1337, 37, 82issubrg2 20592 . . . . . . . 8 (𝑌 ∈ Ring → ((𝐻𝐵) ∈ (SubRing‘𝑌) ↔ ((𝐻𝐵) ∈ (SubGrp‘𝑌) ∧ (1r𝑌) ∈ (𝐻𝐵) ∧ ∀𝑥 ∈ (𝐻𝐵)∀𝑦 ∈ (𝐻𝐵)(𝑥 · 𝑦) ∈ (𝐻𝐵))))
13456, 133syl 17 . . . . . . 7 (𝜑 → ((𝐻𝐵) ∈ (SubRing‘𝑌) ↔ ((𝐻𝐵) ∈ (SubGrp‘𝑌) ∧ (1r𝑌) ∈ (𝐻𝐵) ∧ ∀𝑥 ∈ (𝐻𝐵)∀𝑦 ∈ (𝐻𝐵)(𝑥 · 𝑦) ∈ (𝐻𝐵))))
135119, 59, 132, 134mpbir3and 1343 . . . . . 6 (𝜑 → (𝐻𝐵) ∈ (SubRing‘𝑌))
1366, 1, 7mplval2 22016 . . . . . . . 8 𝑌 = ((𝐼 mPwSer 𝑅) ↾s 𝐵)
137136subsubrg 20598 . . . . . . 7 (𝐵 ∈ (SubRing‘(𝐼 mPwSer 𝑅)) → ((𝐻𝐵) ∈ (SubRing‘𝑌) ↔ ((𝐻𝐵) ∈ (SubRing‘(𝐼 mPwSer 𝑅)) ∧ (𝐻𝐵) ⊆ 𝐵)))
138137simprbda 498 . . . . . 6 ((𝐵 ∈ (SubRing‘(𝐼 mPwSer 𝑅)) ∧ (𝐻𝐵) ∈ (SubRing‘𝑌)) → (𝐻𝐵) ∈ (SubRing‘(𝐼 mPwSer 𝑅)))
13910, 135, 138syl2anc 584 . . . . 5 (𝜑 → (𝐻𝐵) ∈ (SubRing‘(𝐼 mPwSer 𝑅)))
140 assalmod 21880 . . . . . . 7 ((𝐼 mPwSer 𝑅) ∈ AssAlg → (𝐼 mPwSer 𝑅) ∈ LMod)
1414, 140syl 17 . . . . . 6 (𝜑 → (𝐼 mPwSer 𝑅) ∈ LMod)
1421, 6, 7, 2, 9mpllss 22023 . . . . . 6 (𝜑𝐵 ∈ (LSubSp‘(𝐼 mPwSer 𝑅)))
14331adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑌 ∈ AssAlg)
144 simprl 771 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑧 ∈ (Base‘(Scalar‘𝑌)))
145 simprr 773 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑤 ∈ (𝐻𝐵))
146145elin2d 4205 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑤𝐵)
147 eqid 2737 . . . . . . . . . . . 12 ( ·𝑠𝑌) = ( ·𝑠𝑌)
14832, 33, 46, 7, 82, 147asclmul1 21906 . . . . . . . . . . 11 ((𝑌 ∈ AssAlg ∧ 𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤𝐵) → ((𝐶𝑧) · 𝑤) = (𝑧( ·𝑠𝑌)𝑤))
149143, 144, 146, 148syl3anc 1373 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → ((𝐶𝑧) · 𝑤) = (𝑧( ·𝑠𝑌)𝑤))
150 fveq2 6906 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝐶𝑥) = (𝐶𝑧))
151150eleq1d 2826 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → ((𝐶𝑥) ∈ 𝐻 ↔ (𝐶𝑧) ∈ 𝐻))
15243adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → ∀𝑥𝐾 (𝐶𝑥) ∈ 𝐻)
15351adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝐾 = (Base‘(Scalar‘𝑌)))
154144, 153eleqtrrd 2844 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑧𝐾)
155151, 152, 154rspcdva 3623 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → (𝐶𝑧) ∈ 𝐻)
156145elin1d 4204 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑤𝐻)
157155, 156jca 511 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → ((𝐶𝑧) ∈ 𝐻𝑤𝐻))
158107caovclg 7625 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐶𝑧) ∈ 𝐻𝑤𝐻)) → ((𝐶𝑧) · 𝑤) ∈ 𝐻)
159157, 158syldan 591 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → ((𝐶𝑧) · 𝑤) ∈ 𝐻)
160149, 159eqeltrrd 2842 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → (𝑧( ·𝑠𝑌)𝑤) ∈ 𝐻)
16168adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑌 ∈ LMod)
