MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplind Structured version   Visualization version   GIF version

Theorem mplind 21478
Description: Prove a property of polynomials by "structural" induction, under a simplified model of structure which loses the sum of products structure. The commutativity condition is stronger than strictly needed. (Contributed by Stefan O'Rear, 11-Mar-2015.)
Hypotheses
Ref Expression
mplind.sk 𝐾 = (Base‘𝑅)
mplind.sv 𝑉 = (𝐼 mVar 𝑅)
mplind.sy 𝑌 = (𝐼 mPoly 𝑅)
mplind.sp + = (+g𝑌)
mplind.st · = (.r𝑌)
mplind.sc 𝐶 = (algSc‘𝑌)
mplind.sb 𝐵 = (Base‘𝑌)
mplind.p ((𝜑 ∧ (𝑥𝐻𝑦𝐻)) → (𝑥 + 𝑦) ∈ 𝐻)
mplind.t ((𝜑 ∧ (𝑥𝐻𝑦𝐻)) → (𝑥 · 𝑦) ∈ 𝐻)
mplind.s ((𝜑𝑥𝐾) → (𝐶𝑥) ∈ 𝐻)
mplind.v ((𝜑𝑥𝐼) → (𝑉𝑥) ∈ 𝐻)
mplind.x (𝜑𝑋𝐵)
mplind.i (𝜑𝐼𝑊)
mplind.r (𝜑𝑅 ∈ CRing)
Assertion
Ref Expression
mplind (𝜑𝑋𝐻)
Distinct variable groups:   𝑥,𝑦, +   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐼   𝜑,𝑥,𝑦   𝑥,𝐻,𝑦   𝑥,𝐾   𝑥, · ,𝑦   𝑥,𝑉   𝑥,𝑌,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝐼(𝑦)   𝐾(𝑦)   𝑉(𝑦)   𝑊(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem mplind
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . . . 6 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
2 mplind.i . . . . . 6 (𝜑𝐼𝑊)
3 mplind.r . . . . . 6 (𝜑𝑅 ∈ CRing)
41, 2, 3psrassa 21383 . . . . 5 (𝜑 → (𝐼 mPwSer 𝑅) ∈ AssAlg)
5 inss2 4189 . . . . . 6 (𝐻𝐵) ⊆ 𝐵
6 mplind.sy . . . . . . . 8 𝑌 = (𝐼 mPoly 𝑅)
7 mplind.sb . . . . . . . 8 𝐵 = (Base‘𝑌)
8 crngring 19976 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
93, 8syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Ring)
101, 6, 7, 2, 9mplsubrg 21411 . . . . . . 7 (𝜑𝐵 ∈ (SubRing‘(𝐼 mPwSer 𝑅)))
11 eqid 2736 . . . . . . . 8 (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅))
1211subrgss 20223 . . . . . . 7 (𝐵 ∈ (SubRing‘(𝐼 mPwSer 𝑅)) → 𝐵 ⊆ (Base‘(𝐼 mPwSer 𝑅)))
1310, 12syl 17 . . . . . 6 (𝜑𝐵 ⊆ (Base‘(𝐼 mPwSer 𝑅)))
145, 13sstrid 3955 . . . . 5 (𝜑 → (𝐻𝐵) ⊆ (Base‘(𝐼 mPwSer 𝑅)))
15 mplind.sv . . . . . . . . 9 𝑉 = (𝐼 mVar 𝑅)
166, 15, 7, 2, 9mvrf2 21468 . . . . . . . 8 (𝜑𝑉:𝐼𝐵)
1716ffnd 6669 . . . . . . 7 (𝜑𝑉 Fn 𝐼)
18 mplind.v . . . . . . . 8 ((𝜑𝑥𝐼) → (𝑉𝑥) ∈ 𝐻)
1918ralrimiva 3143 . . . . . . 7 (𝜑 → ∀𝑥𝐼 (𝑉𝑥) ∈ 𝐻)
20 fnfvrnss 7068 . . . . . . 7 ((𝑉 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑉𝑥) ∈ 𝐻) → ran 𝑉𝐻)
