MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplind Structured version   Visualization version   GIF version

Theorem mplind 20741
Description: Prove a property of polynomials by "structural" induction, under a simplified model of structure which loses the sum of products structure. The commutativity condition is stronger than strictly needed. (Contributed by Stefan O'Rear, 11-Mar-2015.)
Hypotheses
Ref Expression
mplind.sk 𝐾 = (Base‘𝑅)
mplind.sv 𝑉 = (𝐼 mVar 𝑅)
mplind.sy 𝑌 = (𝐼 mPoly 𝑅)
mplind.sp + = (+g𝑌)
mplind.st · = (.r𝑌)
mplind.sc 𝐶 = (algSc‘𝑌)
mplind.sb 𝐵 = (Base‘𝑌)
mplind.p ((𝜑 ∧ (𝑥𝐻𝑦𝐻)) → (𝑥 + 𝑦) ∈ 𝐻)
mplind.t ((𝜑 ∧ (𝑥𝐻𝑦𝐻)) → (𝑥 · 𝑦) ∈ 𝐻)
mplind.s ((𝜑𝑥𝐾) → (𝐶𝑥) ∈ 𝐻)
mplind.v ((𝜑𝑥𝐼) → (𝑉𝑥) ∈ 𝐻)
mplind.x (𝜑𝑋𝐵)
mplind.i (𝜑𝐼𝑊)
mplind.r (𝜑𝑅 ∈ CRing)
Assertion
Ref Expression
mplind (𝜑𝑋𝐻)
Distinct variable groups:   𝑥,𝑦, +   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐼   𝜑,𝑥,𝑦   𝑥,𝐻,𝑦   𝑥,𝐾   𝑥, · ,𝑦   𝑥,𝑉   𝑥,𝑌,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝐼(𝑦)   𝐾(𝑦)   𝑉(𝑦)   𝑊(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem mplind
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2798 . . . . . 6 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
2 mplind.i . . . . . 6 (𝜑𝐼𝑊)
3 mplind.r . . . . . 6 (𝜑𝑅 ∈ CRing)
41, 2, 3psrassa 20652 . . . . 5 (𝜑 → (𝐼 mPwSer 𝑅) ∈ AssAlg)
5 inss2 4156 . . . . . 6 (𝐻𝐵) ⊆ 𝐵
6 mplind.sy . . . . . . . 8 𝑌 = (𝐼 mPoly 𝑅)
7 mplind.sb . . . . . . . 8 𝐵 = (Base‘𝑌)
8 crngring 19302 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
93, 8syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Ring)
101, 6, 7, 2, 9mplsubrg 20678 . . . . . . 7 (𝜑𝐵 ∈ (SubRing‘(𝐼 mPwSer 𝑅)))
11 eqid 2798 . . . . . . . 8 (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅))
1211subrgss 19529 . . . . . . 7 (𝐵 ∈ (SubRing‘(𝐼 mPwSer 𝑅)) → 𝐵 ⊆ (Base‘(𝐼 mPwSer 𝑅)))
1310, 12syl 17 . . . . . 6 (𝜑𝐵 ⊆ (Base‘(𝐼 mPwSer 𝑅)))
145, 13sstrid 3926 . . . . 5 (𝜑 → (𝐻𝐵) ⊆ (Base‘(𝐼 mPwSer 𝑅)))
15 mplind.sv . . . . . . . . 9 𝑉 = (𝐼 mVar 𝑅)
166, 15, 7, 2, 9mvrf2 20731 . . . . . . . 8 (𝜑𝑉:𝐼𝐵)
1716ffnd 6488 . . . . . . 7 (𝜑𝑉 Fn 𝐼)
18 mplind.v . . . . . . . 8 ((𝜑𝑥𝐼) → (𝑉𝑥) ∈ 𝐻)
1918ralrimiva 3149 . . . . . . 7 (𝜑 → ∀𝑥𝐼 (𝑉𝑥) ∈ 𝐻)
20 fnfvrnss 6861 . . . . . . 7 ((𝑉 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑉𝑥) ∈ 𝐻) → ran 𝑉𝐻)
