Step | Hyp | Ref
| Expression |
1 | | inss1 4026 |
. 2
⊢ (𝐻 ∩ 𝐵) ⊆ 𝐻 |
2 | | eqid 2797 |
. . . . . 6
⊢ (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅) |
3 | | mplind.i |
. . . . . 6
⊢ (𝜑 → 𝐼 ∈ V) |
4 | | mplind.r |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ CRing) |
5 | 2, 3, 4 | psrassa 19733 |
. . . . 5
⊢ (𝜑 → (𝐼 mPwSer 𝑅) ∈ AssAlg) |
6 | | inss2 4027 |
. . . . . 6
⊢ (𝐻 ∩ 𝐵) ⊆ 𝐵 |
7 | | mplind.sy |
. . . . . . . 8
⊢ 𝑌 = (𝐼 mPoly 𝑅) |
8 | | mplind.sb |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑌) |
9 | | crngring 18870 |
. . . . . . . . 9
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
10 | 4, 9 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ Ring) |
11 | 2, 7, 8, 3, 10 | mplsubrg 19759 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ (SubRing‘(𝐼 mPwSer 𝑅))) |
12 | | eqid 2797 |
. . . . . . . 8
⊢
(Base‘(𝐼
mPwSer 𝑅)) =
(Base‘(𝐼 mPwSer 𝑅)) |
13 | 12 | subrgss 19095 |
. . . . . . 7
⊢ (𝐵 ∈ (SubRing‘(𝐼 mPwSer 𝑅)) → 𝐵 ⊆ (Base‘(𝐼 mPwSer 𝑅))) |
14 | 11, 13 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐵 ⊆ (Base‘(𝐼 mPwSer 𝑅))) |
15 | 6, 14 | syl5ss 3807 |
. . . . 5
⊢ (𝜑 → (𝐻 ∩ 𝐵) ⊆ (Base‘(𝐼 mPwSer 𝑅))) |
16 | | mplind.sv |
. . . . . . . . 9
⊢ 𝑉 = (𝐼 mVar 𝑅) |
17 | 7, 16, 8, 3, 10 | mvrf2 19810 |
. . . . . . . 8
⊢ (𝜑 → 𝑉:𝐼⟶𝐵) |
18 | 17 | ffnd 6255 |
. . . . . . 7
⊢ (𝜑 → 𝑉 Fn 𝐼) |
19 | | mplind.v |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑉‘𝑥) ∈ 𝐻) |
20 | 19 | ralrimiva 3145 |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ 𝐼 (𝑉‘𝑥) ∈ 𝐻) |
21 | | fnfvrnss 6614 |
. . . . . . 7
⊢ ((𝑉 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑉‘𝑥) ∈ 𝐻) → ran 𝑉 ⊆ 𝐻) |
22 | 18, 20, 21 | syl2anc 580 |
. . . . . 6
⊢ (𝜑 → ran 𝑉 ⊆ 𝐻) |
23 | 17 | frnd 6261 |
. . . . . 6
⊢ (𝜑 → ran 𝑉 ⊆ 𝐵) |
24 | 22, 23 | ssind 4030 |
. . . . 5
⊢ (𝜑 → ran 𝑉 ⊆ (𝐻 ∩ 𝐵)) |
25 | | eqid 2797 |
. . . . . 6
⊢
(AlgSpan‘(𝐼
mPwSer 𝑅)) =
(AlgSpan‘(𝐼 mPwSer
𝑅)) |
26 | 25, 12 | aspss 19651 |
. . . . 5
⊢ (((𝐼 mPwSer 𝑅) ∈ AssAlg ∧ (𝐻 ∩ 𝐵) ⊆ (Base‘(𝐼 mPwSer 𝑅)) ∧ ran 𝑉 ⊆ (𝐻 ∩ 𝐵)) → ((AlgSpan‘(𝐼 mPwSer 𝑅))‘ran 𝑉) ⊆ ((AlgSpan‘(𝐼 mPwSer 𝑅))‘(𝐻 ∩ 𝐵))) |
27 | 5, 15, 24, 26 | syl3anc 1491 |
. . . 4
⊢ (𝜑 → ((AlgSpan‘(𝐼 mPwSer 𝑅))‘ran 𝑉) ⊆ ((AlgSpan‘(𝐼 mPwSer 𝑅))‘(𝐻 ∩ 𝐵))) |
28 | 7, 2, 16, 25, 3, 4 | mplbas2 19789 |
. . . . 5
⊢ (𝜑 → ((AlgSpan‘(𝐼 mPwSer 𝑅))‘ran 𝑉) = (Base‘𝑌)) |
29 | 28, 8 | syl6eqr 2849 |
. . . 4
⊢ (𝜑 → ((AlgSpan‘(𝐼 mPwSer 𝑅))‘ran 𝑉) = 𝐵) |