2117, 19, 20syl2anc 584 . . . . . 6 (𝜑 → ran 𝑉𝐻)
2216frnd 6676 . . . . . 6 (𝜑 → ran 𝑉𝐵)
2321, 22ssind 4192 . . . . 5 (𝜑 → ran 𝑉 ⊆ (𝐻𝐵))
24 eqid 2736 . . . . . 6 (AlgSpan‘(𝐼 mPwSer 𝑅)) = (AlgSpan‘(𝐼 mPwSer 𝑅))
2524, 11aspss 21280 . . . . 5 (((𝐼 mPwSer 𝑅) ∈ AssAlg ∧ (𝐻𝐵) ⊆ (Base‘(𝐼 mPwSer 𝑅)) ∧ ran 𝑉 ⊆ (𝐻𝐵)) → ((AlgSpan‘(𝐼 mPwSer 𝑅))‘ran 𝑉) ⊆ ((AlgSpan‘(𝐼 mPwSer 𝑅))‘(𝐻𝐵)))
264, 14, 23, 25syl3anc 1371 . . . 4 (𝜑 → ((AlgSpan‘(𝐼 mPwSer 𝑅))‘ran 𝑉) ⊆ ((AlgSpan‘(𝐼 mPwSer 𝑅))‘(𝐻𝐵)))
276, 1, 15, 24, 2, 3mplbas2 21443 . . . . 5 (𝜑 → ((AlgSpan‘(𝐼 mPwSer 𝑅))‘ran 𝑉) = (Base‘𝑌))
2827, 7eqtr4di 2794 . . . 4 (𝜑 → ((AlgSpan‘(𝐼 mPwSer 𝑅))‘ran 𝑉) = 𝐵)
295a1i 11 . . . . . . . 8 (𝜑 → (𝐻𝐵) ⊆ 𝐵)
306mplassa 21427 . . . . . . . . . . . . . 14 ((𝐼𝑊𝑅 ∈ CRing) → 𝑌 ∈ AssAlg)
312, 3, 30syl2anc 584 . . . . . . . . . . . . 13 (𝜑𝑌 ∈ AssAlg)
32 mplind.sc . . . . . . . . . . . . . 14 𝐶 = (algSc‘𝑌)
33 eqid 2736 . . . . . . . . . . . . . 14 (Scalar‘𝑌) = (Scalar‘𝑌)
3432, 33asclrhm 21293 . . . . . . . . . . . . 13 (𝑌 ∈ AssAlg → 𝐶 ∈ ((Scalar‘𝑌) RingHom 𝑌))
3531, 34syl 17 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ((Scalar‘𝑌) RingHom 𝑌))
36 eqid 2736 . . . . . . . . . . . . 13 (1r‘(Scalar‘𝑌)) = (1r‘(Scalar‘𝑌))
37 eqid 2736 . . . . . . . . . . . . 13 (1r𝑌) = (1r𝑌)
3836, 37rhm1 20162 . . . . . . . . . . . 12 (𝐶 ∈ ((Scalar‘𝑌) RingHom 𝑌) → (𝐶‘(1r‘(Scalar‘𝑌))) = (1r𝑌))
3935, 38syl 17 . . . . . . . . . . 11 (𝜑 → (𝐶‘(1r‘(Scalar‘𝑌))) = (1r𝑌))
40 fveq2 6842 . . . . . . . . . . . . 13 (𝑥 = (1r‘(Scalar‘𝑌)) → (𝐶𝑥) = (𝐶‘(1r‘(Scalar‘𝑌))))
4140eleq1d 2822 . . . . . . . . . . . 12 (𝑥 = (1r‘(Scalar‘𝑌)) → ((𝐶𝑥) ∈ 𝐻 ↔ (𝐶‘(1r‘(Scalar‘𝑌))) ∈ 𝐻))
42 mplind.s . . . . . . . . . . . . 13 ((𝜑𝑥𝐾) → (𝐶𝑥) ∈ 𝐻)
4342ralrimiva 3143 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝐾 (𝐶𝑥) ∈ 𝐻)
446, 2, 3mplsca 21417 . . . . . . . . . . . . . . 15 (𝜑𝑅 = (Scalar‘𝑌))
4544, 9eqeltrrd 2839 . . . . . . . . . . . . . 14 (𝜑 → (Scalar‘𝑌) ∈ Ring)
46 eqid 2736 . . . . . . . . . . . . . . 15 (Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌))
4746, 36ringidcl 19989 . . . . . . . . . . . . . 14 ((Scalar‘𝑌) ∈ Ring → (1r‘(Scalar‘𝑌)) ∈ (Base‘(Scalar‘𝑌)))
4845, 47syl 17 . . . . . . . . . . . . 13 (𝜑 → (1r‘(Scalar‘𝑌)) ∈ (Base‘(Scalar‘𝑌)))
49 mplind.sk . . . . . . . . . . . . . 14 𝐾 = (Base‘𝑅)