2117, 19, 20syl2anc 587 . . . . . 6 (𝜑 → ran 𝑉𝐻)
2216frnd 6494 . . . . . 6 (𝜑 → ran 𝑉𝐵)
2321, 22ssind 4159 . . . . 5 (𝜑 → ran 𝑉 ⊆ (𝐻𝐵))
24 eqid 2798 . . . . . 6 (AlgSpan‘(𝐼 mPwSer 𝑅)) = (AlgSpan‘(𝐼 mPwSer 𝑅))
2524, 11aspss 20563 . . . . 5 (((𝐼 mPwSer 𝑅) ∈ AssAlg ∧ (𝐻𝐵) ⊆ (Base‘(𝐼 mPwSer 𝑅)) ∧ ran 𝑉 ⊆ (𝐻𝐵)) → ((AlgSpan‘(𝐼 mPwSer 𝑅))‘ran 𝑉) ⊆ ((AlgSpan‘(𝐼 mPwSer 𝑅))‘(𝐻𝐵)))
264, 14, 23, 25syl3anc 1368 . . . 4 (𝜑 → ((AlgSpan‘(𝐼 mPwSer 𝑅))‘ran 𝑉) ⊆ ((AlgSpan‘(𝐼 mPwSer 𝑅))‘(𝐻𝐵)))
276, 1, 15, 24, 2, 3mplbas2 20710 . . . . 5 (𝜑 → ((AlgSpan‘(𝐼 mPwSer 𝑅))‘ran 𝑉) = (Base‘𝑌))
2827, 7eqtr4di 2851 . . . 4 (𝜑 → ((AlgSpan‘(𝐼 mPwSer 𝑅))‘ran 𝑉) = 𝐵)
295a1i 11 . . . . . . . 8 (𝜑 → (𝐻𝐵) ⊆ 𝐵)
306mplassa 20694 . . . . . . . . . . . . . 14 ((𝐼𝑊𝑅 ∈ CRing) → 𝑌 ∈ AssAlg)
312, 3, 30syl2anc 587 . . . . . . . . . . . . 13 (𝜑𝑌 ∈ AssAlg)
32 mplind.sc . . . . . . . . . . . . . 14 𝐶 = (algSc‘𝑌)
33 eqid 2798 . . . . . . . . . . . . . 14 (Scalar‘𝑌) = (Scalar‘𝑌)
3432, 33asclrhm 20576 . . . . . . . . . . . . 13 (𝑌 ∈ AssAlg → 𝐶 ∈ ((Scalar‘𝑌) RingHom 𝑌))
3531, 34syl 17 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ((Scalar‘𝑌) RingHom 𝑌))
36 eqid 2798 . . . . . . . . . . . . 13 (1r‘(Scalar‘𝑌)) = (1r‘(Scalar‘𝑌))
37 eqid 2798 . . . . . . . . . . . . 13 (1r𝑌) = (1r𝑌)
3836, 37rhm1 19478 . . . . . . . . . . . 12 (𝐶 ∈ ((Scalar‘𝑌) RingHom 𝑌) → (𝐶‘(1r‘(Scalar‘𝑌))) = (1r𝑌))
3935, 38syl 17 . . . . . . . . . . 11 (𝜑 → (𝐶‘(1r‘(Scalar‘𝑌))) = (1r𝑌))
40 fveq2 6645 . . . . . . . . . . . . 13 (𝑥 = (1r‘(Scalar‘𝑌)) → (𝐶𝑥) = (𝐶‘(1r‘(Scalar‘𝑌))))
4140eleq1d 2874 . . . . . . . . . . . 12 (𝑥 = (1r‘(Scalar‘𝑌)) → ((𝐶𝑥) ∈ 𝐻 ↔ (𝐶‘(1r‘(Scalar‘𝑌))) ∈ 𝐻))
42 mplind.s . . . . . . . . . . . . 13 ((𝜑𝑥𝐾) → (𝐶𝑥) ∈ 𝐻)
4342ralrimiva 3149 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝐾 (𝐶𝑥) ∈ 𝐻)
446, 2, 3mplsca 20684 . . . . . . . . . . . . . . 15 (𝜑𝑅 = (Scalar‘𝑌))
4544, 9eqeltrrd 2891 . . . . . . . . . . . . . 14 (𝜑 → (Scalar‘𝑌) ∈ Ring)
46 eqid 2798 . . . . . . . . . . . . . . 15 (Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌))
4746, 36ringidcl 19314 . . . . . . . . . . . . . 14 ((Scalar‘𝑌) ∈ Ring → (1r‘(Scalar‘𝑌)) ∈ (Base‘(Scalar‘𝑌)))
4845, 47syl 17 . . . . . . . . . . . . 13 (𝜑 → (1r‘(Scalar‘𝑌)) ∈ (Base‘(Scalar‘𝑌)))
49 mplind.sk . . . . . . . . . . . . . 14 𝐾 = (Base‘𝑅)