30 | 6 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (𝐻 ∩ 𝐵) ⊆ 𝐵) |
31 | 7 | mplassa 19773 |
. . . . . . . . . . . . . 14
⊢ ((𝐼 ∈ V ∧ 𝑅 ∈ CRing) → 𝑌 ∈ AssAlg) |
32 | 3, 4, 31 | syl2anc 580 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑌 ∈ AssAlg) |
33 | | mplind.sc |
. . . . . . . . . . . . . 14
⊢ 𝐶 = (algSc‘𝑌) |
34 | | eqid 2797 |
. . . . . . . . . . . . . 14
⊢
(Scalar‘𝑌) =
(Scalar‘𝑌) |
35 | 33, 34 | asclrhm 19661 |
. . . . . . . . . . . . 13
⊢ (𝑌 ∈ AssAlg → 𝐶 ∈ ((Scalar‘𝑌) RingHom 𝑌)) |
36 | 32, 35 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐶 ∈ ((Scalar‘𝑌) RingHom 𝑌)) |
37 | | eqid 2797 |
. . . . . . . . . . . . 13
⊢
(1r‘(Scalar‘𝑌)) =
(1r‘(Scalar‘𝑌)) |
38 | | eqid 2797 |
. . . . . . . . . . . . 13
⊢
(1r‘𝑌) = (1r‘𝑌) |
39 | 37, 38 | rhm1 19044 |
. . . . . . . . . . . 12
⊢ (𝐶 ∈ ((Scalar‘𝑌) RingHom 𝑌) → (𝐶‘(1r‘(Scalar‘𝑌))) = (1r‘𝑌)) |
40 | 36, 39 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐶‘(1r‘(Scalar‘𝑌))) = (1r‘𝑌)) |
41 | | fveq2 6409 |
. . . . . . . . . . . . 13
⊢ (𝑥 =
(1r‘(Scalar‘𝑌)) → (𝐶‘𝑥) = (𝐶‘(1r‘(Scalar‘𝑌)))) |
42 | 41 | eleq1d 2861 |
. . . . . . . . . . . 12
⊢ (𝑥 =
(1r‘(Scalar‘𝑌)) → ((𝐶‘𝑥) ∈ 𝐻 ↔ (𝐶‘(1r‘(Scalar‘𝑌))) ∈ 𝐻)) |
43 | | mplind.s |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾) → (𝐶‘𝑥) ∈ 𝐻) |
44 | 43 | ralrimiva 3145 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑥 ∈ 𝐾 (𝐶‘𝑥) ∈ 𝐻) |
45 | 7, 3, 4 | mplsca 19764 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑅 = (Scalar‘𝑌)) |
46 | 45, 10 | eqeltrrd 2877 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (Scalar‘𝑌) ∈ Ring) |
47 | | eqid 2797 |
. . . . . . . . . . . . . . 15
⊢
(Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌)) |
48 | 47, 37 | ringidcl 18880 |
. . . . . . . . . . . . . 14
⊢
((Scalar‘𝑌)
∈ Ring → (1r‘(Scalar‘𝑌)) ∈ (Base‘(Scalar‘𝑌))) |
49 | 46, 48 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
(1r‘(Scalar‘𝑌)) ∈ (Base‘(Scalar‘𝑌))) |
50 | | mplind.sk |
. . . . . . . . . . . . . 14
⊢ 𝐾 = (Base‘𝑅) |
51 | 45 | fveq2d 6413 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (Base‘𝑅) =
(Base‘(Scalar‘𝑌))) |
52 | 50, 51 | syl5eq 2843 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐾 = (Base‘(Scalar‘𝑌))) |
53 | 49, 52 | eleqtrrd 2879 |
. . . . . . . . . . . 12
⊢ (𝜑 →
(1r‘(Scalar‘𝑌)) ∈ 𝐾) |
54 | 42, 44, 53 | rspcdva 3501 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐶‘(1r‘(Scalar‘𝑌))) ∈ 𝐻) |
55 | 40, 54 | eqeltrrd 2877 |
. . . . . . . . . 10
⊢ (𝜑 → (1r‘𝑌) ∈ 𝐻) |