5044fveq2d 6846 . . . . . . . . . . . . . 14 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑌)))
5149, 50eqtrid 2788 . . . . . . . . . . . . 13 (𝜑𝐾 = (Base‘(Scalar‘𝑌)))
5248, 51eleqtrrd 2841 . . . . . . . . . . . 12 (𝜑 → (1r‘(Scalar‘𝑌)) ∈ 𝐾)
5341, 43, 52rspcdva 3582 . . . . . . . . . . 11 (𝜑 → (𝐶‘(1r‘(Scalar‘𝑌))) ∈ 𝐻)
5439, 53eqeltrrd 2839 . . . . . . . . . 10 (𝜑 → (1r𝑌) ∈ 𝐻)
55 assaring 21267 . . . . . . . . . . . 12 (𝑌 ∈ AssAlg → 𝑌 ∈ Ring)
5631, 55syl 17 . . . . . . . . . . 11 (𝜑𝑌 ∈ Ring)
577, 37ringidcl 19989 . . . . . . . . . . 11 (𝑌 ∈ Ring → (1r𝑌) ∈ 𝐵)
5856, 57syl 17 . . . . . . . . . 10 (𝜑 → (1r𝑌) ∈ 𝐵)
5954, 58elind 4154 . . . . . . . . 9 (𝜑 → (1r𝑌) ∈ (𝐻𝐵))
6059ne0d 4295 . . . . . . . 8 (𝜑 → (𝐻𝐵) ≠ ∅)
61 elinel1 4155 . . . . . . . . . . . . . . 15 (𝑧 ∈ (𝐻𝐵) → 𝑧𝐻)
62 elinel1 4155 . . . . . . . . . . . . . . 15 (𝑤 ∈ (𝐻𝐵) → 𝑤𝐻)
6361, 62anim12i 613 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝐻𝐵) ∧ 𝑤 ∈ (𝐻𝐵)) → (𝑧𝐻𝑤𝐻))
64 mplind.p . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝐻𝑦𝐻)) → (𝑥 + 𝑦) ∈ 𝐻)
6564caovclg 7546 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝐻𝑤𝐻)) → (𝑧 + 𝑤) ∈ 𝐻)
6663, 65sylan2 593 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧 ∈ (𝐻𝐵) ∧ 𝑤 ∈ (𝐻𝐵))) → (𝑧 + 𝑤) ∈ 𝐻)
67 assalmod 21266 . . . . . . . . . . . . . . . . 17 (𝑌 ∈ AssAlg → 𝑌 ∈ LMod)
6831, 67syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑌 ∈ LMod)
69 lmodgrp 20329 . . . . . . . . . . . . . . . 16 (𝑌 ∈ LMod → 𝑌 ∈ Grp)
7068, 69syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑌 ∈ Grp)
7170adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧 ∈ (𝐻𝐵) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑌 ∈ Grp)
72 simprl 769 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑧 ∈ (𝐻𝐵) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑧 ∈ (𝐻𝐵))
7372elin2d 4159 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧 ∈ (𝐻𝐵) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑧𝐵)
74 simprr 771 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑧 ∈ (𝐻𝐵) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑤 ∈ (𝐻𝐵))
7574elin2d 4159 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧 ∈ (𝐻𝐵) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑤𝐵)
76 mplind.sp . . . . . . . . . . . . . . 15 + = (+g𝑌)
777, 76grpcl 18756 . . . . . . . . . . . . . 14 ((𝑌 ∈ Grp ∧ 𝑧𝐵𝑤𝐵) → (𝑧 + 𝑤) ∈ 𝐵)