5044fveq2d 6649 . . . . . . . . . . . . . 14 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑌)))
5149, 50syl5eq 2845 . . . . . . . . . . . . 13 (𝜑𝐾 = (Base‘(Scalar‘𝑌)))
5248, 51eleqtrrd 2893 . . . . . . . . . . . 12 (𝜑 → (1r‘(Scalar‘𝑌)) ∈ 𝐾)
5341, 43, 52rspcdva 3573 . . . . . . . . . . 11 (𝜑 → (𝐶‘(1r‘(Scalar‘𝑌))) ∈ 𝐻)
5439, 53eqeltrrd 2891 . . . . . . . . . 10 (𝜑 → (1r𝑌) ∈ 𝐻)
55 assaring 20550 . . . . . . . . . . . 12 (𝑌 ∈ AssAlg → 𝑌 ∈ Ring)
5631, 55syl 17 . . . . . . . . . . 11 (𝜑𝑌 ∈ Ring)
577, 37ringidcl 19314 . . . . . . . . . . 11 (𝑌 ∈ Ring → (1r𝑌) ∈ 𝐵)
5856, 57syl 17 . . . . . . . . . 10 (𝜑 → (1r𝑌) ∈ 𝐵)
5954, 58elind 4121 . . . . . . . . 9 (𝜑 → (1r𝑌) ∈ (𝐻𝐵))
6059ne0d 4251 . . . . . . . 8 (𝜑 → (𝐻𝐵) ≠ ∅)
61 elinel1 4122 . . . . . . . . . . . . . . 15 (𝑧 ∈ (𝐻𝐵) → 𝑧𝐻)
62 elinel1 4122 . . . . . . . . . . . . . . 15 (𝑤 ∈ (𝐻𝐵) → 𝑤𝐻)
6361, 62anim12i 615 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝐻𝐵) ∧ 𝑤 ∈ (𝐻𝐵)) → (𝑧𝐻𝑤𝐻))
64 mplind.p . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝐻𝑦𝐻)) → (𝑥 + 𝑦) ∈ 𝐻)
6564caovclg 7320 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝐻𝑤𝐻)) → (𝑧 + 𝑤) ∈ 𝐻)
6663, 65sylan2 595 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧 ∈ (𝐻𝐵) ∧ 𝑤 ∈ (𝐻𝐵))) → (𝑧 + 𝑤) ∈ 𝐻)
67 assalmod 20549 . . . . . . . . . . . . . . . . 17 (𝑌 ∈ AssAlg → 𝑌 ∈ LMod)
6831, 67syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑌 ∈ LMod)
69 lmodgrp 19634 . . . . . . . . . . . . . . . 16 (𝑌 ∈ LMod → 𝑌 ∈ Grp)
7068, 69syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑌 ∈ Grp)
7170adantr 484 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧 ∈ (𝐻𝐵) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑌 ∈ Grp)
72 simprl 770 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑧 ∈ (𝐻𝐵) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑧 ∈ (𝐻𝐵))
7372elin2d 4126 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧 ∈ (𝐻𝐵) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑧𝐵)
74 simprr 772 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑧 ∈ (𝐻𝐵) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑤 ∈ (𝐻𝐵))
7574elin2d 4126 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧 ∈ (𝐻𝐵) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑤𝐵)
76 mplind.sp . . . . . . . . . . . . . . 15 + = (+g𝑌)
777, 76grpcl 18103 . . . . . . . . . . . . . 14 ((𝑌 ∈ Grp ∧ 𝑧𝐵𝑤𝐵) → (𝑧 + 𝑤) ∈ 𝐵)