56 | | assaring 19639 |
. . . . . . . . . . . 12
⊢ (𝑌 ∈ AssAlg → 𝑌 ∈ Ring) |
57 | 32, 56 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑌 ∈ Ring) |
58 | 8, 38 | ringidcl 18880 |
. . . . . . . . . . 11
⊢ (𝑌 ∈ Ring →
(1r‘𝑌)
∈ 𝐵) |
59 | 57, 58 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (1r‘𝑌) ∈ 𝐵) |
60 | 55, 59 | elind 3994 |
. . . . . . . . 9
⊢ (𝜑 → (1r‘𝑌) ∈ (𝐻 ∩ 𝐵)) |
61 | 60 | ne0d 4120 |
. . . . . . . 8
⊢ (𝜑 → (𝐻 ∩ 𝐵) ≠ ∅) |
62 | 1 | sseli 3792 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ (𝐻 ∩ 𝐵) → 𝑧 ∈ 𝐻) |
63 | 1 | sseli 3792 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ (𝐻 ∩ 𝐵) → 𝑤 ∈ 𝐻) |
64 | 62, 63 | anim12i 607 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ (𝐻 ∩ 𝐵) ∧ 𝑤 ∈ (𝐻 ∩ 𝐵)) → (𝑧 ∈ 𝐻 ∧ 𝑤 ∈ 𝐻)) |
65 | | mplind.p |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → (𝑥 + 𝑦) ∈ 𝐻) |
66 | 65 | caovclg 7058 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐻 ∧ 𝑤 ∈ 𝐻)) → (𝑧 + 𝑤) ∈ 𝐻) |
67 | 64, 66 | sylan2 587 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑧 ∈ (𝐻 ∩ 𝐵) ∧ 𝑤 ∈ (𝐻 ∩ 𝐵))) → (𝑧 + 𝑤) ∈ 𝐻) |
68 | | assalmod 19638 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑌 ∈ AssAlg → 𝑌 ∈ LMod) |
69 | 32, 68 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑌 ∈ LMod) |
70 | | lmodgrp 19184 |
. . . . . . . . . . . . . . . 16
⊢ (𝑌 ∈ LMod → 𝑌 ∈ Grp) |
71 | 69, 70 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑌 ∈ Grp) |
72 | 71 | adantr 473 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑧 ∈ (𝐻 ∩ 𝐵) ∧ 𝑤 ∈ (𝐻 ∩ 𝐵))) → 𝑌 ∈ Grp) |
73 | | simprl 788 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑧 ∈ (𝐻 ∩ 𝐵) ∧ 𝑤 ∈ (𝐻 ∩ 𝐵))) → 𝑧 ∈ (𝐻 ∩ 𝐵)) |
74 | 6, 73 | sseldi 3794 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑧 ∈ (𝐻 ∩ 𝐵) ∧ 𝑤 ∈ (𝐻 ∩ 𝐵))) → 𝑧 ∈ 𝐵) |
75 | | simprr 790 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑧 ∈ (𝐻 ∩ 𝐵) ∧ 𝑤 ∈ (𝐻 ∩ 𝐵))) → 𝑤 ∈ (𝐻 ∩ 𝐵)) |
76 | 6, 75 | sseldi 3794 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑧 ∈ (𝐻 ∩ 𝐵) ∧ 𝑤 ∈ (𝐻 ∩ 𝐵))) → 𝑤 ∈ 𝐵) |
77 | | mplind.sp |
. . . . . . . . . . . . . . 15
⊢ + =
(+g‘𝑌) |
78 | 8, 77 | grpcl 17742 |
. . . . . . . . . . . . . 14
⊢ ((𝑌 ∈ Grp ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) → (𝑧 + 𝑤) ∈ 𝐵) |
79 | 72, 74, 76, 78 | syl3anc 1491 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑧 ∈ (𝐻 ∩ 𝐵) ∧ 𝑤 ∈ (𝐻 ∩ 𝐵))) → (𝑧 + 𝑤) ∈ 𝐵) |
80 | 67, 79 | elind 3994 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑧 ∈ (𝐻 ∩ 𝐵) ∧ 𝑤 ∈ (𝐻 ∩ 𝐵))) → (𝑧 + 𝑤) ∈ (𝐻 ∩ 𝐵)) |