7871, 73, 75, 77syl3anc 1371 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧 ∈ (𝐻𝐵) ∧ 𝑤 ∈ (𝐻𝐵))) → (𝑧 + 𝑤) ∈ 𝐵)
7966, 78elind 4154 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧 ∈ (𝐻𝐵) ∧ 𝑤 ∈ (𝐻𝐵))) → (𝑧 + 𝑤) ∈ (𝐻𝐵))
8079anassrs 468 . . . . . . . . . . 11 (((𝜑𝑧 ∈ (𝐻𝐵)) ∧ 𝑤 ∈ (𝐻𝐵)) → (𝑧 + 𝑤) ∈ (𝐻𝐵))
8180ralrimiva 3143 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐻𝐵)) → ∀𝑤 ∈ (𝐻𝐵)(𝑧 + 𝑤) ∈ (𝐻𝐵))
82 mplind.st . . . . . . . . . . . . 13 · = (.r𝑌)
83 eqid 2736 . . . . . . . . . . . . 13 (invg𝑌) = (invg𝑌)
8456adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐻𝐵)) → 𝑌 ∈ Ring)
85 simpr 485 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐻𝐵)) → 𝑧 ∈ (𝐻𝐵))
8685elin2d 4159 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐻𝐵)) → 𝑧𝐵)
877, 82, 37, 83, 84, 86ringnegl 20018 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐻𝐵)) → (((invg𝑌)‘(1r𝑌)) · 𝑧) = ((invg𝑌)‘𝑧))
88 simpl 483 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐻𝐵)) → 𝜑)
89 rhmghm 20157 . . . . . . . . . . . . . . . . . 18 (𝐶 ∈ ((Scalar‘𝑌) RingHom 𝑌) → 𝐶 ∈ ((Scalar‘𝑌) GrpHom 𝑌))
9035, 89syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐶 ∈ ((Scalar‘𝑌) GrpHom 𝑌))
91 eqid 2736 . . . . . . . . . . . . . . . . . 18 (invg‘(Scalar‘𝑌)) = (invg‘(Scalar‘𝑌))
9246, 91, 83ghminv 19015 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ ((Scalar‘𝑌) GrpHom 𝑌) ∧ (1r‘(Scalar‘𝑌)) ∈ (Base‘(Scalar‘𝑌))) → (𝐶‘((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌)))) = ((invg𝑌)‘(𝐶‘(1r‘(Scalar‘𝑌)))))
9390, 48, 92syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐶‘((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌)))) = ((invg𝑌)‘(𝐶‘(1r‘(Scalar‘𝑌)))))
9439fveq2d 6846 . . . . . . . . . . . . . . . 16 (𝜑 → ((invg𝑌)‘(𝐶‘(1r‘(Scalar‘𝑌)))) = ((invg𝑌)‘(1r𝑌)))
9593, 94eqtrd 2776 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶‘((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌)))) = ((invg𝑌)‘(1r𝑌)))
96 fveq2 6842 . . . . . . . . . . . . . . . . 17 (𝑥 = ((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌))) → (𝐶𝑥) = (𝐶‘((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌)))))
9796eleq1d 2822 . . . . . . . . . . . . . . . 16 (𝑥 = ((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌))) → ((𝐶𝑥) ∈ 𝐻 ↔ (𝐶‘((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌)))) ∈ 𝐻))