7871, 73, 75, 77syl3anc 1368 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧 ∈ (𝐻𝐵) ∧ 𝑤 ∈ (𝐻𝐵))) → (𝑧 + 𝑤) ∈ 𝐵)
7966, 78elind 4121 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧 ∈ (𝐻𝐵) ∧ 𝑤 ∈ (𝐻𝐵))) → (𝑧 + 𝑤) ∈ (𝐻𝐵))
8079anassrs 471 . . . . . . . . . . 11 (((𝜑𝑧 ∈ (𝐻𝐵)) ∧ 𝑤 ∈ (𝐻𝐵)) → (𝑧 + 𝑤) ∈ (𝐻𝐵))
8180ralrimiva 3149 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐻𝐵)) → ∀𝑤 ∈ (𝐻𝐵)(𝑧 + 𝑤) ∈ (𝐻𝐵))
82 mplind.st . . . . . . . . . . . . 13 · = (.r𝑌)
83 eqid 2798 . . . . . . . . . . . . 13 (invg𝑌) = (invg𝑌)
8456adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐻𝐵)) → 𝑌 ∈ Ring)
85 simpr 488 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐻𝐵)) → 𝑧 ∈ (𝐻𝐵))
8685elin2d 4126 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐻𝐵)) → 𝑧𝐵)
877, 82, 37, 83, 84, 86ringnegl 19340 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐻𝐵)) → (((invg𝑌)‘(1r𝑌)) · 𝑧) = ((invg𝑌)‘𝑧))
88 simpl 486 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐻𝐵)) → 𝜑)
89 rhmghm 19473 . . . . . . . . . . . . . . . . . 18 (𝐶 ∈ ((Scalar‘𝑌) RingHom 𝑌) → 𝐶 ∈ ((Scalar‘𝑌) GrpHom 𝑌))
9035, 89syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐶 ∈ ((Scalar‘𝑌) GrpHom 𝑌))
91 eqid 2798 . . . . . . . . . . . . . . . . . 18 (invg‘(Scalar‘𝑌)) = (invg‘(Scalar‘𝑌))
9246, 91, 83ghminv 18357 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ ((Scalar‘𝑌) GrpHom 𝑌) ∧ (1r‘(Scalar‘𝑌)) ∈ (Base‘(Scalar‘𝑌))) → (𝐶‘((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌)))) = ((invg𝑌)‘(𝐶‘(1r‘(Scalar‘𝑌)))))
9390, 48, 92syl2anc 587 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐶‘((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌)))) = ((invg𝑌)‘(𝐶‘(1r‘(Scalar‘𝑌)))))
9439fveq2d 6649 . . . . . . . . . . . . . . . 16 (𝜑 → ((invg𝑌)‘(𝐶‘(1r‘(Scalar‘𝑌)))) = ((invg𝑌)‘(1r𝑌)))
9593, 94eqtrd 2833 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶‘((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌)))) = ((invg𝑌)‘(1r𝑌)))
96 fveq2 6645 . . . . . . . . . . . . . . . . 17 (𝑥 = ((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌))) → (𝐶𝑥) = (𝐶‘((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌)))))
9796eleq1d 2874 . . . . . . . . . . . . . . . 16 (𝑥 = ((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌))) → ((𝐶𝑥) ∈ 𝐻 ↔ (𝐶‘((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌)))) ∈ 𝐻))
