Step | Hyp | Ref
| Expression |
1 | | eqid 2732 |
. . . . . 6
β’ (πΌ mPwSer π
) = (πΌ mPwSer π
) |
2 | | mplind.i |
. . . . . 6
β’ (π β πΌ β π) |
3 | | mplind.r |
. . . . . 6
β’ (π β π
β CRing) |
4 | 1, 2, 3 | psrassa 21525 |
. . . . 5
β’ (π β (πΌ mPwSer π
) β AssAlg) |
5 | | inss2 4228 |
. . . . . 6
β’ (π» β© π΅) β π΅ |
6 | | mplind.sy |
. . . . . . . 8
β’ π = (πΌ mPoly π
) |
7 | | mplind.sb |
. . . . . . . 8
β’ π΅ = (Baseβπ) |
8 | | crngring 20061 |
. . . . . . . . 9
β’ (π
β CRing β π
β Ring) |
9 | 3, 8 | syl 17 |
. . . . . . . 8
β’ (π β π
β Ring) |
10 | 1, 6, 7, 2, 9 | mplsubrg 21555 |
. . . . . . 7
β’ (π β π΅ β (SubRingβ(πΌ mPwSer π
))) |
11 | | eqid 2732 |
. . . . . . . 8
β’
(Baseβ(πΌ
mPwSer π
)) =
(Baseβ(πΌ mPwSer π
)) |
12 | 11 | subrgss 20356 |
. . . . . . 7
β’ (π΅ β (SubRingβ(πΌ mPwSer π
)) β π΅ β (Baseβ(πΌ mPwSer π
))) |
13 | 10, 12 | syl 17 |
. . . . . 6
β’ (π β π΅ β (Baseβ(πΌ mPwSer π
))) |
14 | 5, 13 | sstrid 3992 |
. . . . 5
β’ (π β (π» β© π΅) β (Baseβ(πΌ mPwSer π
))) |
15 | | mplind.sv |
. . . . . . . . 9
β’ π = (πΌ mVar π
) |
16 | 6, 15, 7, 2, 9 | mvrf2 21543 |
. . . . . . . 8
β’ (π β π:πΌβΆπ΅) |
17 | 16 | ffnd 6715 |
. . . . . . 7
β’ (π β π Fn πΌ) |
18 | | mplind.v |
. . . . . . . 8
β’ ((π β§ π₯ β πΌ) β (πβπ₯) β π») |
19 | 18 | ralrimiva 3146 |
. . . . . . 7
β’ (π β βπ₯ β πΌ (πβπ₯) β π») |
20 | | fnfvrnss 7116 |
. . . . . . 7
β’ ((π Fn πΌ β§ βπ₯ β πΌ (πβπ₯) β π») β ran π β π») |
21 | 17, 19, 20 | syl2anc 584 |
. . . . . 6
β’ (π β ran π β π») |
22 | 16 | frnd 6722 |
. . . . . 6
β’ (π β ran π β π΅) |
23 | 21, 22 | ssind 4231 |
. . . . 5
β’ (π β ran π β (π» β© π΅)) |
24 | | eqid 2732 |
. . . . . 6
β’
(AlgSpanβ(πΌ
mPwSer π
)) =
(AlgSpanβ(πΌ mPwSer
π
)) |
25 | 24, 11 | aspss 21422 |
. . . . 5
β’ (((πΌ mPwSer π
) β AssAlg β§ (π» β© π΅) β (Baseβ(πΌ mPwSer π
)) β§ ran π β (π» β© π΅)) β ((AlgSpanβ(πΌ mPwSer π
))βran π) β ((AlgSpanβ(πΌ mPwSer π
))β(π» β© π΅))) |
26 | 4, 14, 23, 25 | syl3anc 1371 |
. . . 4
β’ (π β ((AlgSpanβ(πΌ mPwSer π
))βran π) β ((AlgSpanβ(πΌ mPwSer π
))β(π» β© π΅))) |
27 | 6, 1, 15, 24, 2, 3 | mplbas2 21588 |
. . . . 5
β’ (π β ((AlgSpanβ(πΌ mPwSer π
))βran π) = (Baseβπ)) |
28 | 27, 7 | eqtr4di 2790 |
. . . 4
β’ (π β ((AlgSpanβ(πΌ mPwSer π
))βran π) = π΅) |
29 | 5 | a1i 11 |
. . . . . . . 8
β’ (π β (π» β© π΅) β π΅) |
30 | 6 | mplassa 21572 |
. . . . . . . . . . . . . 14
β’ ((πΌ β π β§ π
β CRing) β π β AssAlg) |
31 | 2, 3, 30 | syl2anc 584 |