98 ringgrp 19969 . . . . . . . . . . . . . . . . . . 19 ((Scalar‘𝑌) ∈ Ring → (Scalar‘𝑌) ∈ Grp)
9945, 98syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (Scalar‘𝑌) ∈ Grp)
10046, 91grpinvcl 18798 . . . . . . . . . . . . . . . . . 18 (((Scalar‘𝑌) ∈ Grp ∧ (1r‘(Scalar‘𝑌)) ∈ (Base‘(Scalar‘𝑌))) → ((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌))) ∈ (Base‘(Scalar‘𝑌)))
10199, 48, 100syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝜑 → ((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌))) ∈ (Base‘(Scalar‘𝑌)))
102101, 51eleqtrrd 2841 . . . . . . . . . . . . . . . 16 (𝜑 → ((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌))) ∈ 𝐾)
10397, 43, 102rspcdva 3582 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶‘((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌)))) ∈ 𝐻)
10495, 103eqeltrrd 2839 . . . . . . . . . . . . . 14 (𝜑 → ((invg𝑌)‘(1r𝑌)) ∈ 𝐻)
105104adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐻𝐵)) → ((invg𝑌)‘(1r𝑌)) ∈ 𝐻)
10685elin1d 4158 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐻𝐵)) → 𝑧𝐻)
107 mplind.t . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝐻𝑦𝐻)) → (𝑥 · 𝑦) ∈ 𝐻)
108107caovclg 7546 . . . . . . . . . . . . 13 ((𝜑 ∧ (((invg𝑌)‘(1r𝑌)) ∈ 𝐻𝑧𝐻)) → (((invg𝑌)‘(1r𝑌)) · 𝑧) ∈ 𝐻)
10988, 105, 106, 108syl12anc 835 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐻𝐵)) → (((invg𝑌)‘(1r𝑌)) · 𝑧) ∈ 𝐻)
11087, 109eqeltrrd 2839 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐻𝐵)) → ((invg𝑌)‘𝑧) ∈ 𝐻)
11170adantr 481 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐻𝐵)) → 𝑌 ∈ Grp)
1127, 83grpinvcl 18798 . . . . . . . . . . . 12 ((𝑌 ∈ Grp ∧ 𝑧𝐵) → ((invg𝑌)‘𝑧) ∈ 𝐵)
113111, 86, 112syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐻𝐵)) → ((invg𝑌)‘𝑧) ∈ 𝐵)
114110, 113elind 4154 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐻𝐵)) → ((invg𝑌)‘𝑧) ∈ (𝐻𝐵))
11581, 114jca 512 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐻𝐵)) → (∀𝑤 ∈ (𝐻𝐵)(𝑧 + 𝑤) ∈ (𝐻𝐵) ∧ ((invg𝑌)‘𝑧) ∈ (𝐻𝐵)))
116115ralrimiva 3143 . . . . . . . 8 (𝜑 → ∀𝑧 ∈ (𝐻𝐵)(∀𝑤 ∈ (𝐻𝐵)(𝑧 + 𝑤) ∈ (𝐻𝐵) ∧ ((invg𝑌)‘𝑧) ∈ (𝐻𝐵)))
1177, 76, 83issubg2 18943 . . . . . . . . 9 (𝑌 ∈ Grp → ((𝐻𝐵) ∈ (SubGrp‘𝑌) ↔ ((𝐻𝐵) ⊆ 𝐵 ∧ (𝐻𝐵) ≠ ∅ ∧ ∀𝑧 ∈ (𝐻𝐵)(∀𝑤 ∈ (𝐻𝐵)(𝑧 + 𝑤) ∈ (𝐻𝐵) ∧ ((invg𝑌)‘𝑧) ∈ (𝐻𝐵)))))