98 ringgrp 19295 . . . . . . . . . . . . . . . . . . 19 ((Scalar‘𝑌) ∈ Ring → (Scalar‘𝑌) ∈ Grp)
9945, 98syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (Scalar‘𝑌) ∈ Grp)
10046, 91grpinvcl 18143 . . . . . . . . . . . . . . . . . 18 (((Scalar‘𝑌) ∈ Grp ∧ (1r‘(Scalar‘𝑌)) ∈ (Base‘(Scalar‘𝑌))) → ((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌))) ∈ (Base‘(Scalar‘𝑌)))
10199, 48, 100syl2anc 587 . . . . . . . . . . . . . . . . 17 (𝜑 → ((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌))) ∈ (Base‘(Scalar‘𝑌)))
102101, 51eleqtrrd 2893 . . . . . . . . . . . . . . . 16 (𝜑 → ((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌))) ∈ 𝐾)
10397, 43, 102rspcdva 3573 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶‘((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌)))) ∈ 𝐻)
10495, 103eqeltrrd 2891 . . . . . . . . . . . . . 14 (𝜑 → ((invg𝑌)‘(1r𝑌)) ∈ 𝐻)
105104adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐻𝐵)) → ((invg𝑌)‘(1r𝑌)) ∈ 𝐻)
10685elin1d 4125 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐻𝐵)) → 𝑧𝐻)
107 mplind.t . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝐻𝑦𝐻)) → (𝑥 · 𝑦) ∈ 𝐻)
108107caovclg 7320 . . . . . . . . . . . . 13 ((𝜑 ∧ (((invg𝑌)‘(1r𝑌)) ∈ 𝐻𝑧𝐻)) → (((invg𝑌)‘(1r𝑌)) · 𝑧) ∈ 𝐻)
10988, 105, 106, 108syl12anc 835 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐻𝐵)) → (((invg𝑌)‘(1r𝑌)) · 𝑧) ∈ 𝐻)
11087, 109eqeltrrd 2891 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐻𝐵)) → ((invg𝑌)‘𝑧) ∈ 𝐻)
11170adantr 484 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐻𝐵)) → 𝑌 ∈ Grp)
1127, 83grpinvcl 18143 . . . . . . . . . . . 12 ((𝑌 ∈ Grp ∧ 𝑧𝐵) → ((invg𝑌)‘𝑧) ∈ 𝐵)
113111, 86, 112syl2anc 587 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐻𝐵)) → ((invg𝑌)‘𝑧) ∈ 𝐵)
114110, 113elind 4121 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐻𝐵)) → ((invg𝑌)‘𝑧) ∈ (𝐻𝐵))
11581, 114jca 515 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐻𝐵)) → (∀𝑤 ∈ (𝐻𝐵)(𝑧 + 𝑤) ∈ (𝐻𝐵) ∧ ((invg𝑌)‘𝑧) ∈ (𝐻𝐵)))
116115ralrimiva 3149 . . . . . . . 8 (𝜑 → ∀𝑧 ∈ (𝐻𝐵)(∀𝑤 ∈ (𝐻𝐵)(𝑧 + 𝑤) ∈ (𝐻𝐵) ∧ ((invg𝑌)‘𝑧) ∈ (𝐻𝐵)))
1177, 76, 83issubg2 18286 . . . . . . . . 9 (𝑌 ∈ Grp → ((𝐻𝐵) ∈ (SubGrp‘𝑌) ↔ ((𝐻𝐵) ⊆ 𝐵 ∧ (𝐻𝐵) ≠ ∅ ∧ ∀𝑧 ∈ (𝐻𝐵)(∀𝑤 ∈ (𝐻𝐵)(𝑧 + 𝑤) ∈ (𝐻𝐵) ∧ ((invg𝑌)‘𝑧) ∈ (𝐻𝐵)))))