. . . . . . . . . . . . 13
β’ (π β π β AssAlg) |
32 | | mplind.sc |
. . . . . . . . . . . . . 14
β’ πΆ = (algScβπ) |
33 | | eqid 2732 |
. . . . . . . . . . . . . 14
β’
(Scalarβπ) =
(Scalarβπ) |
34 | 32, 33 | asclrhm 21435 |
. . . . . . . . . . . . 13
β’ (π β AssAlg β πΆ β ((Scalarβπ) RingHom π)) |
35 | 31, 34 | syl 17 |
. . . . . . . . . . . 12
β’ (π β πΆ β ((Scalarβπ) RingHom π)) |
36 | | eqid 2732 |
. . . . . . . . . . . . 13
β’
(1rβ(Scalarβπ)) =
(1rβ(Scalarβπ)) |
37 | | eqid 2732 |
. . . . . . . . . . . . 13
β’
(1rβπ) = (1rβπ) |
38 | 36, 37 | rhm1 20259 |
. . . . . . . . . . . 12
β’ (πΆ β ((Scalarβπ) RingHom π) β (πΆβ(1rβ(Scalarβπ))) = (1rβπ)) |
39 | 35, 38 | syl 17 |
. . . . . . . . . . 11
β’ (π β (πΆβ(1rβ(Scalarβπ))) = (1rβπ)) |
40 | | fveq2 6888 |
. . . . . . . . . . . . 13
β’ (π₯ =
(1rβ(Scalarβπ)) β (πΆβπ₯) = (πΆβ(1rβ(Scalarβπ)))) |
41 | 40 | eleq1d 2818 |
. . . . . . . . . . . 12
β’ (π₯ =
(1rβ(Scalarβπ)) β ((πΆβπ₯) β π» β (πΆβ(1rβ(Scalarβπ))) β π»)) |
42 | | mplind.s |
. . . . . . . . . . . . 13
β’ ((π β§ π₯ β πΎ) β (πΆβπ₯) β π») |
43 | 42 | ralrimiva 3146 |
. . . . . . . . . . . 12
β’ (π β βπ₯ β πΎ (πΆβπ₯) β π») |
44 | 6, 2, 3 | mplsca 21563 |
. . . . . . . . . . . . . . 15
β’ (π β π
= (Scalarβπ)) |
45 | 44, 9 | eqeltrrd 2834 |
. . . . . . . . . . . . . 14
β’ (π β (Scalarβπ) β Ring) |
46 | | eqid 2732 |
. . . . . . . . . . . . . . 15
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
47 | 46, 36 | ringidcl 20076 |
. . . . . . . . . . . . . 14
β’
((Scalarβπ)
β Ring β (1rβ(Scalarβπ)) β (Baseβ(Scalarβπ))) |
48 | 45, 47 | syl 17 |
. . . . . . . . . . . . 13
β’ (π β
(1rβ(Scalarβπ)) β (Baseβ(Scalarβπ))) |
49 | | mplind.sk |
. . . . . . . . . . . . . 14
β’ πΎ = (Baseβπ
) |
50 | 44 | fveq2d 6892 |
. . . . . . . . . . . . . 14
β’ (π β (Baseβπ
) =
(Baseβ(Scalarβπ))) |
51 | 49, 50 | eqtrid 2784 |
. . . . . . . . . . . . 13
β’ (π β πΎ = (Baseβ(Scalarβπ))) |
52 | 48, 51 | eleqtrrd 2836 |
. . . . . . . . . . . 12
β’ (π β
(1rβ(Scalarβπ)) β πΎ) |
53 | 41, 43, 52 | rspcdva 3613 |
. . . . . . . . . . 11
β’ (π β (πΆβ(1rβ(Scalarβπ))) β π») |
54 | 39, 53 | eqeltrrd 2834 |
. . . . . . . . . 10
β’ (π β (1rβπ) β π») |
55 | | assaring 21407 |
. . . . . . . . . . . 12
β’ (π β AssAlg β π β Ring) |
56 | 31, 55 | syl 17 |
. . . . . . . . . . 11
β’ (π β π β Ring) |
57 | 7, 37 | ringidcl 20076 |
. . . . . . . . . . 11
β’ (π β Ring β
(1rβπ)
β π΅) |
58 | 56, 57 | syl 17 |