1627, 33, 147, 46lmodvscl 20876 . . . . . . . . . 10 ((𝑌 ∈ LMod ∧ 𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤𝐵) → (𝑧( ·𝑠𝑌)𝑤) ∈ 𝐵)
163161, 144, 146, 162syl3anc 1373 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → (𝑧( ·𝑠𝑌)𝑤) ∈ 𝐵)
164160, 163elind 4200 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → (𝑧( ·𝑠𝑌)𝑤) ∈ (𝐻𝐵))
165164ralrimivva 3202 . . . . . . 7 (𝜑 → ∀𝑧 ∈ (Base‘(Scalar‘𝑌))∀𝑤 ∈ (𝐻𝐵)(𝑧( ·𝑠𝑌)𝑤) ∈ (𝐻𝐵))
166 eqid 2737 . . . . . . . . 9 (LSubSp‘𝑌) = (LSubSp‘𝑌)
16733, 46, 7, 147, 166islss4 20960 . . . . . . . 8 (𝑌 ∈ LMod → ((𝐻𝐵) ∈ (LSubSp‘𝑌) ↔ ((𝐻𝐵) ∈ (SubGrp‘𝑌) ∧ ∀𝑧 ∈ (Base‘(Scalar‘𝑌))∀𝑤 ∈ (𝐻𝐵)(𝑧( ·𝑠𝑌)𝑤) ∈ (𝐻𝐵))))
16868, 167syl 17 . . . . . . 7 (𝜑 → ((𝐻𝐵) ∈ (LSubSp‘𝑌) ↔ ((𝐻𝐵) ∈ (SubGrp‘𝑌) ∧ ∀𝑧 ∈ (Base‘(Scalar‘𝑌))∀𝑤 ∈ (𝐻𝐵)(𝑧( ·𝑠𝑌)𝑤) ∈ (𝐻𝐵))))
169119, 165, 168mpbir2and 713 . . . . . 6 (𝜑 → (𝐻𝐵) ∈ (LSubSp‘𝑌))
170 eqid 2737 . . . . . . . 8 (LSubSp‘(𝐼 mPwSer 𝑅)) = (LSubSp‘(𝐼 mPwSer 𝑅))
171136, 170, 166lsslss 20959 . . . . . . 7 (((𝐼 mPwSer 𝑅) ∈ LMod ∧ 𝐵 ∈ (LSubSp‘(𝐼 mPwSer 𝑅))) → ((𝐻𝐵) ∈ (LSubSp‘𝑌) ↔ ((𝐻𝐵) ∈ (LSubSp‘(𝐼 mPwSer 𝑅)) ∧ (𝐻𝐵) ⊆ 𝐵)))
172171simprbda 498 . . . . . 6 ((((𝐼 mPwSer 𝑅) ∈ LMod ∧ 𝐵 ∈ (LSubSp‘(𝐼 mPwSer 𝑅))) ∧ (𝐻𝐵) ∈ (LSubSp‘𝑌)) → (𝐻𝐵) ∈ (LSubSp‘(𝐼 mPwSer 𝑅)))
173141, 142, 169, 172syl21anc 838 . . . . 5 (𝜑 → (𝐻𝐵) ∈ (LSubSp‘(𝐼 mPwSer 𝑅)))
17424, 11, 170aspid 21895 . . . . 5 (((𝐼 mPwSer 𝑅) ∈ AssAlg ∧ (𝐻𝐵) ∈ (SubRing‘(𝐼 mPwSer 𝑅)) ∧ (𝐻𝐵) ∈ (LSubSp‘(𝐼 mPwSer 𝑅))) → ((AlgSpan‘(𝐼 mPwSer 𝑅))‘(𝐻𝐵)) = (𝐻𝐵))
1754, 139, 173, 174syl3anc 1373 . . . 4 (𝜑 → ((AlgSpan‘(𝐼 mPwSer 𝑅))‘(𝐻𝐵)) = (𝐻𝐵))
17626, 28, 1753sstr3d 4038 . . 3 (𝜑𝐵 ⊆ (𝐻𝐵))
177 mplind.x . . 3 (𝜑𝑋𝐵)
178176, 177sseldd 3984 . 2 (𝜑𝑋 ∈ (𝐻𝐵))
179178elin1d 4204 1 (𝜑𝑋𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061  cin 3950  wss 3951  c0 4333  ran crn 5686   Fn wfn 6556  cfv 6561  (class class class)co 7431  Basecbs 17247  +gcplusg 17297  .rcmulr 17298  Scalarcsca 17300   ·𝑠 cvsca 17301  Grpcgrp 18951  invgcminusg 18952  SubGrpcsubg 19138   GrpHom cghm 19230  1rcur 20178  Ringcrg 20230  CRingccrg 20231   RingHom crh 20469  SubRingcsubrg 20569  LModclmod 20858  LSubSpclss 20929  AssAlgcasa 21870  AlgSpancasp 21871  algSccascl 21872   mPwSer cmps 21924   mVar cmvr 21925   mPoly cmpl 21926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-hom 17321  df-cco 17322  df-0g 17486  df-gsum 17487  df-prds 17492  df-pws 17494  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-ghm 19231  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-srg 20184  df-ring 20232  df-cring 20233  df-rhm 20472  df-subrng 20546  df-subrg 20570  df-lmod 20860  df-lss 20930  df-assa 21873  df-asp 21874  df-ascl 21875  df-psr 21929  df-mvr 21930  df-mpl 21931
This theorem is referenced by:  mpfind  22131
  Copyright terms: Public domain W3C validator