11870, 117syl 17 . . . . . . . 8 (𝜑 → ((𝐻𝐵) ∈ (SubGrp‘𝑌) ↔ ((𝐻𝐵) ⊆ 𝐵 ∧ (𝐻𝐵) ≠ ∅ ∧ ∀𝑧 ∈ (𝐻𝐵)(∀𝑤 ∈ (𝐻𝐵)(𝑧 + 𝑤) ∈ (𝐻𝐵) ∧ ((invg𝑌)‘𝑧) ∈ (𝐻𝐵)))))
11929, 60, 116, 118mpbir3and 1339 . . . . . . 7 (𝜑 → (𝐻𝐵) ∈ (SubGrp‘𝑌))
120 elinel1 4122 . . . . . . . . . . 11 (𝑥 ∈ (𝐻𝐵) → 𝑥𝐻)
121 elinel1 4122 . . . . . . . . . . 11 (𝑦 ∈ (𝐻𝐵) → 𝑦𝐻)
122120, 121anim12i 615 . . . . . . . . . 10 ((𝑥 ∈ (𝐻𝐵) ∧ 𝑦 ∈ (𝐻𝐵)) → (𝑥𝐻𝑦𝐻))
123122, 107sylan2 595 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝐻𝐵) ∧ 𝑦 ∈ (𝐻𝐵))) → (𝑥 · 𝑦) ∈ 𝐻)
12456adantr 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (𝐻𝐵) ∧ 𝑦 ∈ (𝐻𝐵))) → 𝑌 ∈ Ring)
125 simprl 770 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (𝐻𝐵) ∧ 𝑦 ∈ (𝐻𝐵))) → 𝑥 ∈ (𝐻𝐵))
126125elin2d 4126 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (𝐻𝐵) ∧ 𝑦 ∈ (𝐻𝐵))) → 𝑥𝐵)
127 simprr 772 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (𝐻𝐵) ∧ 𝑦 ∈ (𝐻𝐵))) → 𝑦 ∈ (𝐻𝐵))
128127elin2d 4126 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (𝐻𝐵) ∧ 𝑦 ∈ (𝐻𝐵))) → 𝑦𝐵)
1297, 82ringcl 19307 . . . . . . . . . 10 ((𝑌 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → (𝑥 · 𝑦) ∈ 𝐵)
130124, 126, 128, 129syl3anc 1368 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝐻𝐵) ∧ 𝑦 ∈ (𝐻𝐵))) → (𝑥 · 𝑦) ∈ 𝐵)
131123, 130elind 4121 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝐻𝐵) ∧ 𝑦 ∈ (𝐻𝐵))) → (𝑥 · 𝑦) ∈ (𝐻𝐵))
132131ralrimivva 3156 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (𝐻𝐵)∀𝑦 ∈ (𝐻𝐵)(𝑥 · 𝑦) ∈ (𝐻𝐵))
1337, 37, 82issubrg2 19548 . . . . . . . 8 (𝑌 ∈ Ring → ((𝐻𝐵) ∈ (SubRing‘𝑌) ↔ ((𝐻𝐵) ∈ (SubGrp‘𝑌) ∧ (1r𝑌) ∈ (𝐻𝐵) ∧ ∀𝑥 ∈ (𝐻𝐵)∀𝑦 ∈ (𝐻𝐵)(𝑥 · 𝑦) ∈ (𝐻𝐵))))
13456, 133syl 17 . . . . . . 7 (𝜑 → ((𝐻𝐵) ∈ (SubRing‘𝑌) ↔ ((𝐻𝐵) ∈ (SubGrp‘𝑌) ∧ (1r𝑌) ∈ (𝐻𝐵) ∧ ∀𝑥 ∈ (𝐻𝐵)∀𝑦 ∈ (𝐻𝐵)(𝑥 · 𝑦) ∈ (𝐻𝐵))))
135119, 59, 132, 134mpbir3and 1339 . . . . . 6 (𝜑 → (𝐻𝐵) ∈ (SubRing‘𝑌))
1366, 1, 7mplval2 20669 . . . . . . . 8 𝑌 = ((𝐼 mPwSer 𝑅) ↾s 𝐵)
137136subsubrg 19554 . . . . . . 7 (𝐵 ∈ (SubRing‘(𝐼 mPwSer 𝑅)) → ((𝐻𝐵) ∈ (SubRing‘𝑌) ↔ ((𝐻𝐵) ∈ (SubRing‘(𝐼 mPwSer 𝑅)) ∧ (𝐻𝐵) ⊆ 𝐵)))
138137simprbda 502 . . . . . 6 ((𝐵 ∈ (SubRing‘(𝐼 mPwSer 𝑅)) ∧ (𝐻𝐵) ∈ (SubRing‘𝑌)) → (𝐻𝐵) ∈ (SubRing‘(𝐼 mPwSer 𝑅)))
13910, 135, 138syl2anc 587 . . . . 5 (𝜑 → (𝐻𝐵) ∈ (SubRing‘(𝐼 mPwSer 𝑅)))
140 assalmod 20549 . . . . . . 7 ((𝐼 mPwSer 𝑅) ∈ AssAlg → (𝐼 mPwSer 𝑅) ∈ LMod)