11870, 117syl 17 . . . . . . . 8 (𝜑 → ((𝐻𝐵) ∈ (SubGrp‘𝑌) ↔ ((𝐻𝐵) ⊆ 𝐵 ∧ (𝐻𝐵) ≠ ∅ ∧ ∀𝑧 ∈ (𝐻𝐵)(∀𝑤 ∈ (𝐻𝐵)(𝑧 + 𝑤) ∈ (𝐻𝐵) ∧ ((invg𝑌)‘𝑧) ∈ (𝐻𝐵)))))
11929, 60, 116, 118mpbir3and 1342 . . . . . . 7 (𝜑 → (𝐻𝐵) ∈ (SubGrp‘𝑌))
120 elinel1 4155 . . . . . . . . . . 11 (𝑥 ∈ (𝐻𝐵) → 𝑥𝐻)
121 elinel1 4155 . . . . . . . . . . 11 (𝑦 ∈ (𝐻𝐵) → 𝑦𝐻)
122120, 121anim12i 613 . . . . . . . . . 10 ((𝑥 ∈ (𝐻𝐵) ∧ 𝑦 ∈ (𝐻𝐵)) → (𝑥𝐻𝑦𝐻))
123122, 107sylan2 593 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝐻𝐵) ∧ 𝑦 ∈ (𝐻𝐵))) → (𝑥 · 𝑦) ∈ 𝐻)
12456adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (𝐻𝐵) ∧ 𝑦 ∈ (𝐻𝐵))) → 𝑌 ∈ Ring)
125 simprl 769 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (𝐻𝐵) ∧ 𝑦 ∈ (𝐻𝐵))) → 𝑥 ∈ (𝐻𝐵))
126125elin2d 4159 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (𝐻𝐵) ∧ 𝑦 ∈ (𝐻𝐵))) → 𝑥𝐵)
127 simprr 771 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (𝐻𝐵) ∧ 𝑦 ∈ (𝐻𝐵))) → 𝑦 ∈ (𝐻𝐵))
128127elin2d 4159 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (𝐻𝐵) ∧ 𝑦 ∈ (𝐻𝐵))) → 𝑦𝐵)
1297, 82ringcl 19981 . . . . . . . . . 10 ((𝑌 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → (𝑥 · 𝑦) ∈ 𝐵)
130124, 126, 128, 129syl3anc 1371 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝐻𝐵) ∧ 𝑦 ∈ (𝐻𝐵))) → (𝑥 · 𝑦) ∈ 𝐵)
131123, 130elind 4154 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝐻𝐵) ∧ 𝑦 ∈ (𝐻𝐵))) → (𝑥 · 𝑦) ∈ (𝐻𝐵))
132131ralrimivva 3197 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (𝐻𝐵)∀𝑦 ∈ (𝐻𝐵)(𝑥 · 𝑦) ∈ (𝐻𝐵))
1337, 37, 82issubrg2 20242 . . . . . . . 8 (𝑌 ∈ Ring → ((𝐻𝐵) ∈ (SubRing‘𝑌) ↔ ((𝐻𝐵) ∈ (SubGrp‘𝑌) ∧ (1r𝑌) ∈ (𝐻𝐵) ∧ ∀𝑥 ∈ (𝐻𝐵)∀𝑦 ∈ (𝐻𝐵)(𝑥 · 𝑦) ∈ (𝐻𝐵))))
13456, 133syl 17 . . . . . . 7 (𝜑 → ((𝐻𝐵) ∈ (SubRing‘𝑌) ↔ ((𝐻𝐵) ∈ (SubGrp‘𝑌) ∧ (1r𝑌) ∈ (𝐻𝐵) ∧ ∀𝑥 ∈ (𝐻𝐵)∀𝑦 ∈ (𝐻𝐵)(𝑥 · 𝑦) ∈ (𝐻𝐵))))
135119, 59, 132, 134mpbir3and 1342 . . . . . 6 (𝜑 → (𝐻𝐵) ∈ (SubRing‘𝑌))
1366, 1, 7mplval2 21402 . . . . . . . 8 𝑌 = ((𝐼 mPwSer 𝑅) ↾s 𝐵)
137136subsubrg 20248 . . . . . . 7 (𝐵 ∈ (SubRing‘(𝐼 mPwSer 𝑅)) → ((𝐻𝐵) ∈ (SubRing‘𝑌) ↔ ((𝐻𝐵) ∈ (SubRing‘(𝐼 mPwSer 𝑅)) ∧ (𝐻𝐵) ⊆ 𝐵)))
138137simprbda 499 . . . . . 6 ((𝐵 ∈ (SubRing‘(𝐼 mPwSer 𝑅)) ∧ (𝐻𝐵) ∈ (SubRing‘𝑌)) → (𝐻𝐵) ∈ (SubRing‘(𝐼 mPwSer 𝑅)))
13910, 135, 138syl2anc 584 . . . . 5 (𝜑 → (𝐻𝐵) ∈ (SubRing‘(𝐼 mPwSer 𝑅)))
140 assalmod 21266 . . . . . . 7 ((𝐼 mPwSer 𝑅) ∈ AssAlg → (𝐼 mPwSer 𝑅) ∈ LMod)
1414, 140syl 17 . . . . . 6 (𝜑 → (𝐼 mPwSer 𝑅) ∈ LMod)