81 | 80 | anassrs 460 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐻 ∩ 𝐵)) ∧ 𝑤 ∈ (𝐻 ∩ 𝐵)) → (𝑧 + 𝑤) ∈ (𝐻 ∩ 𝐵)) |
82 | 81 | ralrimiva 3145 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐻 ∩ 𝐵)) → ∀𝑤 ∈ (𝐻 ∩ 𝐵)(𝑧 + 𝑤) ∈ (𝐻 ∩ 𝐵)) |
83 | | mplind.st |
. . . . . . . . . . . . 13
⊢ · =
(.r‘𝑌) |
84 | | eqid 2797 |
. . . . . . . . . . . . 13
⊢
(invg‘𝑌) = (invg‘𝑌) |
85 | 57 | adantr 473 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐻 ∩ 𝐵)) → 𝑌 ∈ Ring) |
86 | | simpr 478 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐻 ∩ 𝐵)) → 𝑧 ∈ (𝐻 ∩ 𝐵)) |
87 | 6, 86 | sseldi 3794 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐻 ∩ 𝐵)) → 𝑧 ∈ 𝐵) |
88 | 8, 83, 38, 84, 85, 87 | ringnegl 18906 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐻 ∩ 𝐵)) → (((invg‘𝑌)‘(1r‘𝑌)) · 𝑧) = ((invg‘𝑌)‘𝑧)) |
89 | | simpl 475 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐻 ∩ 𝐵)) → 𝜑) |
90 | | rhmghm 19039 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐶 ∈ ((Scalar‘𝑌) RingHom 𝑌) → 𝐶 ∈ ((Scalar‘𝑌) GrpHom 𝑌)) |
91 | 36, 90 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐶 ∈ ((Scalar‘𝑌) GrpHom 𝑌)) |
92 | | eqid 2797 |
. . . . . . . . . . . . . . . . . 18
⊢
(invg‘(Scalar‘𝑌)) =
(invg‘(Scalar‘𝑌)) |
93 | 47, 92, 84 | ghminv 17976 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐶 ∈ ((Scalar‘𝑌) GrpHom 𝑌) ∧
(1r‘(Scalar‘𝑌)) ∈ (Base‘(Scalar‘𝑌))) → (𝐶‘((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌)))) = ((invg‘𝑌)‘(𝐶‘(1r‘(Scalar‘𝑌))))) |
94 | 91, 49, 93 | syl2anc 580 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐶‘((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌)))) = ((invg‘𝑌)‘(𝐶‘(1r‘(Scalar‘𝑌))))) |
95 | 40 | fveq2d 6413 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 →
((invg‘𝑌)‘(𝐶‘(1r‘(Scalar‘𝑌)))) =
((invg‘𝑌)‘(1r‘𝑌))) |
96 | 94, 95 | eqtrd 2831 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐶‘((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌)))) = ((invg‘𝑌)‘(1r‘𝑌))) |
97 | | fveq2 6409 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 =
((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌))) → (𝐶‘𝑥) = (𝐶‘((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌))))) |
98 | 97 | eleq1d 2861 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 =
((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌))) → ((𝐶‘𝑥) ∈ 𝐻 ↔ (𝐶‘((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌)))) ∈ 𝐻)) |
99 | | ringgrp 18864 |