. . . . . . . . . 10
β’ (π β (1rβπ) β π΅) |
59 | 54, 58 | elind 4193 |
. . . . . . . . 9
β’ (π β (1rβπ) β (π» β© π΅)) |
60 | 59 | ne0d 4334 |
. . . . . . . 8
β’ (π β (π» β© π΅) β β
) |
61 | | elinel1 4194 |
. . . . . . . . . . . . . . 15
β’ (π§ β (π» β© π΅) β π§ β π») |
62 | | elinel1 4194 |
. . . . . . . . . . . . . . 15
β’ (π€ β (π» β© π΅) β π€ β π») |
63 | 61, 62 | anim12i 613 |
. . . . . . . . . . . . . 14
β’ ((π§ β (π» β© π΅) β§ π€ β (π» β© π΅)) β (π§ β π» β§ π€ β π»)) |
64 | | mplind.p |
. . . . . . . . . . . . . . 15
β’ ((π β§ (π₯ β π» β§ π¦ β π»)) β (π₯ + π¦) β π») |
65 | 64 | caovclg 7595 |
. . . . . . . . . . . . . 14
β’ ((π β§ (π§ β π» β§ π€ β π»)) β (π§ + π€) β π») |
66 | 63, 65 | sylan2 593 |
. . . . . . . . . . . . 13
β’ ((π β§ (π§ β (π» β© π΅) β§ π€ β (π» β© π΅))) β (π§ + π€) β π») |
67 | | assalmod 21406 |
. . . . . . . . . . . . . . . . 17
β’ (π β AssAlg β π β LMod) |
68 | 31, 67 | syl 17 |
. . . . . . . . . . . . . . . 16
β’ (π β π β LMod) |
69 | | lmodgrp 20470 |
. . . . . . . . . . . . . . . 16
β’ (π β LMod β π β Grp) |
70 | 68, 69 | syl 17 |
. . . . . . . . . . . . . . 15
β’ (π β π β Grp) |
71 | 70 | adantr 481 |
. . . . . . . . . . . . . 14
β’ ((π β§ (π§ β (π» β© π΅) β§ π€ β (π» β© π΅))) β π β Grp) |
72 | | simprl 769 |
. . . . . . . . . . . . . . 15
β’ ((π β§ (π§ β (π» β© π΅) β§ π€ β (π» β© π΅))) β π§ β (π» β© π΅)) |
73 | 72 | elin2d 4198 |
. . . . . . . . . . . . . 14
β’ ((π β§ (π§ β (π» β© π΅) β§ π€ β (π» β© π΅))) β π§ β π΅) |
74 | | simprr 771 |
. . . . . . . . . . . . . . 15
β’ ((π β§ (π§ β (π» β© π΅) β§ π€ β (π» β© π΅))) β π€ β (π» β© π΅)) |
75 | 74 | elin2d 4198 |
. . . . . . . . . . . . . 14
β’ ((π β§ (π§ β (π» β© π΅) β§ π€ β (π» β© π΅))) β π€ β π΅) |
76 | | mplind.sp |
. . . . . . . . . . . . . . 15
β’ + =
(+gβπ) |
77 | 7, 76 | grpcl 18823 |
. . . . . . . . . . . . . 14
β’ ((π β Grp β§ π§ β π΅ β§ π€ β π΅) β (π§ + π€) β π΅) |
78 | 71, 73, 75, 77 | syl3anc 1371 |
. . . . . . . . . . . . 13
β’ ((π β§ (π§ β (π» β© π΅) β§ π€ β (π» β© π΅))) β (π§ + π€) β π΅) |
79 | 66, 78 | elind 4193 |
. . . . . . . . . . . 12
β’ ((π β§ (π§ β (π» β© π΅) β§ π€ β (π» β© π΅))) β (π§ + π€) β (π» β© π΅)) |
80 | 79 | anassrs 468 |
. . . . . . . . . . 11
β’ (((π β§ π§ β (π» β© π΅)) β§ π€ β (π» β© π΅)) β (π§ + π€) β (π» β© π΅)) |
81 | 80 | ralrimiva 3146 |
. . . . . . . . . 10
β’ ((π β§ π§ β (π» β© π΅)) β βπ€ β (π» β© π΅)(π§ + π€) β (π» β© π΅)) |
82 | | mplind.st |