1421, 6, 7, 2, 9mpllss 21409 . . . . . 6 (𝜑𝐵 ∈ (LSubSp‘(𝐼 mPwSer 𝑅)))
14331adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑌 ∈ AssAlg)
144 simprl 769 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑧 ∈ (Base‘(Scalar‘𝑌)))
145 simprr 771 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑤 ∈ (𝐻𝐵))
146145elin2d 4159 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑤𝐵)
147 eqid 2736 . . . . . . . . . . . 12 ( ·𝑠𝑌) = ( ·𝑠𝑌)
14832, 33, 46, 7, 82, 147asclmul1 21289 . . . . . . . . . . 11 ((𝑌 ∈ AssAlg ∧ 𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤𝐵) → ((𝐶𝑧) · 𝑤) = (𝑧( ·𝑠𝑌)𝑤))
149143, 144, 146, 148syl3anc 1371 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → ((𝐶𝑧) · 𝑤) = (𝑧( ·𝑠𝑌)𝑤))
150 fveq2 6842 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝐶𝑥) = (𝐶𝑧))
151150eleq1d 2822 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → ((𝐶𝑥) ∈ 𝐻 ↔ (𝐶𝑧) ∈ 𝐻))
15243adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → ∀𝑥𝐾 (𝐶𝑥) ∈ 𝐻)
15351adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝐾 = (Base‘(Scalar‘𝑌)))
154144, 153eleqtrrd 2841 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑧𝐾)
155151, 152, 154rspcdva 3582 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → (𝐶𝑧) ∈ 𝐻)
156145elin1d 4158 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑤𝐻)
157155, 156jca 512 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → ((𝐶𝑧) ∈ 𝐻𝑤𝐻))
158107caovclg 7546 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐶𝑧) ∈ 𝐻𝑤𝐻)) → ((𝐶𝑧) · 𝑤) ∈ 𝐻)
159157, 158syldan 591 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → ((𝐶𝑧) · 𝑤) ∈ 𝐻)
160149, 159eqeltrrd 2839 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → (𝑧( ·𝑠𝑌)𝑤) ∈ 𝐻)
16168adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑌 ∈ LMod)
1627, 33, 147, 46lmodvscl 20339 . . . . . . . . . 10 ((𝑌 ∈ LMod ∧ 𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤𝐵) → (𝑧( ·𝑠𝑌)𝑤) ∈ 𝐵)
163161, 144, 146, 162syl3anc 1371 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → (𝑧( ·𝑠𝑌)𝑤) ∈ 𝐵)
164160, 163elind 4154 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → (𝑧( ·𝑠𝑌)𝑤) ∈ (𝐻𝐵))
165164ralrimivva 3197 . . . . . . 7 (𝜑 → ∀𝑧 ∈ (Base‘(Scalar‘𝑌))∀𝑤 ∈ (𝐻𝐵)(𝑧( ·𝑠𝑌)𝑤) ∈ (𝐻𝐵))
166 eqid 2736 . . . . . . . . 9 (LSubSp‘𝑌) = (LSubSp‘𝑌)