. . . . . . . . . . . . . . . . . . 19
⊢
((Scalar‘𝑌)
∈ Ring → (Scalar‘𝑌) ∈ Grp) |
100 | 46, 99 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (Scalar‘𝑌) ∈ Grp) |
101 | 47, 92 | grpinvcl 17779 |
. . . . . . . . . . . . . . . . . 18
⊢
(((Scalar‘𝑌)
∈ Grp ∧ (1r‘(Scalar‘𝑌)) ∈ (Base‘(Scalar‘𝑌))) →
((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌))) ∈
(Base‘(Scalar‘𝑌))) |
102 | 100, 49, 101 | syl2anc 580 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 →
((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌))) ∈
(Base‘(Scalar‘𝑌))) |
103 | 102, 52 | eleqtrrd 2879 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 →
((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌))) ∈ 𝐾) |
104 | 98, 44, 103 | rspcdva 3501 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐶‘((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌)))) ∈ 𝐻) |
105 | 96, 104 | eqeltrrd 2877 |
. . . . . . . . . . . . . 14
⊢ (𝜑 →
((invg‘𝑌)‘(1r‘𝑌)) ∈ 𝐻) |
106 | 105 | adantr 473 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐻 ∩ 𝐵)) → ((invg‘𝑌)‘(1r‘𝑌)) ∈ 𝐻) |
107 | 1, 86 | sseldi 3794 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐻 ∩ 𝐵)) → 𝑧 ∈ 𝐻) |
108 | | mplind.t |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → (𝑥 · 𝑦) ∈ 𝐻) |
109 | 108 | caovclg 7058 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧
(((invg‘𝑌)‘(1r‘𝑌)) ∈ 𝐻 ∧ 𝑧 ∈ 𝐻)) → (((invg‘𝑌)‘(1r‘𝑌)) · 𝑧) ∈ 𝐻) |
110 | 89, 106, 107, 109 | syl12anc 866 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐻 ∩ 𝐵)) → (((invg‘𝑌)‘(1r‘𝑌)) · 𝑧) ∈ 𝐻) |
111 | 88, 110 | eqeltrrd 2877 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐻 ∩ 𝐵)) → ((invg‘𝑌)‘𝑧) ∈ 𝐻) |
112 | 71 | adantr 473 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐻 ∩ 𝐵)) → 𝑌 ∈ Grp) |
113 | 8, 84 | grpinvcl 17779 |
. . . . . . . . . . . 12
⊢ ((𝑌 ∈ Grp ∧ 𝑧 ∈ 𝐵) → ((invg‘𝑌)‘𝑧) ∈ 𝐵) |
114 | 112, 87, 113 | syl2anc 580 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐻 ∩ 𝐵)) → ((invg‘𝑌)‘𝑧) ∈ 𝐵) |
115 | 111, 114 | elind 3994 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐻 ∩ 𝐵)) → ((invg‘𝑌)‘𝑧) ∈ (𝐻 ∩ 𝐵)) |
116 | 82, 115 | jca 508 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐻 ∩ 𝐵)) → (∀𝑤 ∈ (𝐻 ∩ 𝐵)(𝑧 + 𝑤) ∈ (𝐻 ∩ 𝐵) ∧ ((invg‘𝑌)‘𝑧) ∈ (𝐻 ∩ 𝐵))) |
117 | 116 | ralrimiva 3145 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑧 ∈ (𝐻 ∩ 𝐵)(∀𝑤 ∈ (𝐻 ∩ 𝐵)(𝑧 + 𝑤) ∈ (𝐻 ∩ 𝐵) ∧ ((invg‘𝑌)‘𝑧) ∈ (𝐻 ∩ 𝐵))) |
118 | 8, 77, 84 | issubg2 17918 |
. . . . . . . . 9