1414, 140syl 17 . . . . . 6 (𝜑 → (𝐼 mPwSer 𝑅) ∈ LMod)
1421, 6, 7, 2, 9mpllss 20676 . . . . . 6 (𝜑𝐵 ∈ (LSubSp‘(𝐼 mPwSer 𝑅)))
14331adantr 484 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑌 ∈ AssAlg)
144 simprl 770 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑧 ∈ (Base‘(Scalar‘𝑌)))
145 simprr 772 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑤 ∈ (𝐻𝐵))
146145elin2d 4126 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑤𝐵)
147 eqid 2798 . . . . . . . . . . . 12 ( ·𝑠𝑌) = ( ·𝑠𝑌)
14832, 33, 46, 7, 82, 147asclmul1 20571 . . . . . . . . . . 11 ((𝑌 ∈ AssAlg ∧ 𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤𝐵) → ((𝐶𝑧) · 𝑤) = (𝑧( ·𝑠𝑌)𝑤))
149143, 144, 146, 148syl3anc 1368 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → ((𝐶𝑧) · 𝑤) = (𝑧( ·𝑠𝑌)𝑤))
150 fveq2 6645 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝐶𝑥) = (𝐶𝑧))
151150eleq1d 2874 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → ((𝐶𝑥) ∈ 𝐻 ↔ (𝐶𝑧) ∈ 𝐻))
15243adantr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → ∀𝑥𝐾 (𝐶𝑥) ∈ 𝐻)
15351adantr 484 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝐾 = (Base‘(Scalar‘𝑌)))
154144, 153eleqtrrd 2893 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑧𝐾)
155151, 152, 154rspcdva 3573 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → (𝐶𝑧) ∈ 𝐻)
156145elin1d 4125 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑤𝐻)
157155, 156jca 515 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → ((𝐶𝑧) ∈ 𝐻𝑤𝐻))
158107caovclg 7320 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐶𝑧) ∈ 𝐻𝑤𝐻)) → ((𝐶𝑧) · 𝑤) ∈ 𝐻)
159157, 158syldan 594 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → ((𝐶𝑧) · 𝑤) ∈ 𝐻)
160149, 159eqeltrrd 2891 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → (𝑧( ·𝑠𝑌)𝑤) ∈ 𝐻)
16168adantr 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑌 ∈ LMod)
1627, 33, 147, 46lmodvscl 19644 . . . . . . . . . 10 ((𝑌 ∈ LMod ∧ 𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤𝐵) → (𝑧( ·𝑠𝑌)𝑤) ∈ 𝐵)
163161, 144, 146, 162syl3anc 1368 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → (𝑧( ·𝑠𝑌)𝑤) ∈ 𝐵)
164160, 163elind 4121 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → (𝑧( ·𝑠𝑌)𝑤) ∈ (𝐻𝐵))
165164ralrimivva 3156 . . . . . . 7 (𝜑 → ∀𝑧 ∈ (Base‘(Scalar‘𝑌))∀𝑤 ∈ (𝐻𝐵)(𝑧( ·𝑠𝑌)𝑤) ∈ (𝐻𝐵))
166 eqid 2798 . . . . . . . . 9 (LSubSp‘𝑌) = (LSubSp‘𝑌)