16733, 46, 7, 147, 166islss4 20423 . . . . . . . 8 (𝑌 ∈ LMod → ((𝐻𝐵) ∈ (LSubSp‘𝑌) ↔ ((𝐻𝐵) ∈ (SubGrp‘𝑌) ∧ ∀𝑧 ∈ (Base‘(Scalar‘𝑌))∀𝑤 ∈ (𝐻𝐵)(𝑧( ·𝑠𝑌)𝑤) ∈ (𝐻𝐵))))
16868, 167syl 17 . . . . . . 7 (𝜑 → ((𝐻𝐵) ∈ (LSubSp‘𝑌) ↔ ((𝐻𝐵) ∈ (SubGrp‘𝑌) ∧ ∀𝑧 ∈ (Base‘(Scalar‘𝑌))∀𝑤 ∈ (𝐻𝐵)(𝑧( ·𝑠𝑌)𝑤) ∈ (𝐻𝐵))))
169119, 165, 168mpbir2and 711 . . . . . 6 (𝜑 → (𝐻𝐵) ∈ (LSubSp‘𝑌))
170 eqid 2736 . . . . . . . 8 (LSubSp‘(𝐼 mPwSer 𝑅)) = (LSubSp‘(𝐼 mPwSer 𝑅))
171136, 170, 166lsslss 20422 . . . . . . 7 (((𝐼 mPwSer 𝑅) ∈ LMod ∧ 𝐵 ∈ (LSubSp‘(𝐼 mPwSer 𝑅))) → ((𝐻𝐵) ∈ (LSubSp‘𝑌) ↔ ((𝐻𝐵) ∈ (LSubSp‘(𝐼 mPwSer 𝑅)) ∧ (𝐻𝐵) ⊆ 𝐵)))
172171simprbda 499 . . . . . 6 ((((𝐼 mPwSer 𝑅) ∈ LMod ∧ 𝐵 ∈ (LSubSp‘(𝐼 mPwSer 𝑅))) ∧ (𝐻𝐵) ∈ (LSubSp‘𝑌)) → (𝐻𝐵) ∈ (LSubSp‘(𝐼 mPwSer 𝑅)))
173141, 142, 169, 172syl21anc 836 . . . . 5 (𝜑 → (𝐻𝐵) ∈ (LSubSp‘(𝐼 mPwSer 𝑅)))
17424, 11, 170aspid 21278 . . . . 5 (((𝐼 mPwSer 𝑅) ∈ AssAlg ∧ (𝐻𝐵) ∈ (SubRing‘(𝐼 mPwSer 𝑅)) ∧ (𝐻𝐵) ∈ (LSubSp‘(𝐼 mPwSer 𝑅))) → ((AlgSpan‘(𝐼 mPwSer 𝑅))‘(𝐻𝐵)) = (𝐻𝐵))
1754, 139, 173, 174syl3anc 1371 . . . 4 (𝜑 → ((AlgSpan‘(𝐼 mPwSer 𝑅))‘(𝐻𝐵)) = (𝐻𝐵))
17626, 28, 1753sstr3d 3990 . . 3 (𝜑𝐵 ⊆ (𝐻𝐵))
177 mplind.x . . 3 (𝜑𝑋𝐵)
178176, 177sseldd 3945 . 2 (𝜑𝑋 ∈ (𝐻𝐵))
179178elin1d 4158 1 (𝜑𝑋𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  cin 3909  wss 3910  c0 4282  ran crn 5634   Fn wfn 6491  cfv 6496  (class class class)co 7357  Basecbs 17083  +gcplusg 17133  .rcmulr 17134  Scalarcsca 17136   ·𝑠 cvsca 17137  Grpcgrp 18748  invgcminusg 18749  SubGrpcsubg 18922   GrpHom cghm 19005  1rcur 19913  Ringcrg 19964  CRingccrg 19965   RingHom crh 20143  SubRingcsubrg 20218  LModclmod 20322  LSubSpclss 20392  AssAlgcasa 21256  AlgSpancasp 21257  algSccascl 21258   mPwSer cmps 21306   mVar cmvr 21307   mPoly cmpl 21308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-ofr 7618  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-hom 17157  df-cco 17158  df-0g 17323  df-gsum 17324  df-prds 17329  df-pws 17331  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mulg 18873  df-subg 18925  df-ghm 19006  df-cntz 19097  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-srg 19918  df-ring 19966  df-cring 19967  df-rnghom 20146  df-subrg 20220  df-lmod 20324  df-lss 20393  df-assa 21259  df-asp 21260  df-ascl 21261  df-psr 21311  df-mvr 21312  df-mpl 21313
This theorem is referenced by:  mpfind  21517
  Copyright terms: Public domain W3C validator