⊢ (𝑌 ∈ Grp → ((𝐻 ∩ 𝐵) ∈ (SubGrp‘𝑌) ↔ ((𝐻 ∩ 𝐵) ⊆ 𝐵 ∧ (𝐻 ∩ 𝐵) ≠ ∅ ∧ ∀𝑧 ∈ (𝐻 ∩ 𝐵)(∀𝑤 ∈ (𝐻 ∩ 𝐵)(𝑧 + 𝑤) ∈ (𝐻 ∩ 𝐵) ∧ ((invg‘𝑌)‘𝑧) ∈ (𝐻 ∩ 𝐵))))) |
119 | 71, 118 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ((𝐻 ∩ 𝐵) ∈ (SubGrp‘𝑌) ↔ ((𝐻 ∩ 𝐵) ⊆ 𝐵 ∧ (𝐻 ∩ 𝐵) ≠ ∅ ∧ ∀𝑧 ∈ (𝐻 ∩ 𝐵)(∀𝑤 ∈ (𝐻 ∩ 𝐵)(𝑧 + 𝑤) ∈ (𝐻 ∩ 𝐵) ∧ ((invg‘𝑌)‘𝑧) ∈ (𝐻 ∩ 𝐵))))) |
120 | 30, 61, 117, 119 | mpbir3and 1443 |
. . . . . . 7
⊢ (𝜑 → (𝐻 ∩ 𝐵) ∈ (SubGrp‘𝑌)) |
121 | 1 | sseli 3792 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝐻 ∩ 𝐵) → 𝑥 ∈ 𝐻) |
122 | 1 | sseli 3792 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (𝐻 ∩ 𝐵) → 𝑦 ∈ 𝐻) |
123 | 121, 122 | anim12i 607 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ (𝐻 ∩ 𝐵) ∧ 𝑦 ∈ (𝐻 ∩ 𝐵)) → (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) |
124 | 123, 108 | sylan2 587 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐻 ∩ 𝐵) ∧ 𝑦 ∈ (𝐻 ∩ 𝐵))) → (𝑥 · 𝑦) ∈ 𝐻) |
125 | 57 | adantr 473 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐻 ∩ 𝐵) ∧ 𝑦 ∈ (𝐻 ∩ 𝐵))) → 𝑌 ∈ Ring) |
126 | | simprl 788 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐻 ∩ 𝐵) ∧ 𝑦 ∈ (𝐻 ∩ 𝐵))) → 𝑥 ∈ (𝐻 ∩ 𝐵)) |
127 | 6, 126 | sseldi 3794 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐻 ∩ 𝐵) ∧ 𝑦 ∈ (𝐻 ∩ 𝐵))) → 𝑥 ∈ 𝐵) |
128 | | simprr 790 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐻 ∩ 𝐵) ∧ 𝑦 ∈ (𝐻 ∩ 𝐵))) → 𝑦 ∈ (𝐻 ∩ 𝐵)) |
129 | 6, 128 | sseldi 3794 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐻 ∩ 𝐵) ∧ 𝑦 ∈ (𝐻 ∩ 𝐵))) → 𝑦 ∈ 𝐵) |
130 | 8, 83 | ringcl 18873 |
. . . . . . . . . 10
⊢ ((𝑌 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 · 𝑦) ∈ 𝐵) |
131 | 125, 127,
129, 130 | syl3anc 1491 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐻 ∩ 𝐵) ∧ 𝑦 ∈ (𝐻 ∩ 𝐵))) → (𝑥 · 𝑦) ∈ 𝐵) |
132 | 124, 131 | elind 3994 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐻 ∩ 𝐵) ∧ 𝑦 ∈ (𝐻 ∩ 𝐵))) → (𝑥 · 𝑦) ∈ (𝐻 ∩ 𝐵)) |
133 | 132 | ralrimivva 3150 |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ (𝐻 ∩ 𝐵)∀𝑦 ∈ (𝐻 ∩ 𝐵)(𝑥 · 𝑦) ∈ (𝐻 ∩ 𝐵)) |
134 | 8, 38, 83 | issubrg2 19114 |
. . . . . . . 8
⊢ (𝑌 ∈ Ring → ((𝐻 ∩ 𝐵) ∈ (SubRing‘𝑌) ↔ ((𝐻 ∩ 𝐵) ∈ (SubGrp‘𝑌) ∧ (1r‘𝑌) ∈ (𝐻 ∩ 𝐵) ∧ ∀𝑥 ∈ (𝐻 ∩ 𝐵)∀𝑦 ∈ (𝐻 ∩ 𝐵)(𝑥 · 𝑦) ∈ (𝐻 ∩ 𝐵)))) |
135 | 57, 134 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ((𝐻 ∩ 𝐵) ∈ (SubRing‘𝑌) ↔ ((𝐻 ∩ 𝐵) ∈ (SubGrp‘𝑌) ∧ (1r‘𝑌) ∈ (𝐻 ∩ 𝐵) ∧ ∀𝑥 ∈ (𝐻 ∩ 𝐵)∀𝑦 ∈ (𝐻 ∩ 𝐵)(𝑥 · 𝑦) ∈ (𝐻 ∩ 𝐵)))) |
136 | 120, 60, 133, 135 | mpbir3and 1443 |
. . . . . 6
⊢ (𝜑 → (𝐻 ∩ 𝐵) ∈ (SubRing‘𝑌)) |
137 | 7, 2, 8 | mplval2 19750 |