16733, 46, 7, 147, 166islss4 19727 . . . . . . . 8 (𝑌 ∈ LMod → ((𝐻𝐵) ∈ (LSubSp‘𝑌) ↔ ((𝐻𝐵) ∈ (SubGrp‘𝑌) ∧ ∀𝑧 ∈ (Base‘(Scalar‘𝑌))∀𝑤 ∈ (𝐻𝐵)(𝑧( ·𝑠𝑌)𝑤) ∈ (𝐻𝐵))))
16868, 167syl 17 . . . . . . 7 (𝜑 → ((𝐻𝐵) ∈ (LSubSp‘𝑌) ↔ ((𝐻𝐵) ∈ (SubGrp‘𝑌) ∧ ∀𝑧 ∈ (Base‘(Scalar‘𝑌))∀𝑤 ∈ (𝐻𝐵)(𝑧( ·𝑠𝑌)𝑤) ∈ (𝐻𝐵))))
169119, 165, 168mpbir2and 712 . . . . . 6 (𝜑 → (𝐻𝐵) ∈ (LSubSp‘𝑌))
170 eqid 2798 . . . . . . . 8 (LSubSp‘(𝐼 mPwSer 𝑅)) = (LSubSp‘(𝐼 mPwSer 𝑅))
171136, 170, 166lsslss 19726 . . . . . . 7 (((𝐼 mPwSer 𝑅) ∈ LMod ∧ 𝐵 ∈ (LSubSp‘(𝐼 mPwSer 𝑅))) → ((𝐻𝐵) ∈ (LSubSp‘𝑌) ↔ ((𝐻𝐵) ∈ (LSubSp‘(𝐼 mPwSer 𝑅)) ∧ (𝐻𝐵) ⊆ 𝐵)))
172171simprbda 502 . . . . . 6 ((((𝐼 mPwSer 𝑅) ∈ LMod ∧ 𝐵 ∈ (LSubSp‘(𝐼 mPwSer 𝑅))) ∧ (𝐻𝐵) ∈ (LSubSp‘𝑌)) → (𝐻𝐵) ∈ (LSubSp‘(𝐼 mPwSer 𝑅)))
173141, 142, 169, 172syl21anc 836 . . . . 5 (𝜑 → (𝐻𝐵) ∈ (LSubSp‘(𝐼 mPwSer 𝑅)))
17424, 11, 170aspid 20561 . . . . 5 (((𝐼 mPwSer 𝑅) ∈ AssAlg ∧ (𝐻𝐵) ∈ (SubRing‘(𝐼 mPwSer 𝑅)) ∧ (𝐻𝐵) ∈ (LSubSp‘(𝐼 mPwSer 𝑅))) → ((AlgSpan‘(𝐼 mPwSer 𝑅))‘(𝐻𝐵)) = (𝐻𝐵))
1754, 139, 173, 174syl3anc 1368 . . . 4 (𝜑 → ((AlgSpan‘(𝐼 mPwSer 𝑅))‘(𝐻𝐵)) = (𝐻𝐵))
17626, 28, 1753sstr3d 3961 . . 3 (𝜑𝐵 ⊆ (𝐻𝐵))
177 mplind.x . . 3 (𝜑𝑋𝐵)
178176, 177sseldd 3916 . 2 (𝜑𝑋 ∈ (𝐻𝐵))
179178elin1d 4125 1 (𝜑𝑋𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  cin 3880  wss 3881  c0 4243  ran crn 5520   Fn wfn 6319  cfv 6324  (class class class)co 7135  Basecbs 16475  +gcplusg 16557  .rcmulr 16558  Scalarcsca 16560   ·𝑠 cvsca 16561  Grpcgrp 18095  invgcminusg 18096  SubGrpcsubg 18265   GrpHom cghm 18347  1rcur 19244  Ringcrg 19290  CRingccrg 19291   RingHom crh 19460  SubRingcsubrg 19524  LModclmod 19627  LSubSpclss 19696  AssAlgcasa 20539  AlgSpancasp 20540  algSccascl 20541   mPwSer cmps 20589   mVar cmvr 20590   mPoly cmpl 20591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-ofr 7390  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-tset 16576  df-0g 16707  df-gsum 16708  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-ghm 18348  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-srg 19249  df-ring 19292  df-cring 19293  df-rnghom 19463  df-subrg 19526  df-lmod 19629  df-lss 19697  df-assa 20542  df-asp 20543  df-ascl 20544  df-psr 20594  df-mvr 20595  df-mpl 20596
This theorem is referenced by:  mpfind  20779
  Copyright terms: Public domain W3C validator