. . . . . . . 8
⊢ 𝑌 = ((𝐼 mPwSer 𝑅) ↾s 𝐵) |
138 | 137 | subsubrg 19120 |
. . . . . . 7
⊢ (𝐵 ∈ (SubRing‘(𝐼 mPwSer 𝑅)) → ((𝐻 ∩ 𝐵) ∈ (SubRing‘𝑌) ↔ ((𝐻 ∩ 𝐵) ∈ (SubRing‘(𝐼 mPwSer 𝑅)) ∧ (𝐻 ∩ 𝐵) ⊆ 𝐵))) |
139 | 138 | simprbda 493 |
. . . . . 6
⊢ ((𝐵 ∈ (SubRing‘(𝐼 mPwSer 𝑅)) ∧ (𝐻 ∩ 𝐵) ∈ (SubRing‘𝑌)) → (𝐻 ∩ 𝐵) ∈ (SubRing‘(𝐼 mPwSer 𝑅))) |
140 | 11, 136, 139 | syl2anc 580 |
. . . . 5
⊢ (𝜑 → (𝐻 ∩ 𝐵) ∈ (SubRing‘(𝐼 mPwSer 𝑅))) |
141 | | assalmod 19638 |
. . . . . . 7
⊢ ((𝐼 mPwSer 𝑅) ∈ AssAlg → (𝐼 mPwSer 𝑅) ∈ LMod) |
142 | 5, 141 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐼 mPwSer 𝑅) ∈ LMod) |
143 | 2, 7, 8, 3, 10 | mpllss 19757 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ (LSubSp‘(𝐼 mPwSer 𝑅))) |
144 | 32 | adantr 473 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻 ∩ 𝐵))) → 𝑌 ∈ AssAlg) |
145 | | simprl 788 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻 ∩ 𝐵))) → 𝑧 ∈ (Base‘(Scalar‘𝑌))) |
146 | | simprr 790 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻 ∩ 𝐵))) → 𝑤 ∈ (𝐻 ∩ 𝐵)) |
147 | 6, 146 | sseldi 3794 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻 ∩ 𝐵))) → 𝑤 ∈ 𝐵) |
148 | | eqid 2797 |
. . . . . . . . . . . 12
⊢ (
·𝑠 ‘𝑌) = ( ·𝑠
‘𝑌) |
149 | 33, 34, 47, 8, 83, 148 | asclmul1 19658 |
. . . . . . . . . . 11
⊢ ((𝑌 ∈ AssAlg ∧ 𝑧 ∈
(Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ 𝐵) → ((𝐶‘𝑧) · 𝑤) = (𝑧( ·𝑠
‘𝑌)𝑤)) |
150 | 144, 145,
147, 149 | syl3anc 1491 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻 ∩ 𝐵))) → ((𝐶‘𝑧) · 𝑤) = (𝑧( ·𝑠
‘𝑌)𝑤)) |
151 | | fveq2 6409 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → (𝐶‘𝑥) = (𝐶‘𝑧)) |
152 | 151 | eleq1d 2861 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → ((𝐶‘𝑥) ∈ 𝐻 ↔ (𝐶‘𝑧) ∈ 𝐻)) |
153 | 44 | adantr 473 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻 ∩ 𝐵))) → ∀𝑥 ∈ 𝐾 (𝐶‘𝑥) ∈ 𝐻) |
154 | 52 | adantr 473 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻 ∩ 𝐵))) → 𝐾 = (Base‘(Scalar‘𝑌))) |
155 | 145, 154 | eleqtrrd 2879 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻 ∩ 𝐵))) → 𝑧 ∈ 𝐾) |
156 | 152, 153,
155 | rspcdva 3501 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻 ∩ 𝐵))) → (𝐶‘𝑧) ∈ 𝐻) |
157 | 1, 146 | sseldi 3794 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻 ∩ 𝐵))) → 𝑤 ∈ 𝐻) |
158 | 156, 157 | jca 508 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻 ∩ 𝐵))) → ((𝐶‘𝑧) ∈ 𝐻 ∧ 𝑤 ∈ 𝐻)) |
159 | 108 | caovclg 7058 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝐶‘𝑧) ∈ 𝐻 ∧ 𝑤 ∈ 𝐻)) → ((𝐶‘𝑧) · 𝑤) ∈ 𝐻) |
160 | 158, 159 | syldan 586 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻 ∩ 𝐵))) → ((𝐶‘𝑧) · 𝑤) ∈ 𝐻) |
161 | 150, 160 | eqeltrrd 2877 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻 ∩ 𝐵))) → (𝑧( ·𝑠
‘𝑌)𝑤) ∈ 𝐻) |
162 | 69 | adantr 473 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻 ∩ 𝐵))) → 𝑌 ∈ LMod) |
163 | 8, 34, 148, 47 | lmodvscl 19194 |
. . . . . . . . . 10
⊢ ((𝑌 ∈ LMod ∧ 𝑧 ∈
(Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ 𝐵) → (𝑧( ·𝑠
‘𝑌)𝑤) ∈ 𝐵) |
164 | 162, 145,
147, 163 | syl3anc 1491 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻 ∩ 𝐵))) → (𝑧( ·𝑠
‘𝑌)𝑤) ∈ 𝐵) |
165 | 161, 164 | elind 3994 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻 ∩ 𝐵))) → (𝑧( ·𝑠
‘𝑌)𝑤) ∈ (𝐻 ∩ 𝐵)) |
166 | 165 | ralrimivva 3150 |
. . . . . . 7
⊢ (𝜑 → ∀𝑧 ∈ (Base‘(Scalar‘𝑌))∀𝑤 ∈ (𝐻 ∩ 𝐵)(𝑧( ·𝑠
‘𝑌)𝑤) ∈ (𝐻 ∩ 𝐵)) |
167 | | eqid 2797 |
. . . . . . . . 9
⊢
(LSubSp‘𝑌) =
(LSubSp‘𝑌) |
168 | 34, 47, 8, 148, 167 | islss4 19279 |
. . . . . . . 8
⊢ (𝑌 ∈ LMod → ((𝐻 ∩ 𝐵) ∈ (LSubSp‘𝑌) ↔ ((𝐻 ∩ 𝐵) ∈ (SubGrp‘𝑌) ∧ ∀𝑧 ∈ (Base‘(Scalar‘𝑌))∀𝑤 ∈ (𝐻 ∩ 𝐵)(𝑧( ·𝑠
‘𝑌)𝑤) ∈ (𝐻 ∩ 𝐵)))) |
169 | 69, 168 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ((𝐻 ∩ 𝐵) ∈ (LSubSp‘𝑌) ↔ ((𝐻 ∩ 𝐵) ∈ (SubGrp‘𝑌) ∧ ∀𝑧 ∈ (Base‘(Scalar‘𝑌))∀𝑤 ∈ (𝐻 ∩ 𝐵)(𝑧( ·𝑠
‘𝑌)𝑤) ∈ (𝐻 ∩ 𝐵)))) |
170 | 120, 166,
169 | mpbir2and 705 |
. . . . . 6
⊢ (𝜑 → (𝐻 ∩ 𝐵) ∈ (LSubSp‘𝑌)) |
171 | | eqid 2797 |
. . . . . . . 8
⊢
(LSubSp‘(𝐼
mPwSer 𝑅)) =
(LSubSp‘(𝐼 mPwSer
𝑅)) |
172 | 137, 171,
167 | lsslss 19278 |
. . . . . . 7
⊢ (((𝐼 mPwSer 𝑅) ∈ LMod ∧ 𝐵 ∈ (LSubSp‘(𝐼 mPwSer 𝑅))) → ((𝐻 ∩ 𝐵) ∈ (LSubSp‘𝑌) ↔ ((𝐻 ∩ 𝐵) ∈ (LSubSp‘(𝐼 mPwSer 𝑅)) ∧ (𝐻 ∩ 𝐵) ⊆ 𝐵))) |
173 | 172 | simprbda 493 |
. . . . . 6
⊢ ((((𝐼 mPwSer 𝑅) ∈ LMod ∧ 𝐵 ∈ (LSubSp‘(𝐼 mPwSer 𝑅))) ∧ (𝐻 ∩ 𝐵) ∈ (LSubSp‘𝑌)) → (𝐻 ∩ 𝐵) ∈ (LSubSp‘(𝐼 mPwSer 𝑅))) |
174 | 142, 143,
170, 173 | syl21anc 867 |
. . . . 5
⊢ (𝜑 → (𝐻 ∩ 𝐵) ∈ (LSubSp‘(𝐼 mPwSer 𝑅))) |
175 | 25, 12, 171 | aspid 19649 |
. . . . 5
⊢ (((𝐼 mPwSer 𝑅) ∈ AssAlg ∧ (𝐻 ∩ 𝐵) ∈ (SubRing‘(𝐼 mPwSer 𝑅)) ∧ (𝐻 ∩ 𝐵) ∈ (LSubSp‘(𝐼 mPwSer 𝑅))) → ((AlgSpan‘(𝐼 mPwSer 𝑅))‘(𝐻 ∩ 𝐵)) = (𝐻 ∩ 𝐵)) |
176 | 5, 140, 174, 175 | syl3anc 1491 |
. . . 4
⊢ (𝜑 → ((AlgSpan‘(𝐼 mPwSer 𝑅))‘(𝐻 ∩ 𝐵)) = (𝐻 ∩ 𝐵)) |
177 | 27, 29, 176 | 3sstr3d 3841 |
. . 3
⊢ (𝜑 → 𝐵 ⊆ (𝐻 ∩ 𝐵)) |
178 | | mplind.x |
. . 3
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
179 | 177, 178 | sseldd 3797 |
. 2
⊢ (𝜑 → 𝑋 ∈ (𝐻 ∩ 𝐵)) |
180 | 1, 179 | sseldi 3794 |
1
⊢ (𝜑 → 𝑋 ∈ 𝐻) |