. . . . . . . . . . . . 13
β’ Β· =
(.rβπ) |
83 | | eqid 2732 |
. . . . . . . . . . . . 13
β’
(invgβπ) = (invgβπ) |
84 | 56 | adantr 481 |
. . . . . . . . . . . . 13
β’ ((π β§ π§ β (π» β© π΅)) β π β Ring) |
85 | | simpr 485 |
. . . . . . . . . . . . . 14
β’ ((π β§ π§ β (π» β© π΅)) β π§ β (π» β© π΅)) |
86 | 85 | elin2d 4198 |
. . . . . . . . . . . . 13
β’ ((π β§ π§ β (π» β© π΅)) β π§ β π΅) |
87 | 7, 82, 37, 83, 84, 86 | ringnegl 20107 |
. . . . . . . . . . . 12
β’ ((π β§ π§ β (π» β© π΅)) β (((invgβπ)β(1rβπ)) Β· π§) = ((invgβπ)βπ§)) |
88 | | simpl 483 |
. . . . . . . . . . . . 13
β’ ((π β§ π§ β (π» β© π΅)) β π) |
89 | | rhmghm 20254 |
. . . . . . . . . . . . . . . . . 18
β’ (πΆ β ((Scalarβπ) RingHom π) β πΆ β ((Scalarβπ) GrpHom π)) |
90 | 35, 89 | syl 17 |
. . . . . . . . . . . . . . . . 17
β’ (π β πΆ β ((Scalarβπ) GrpHom π)) |
91 | | eqid 2732 |
. . . . . . . . . . . . . . . . . 18
β’
(invgβ(Scalarβπ)) =
(invgβ(Scalarβπ)) |
92 | 46, 91, 83 | ghminv 19093 |
. . . . . . . . . . . . . . . . 17
β’ ((πΆ β ((Scalarβπ) GrpHom π) β§
(1rβ(Scalarβπ)) β (Baseβ(Scalarβπ))) β (πΆβ((invgβ(Scalarβπ))β(1rβ(Scalarβπ)))) = ((invgβπ)β(πΆβ(1rβ(Scalarβπ))))) |
93 | 90, 48, 92 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
β’ (π β (πΆβ((invgβ(Scalarβπ))β(1rβ(Scalarβπ)))) = ((invgβπ)β(πΆβ(1rβ(Scalarβπ))))) |
94 | 39 | fveq2d 6892 |
. . . . . . . . . . . . . . . 16
β’ (π β
((invgβπ)β(πΆβ(1rβ(Scalarβπ)))) =
((invgβπ)β(1rβπ))) |
95 | 93, 94 | eqtrd 2772 |
. . . . . . . . . . . . . . 15
β’ (π β (πΆβ((invgβ(Scalarβπ))β(1rβ(Scalarβπ)))) = ((invgβπ)β(1rβπ))) |
96 | | fveq2 6888 |
. . . . . . . . . . . . . . . . 17
β’ (π₯ =
((invgβ(Scalarβπ))β(1rβ(Scalarβπ))) β (πΆβπ₯) = (πΆβ((invgβ(Scalarβπ))β(1rβ(Scalarβπ))))) |
97 | 96 | eleq1d 2818 |
. . . . . . . . . . . . . . . 16
β’ (π₯ =
((invgβ(Scalarβπ))β(1rβ(Scalarβπ))) β ((πΆβπ₯) β π» β (πΆβ((invgβ(Scalarβπ))β(1rβ(Scalarβπ)))) β π»)) |
98 | | ringgrp 20054 |
. . . . . . . . . . . . . . . . . . 19
β’
((Scalarβπ)
β Ring β (Scalarβπ) β Grp) |
99 | 45, 98 | syl 17 |
. . . . . . . . . . . . . . . . . 18
β’ (π β (Scalarβπ) β Grp) |
100 | 46, 91 | grpinvcl 18868 |
. . . . . . . . . . . . . . . . . 18
β’
(((Scalarβπ)
β Grp β§ (1rβ(Scalarβπ)) β (Baseβ(Scalarβπ))) β
((invgβ(Scalarβπ))β(1rβ(Scalarβπ))) β
(Baseβ(Scalarβπ))) |
101 | 99, 48, 100 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
β’ (π β
((invgβ(Scalarβπ))β(1rβ(Scalarβπ))) β
(Baseβ(Scalarβπ))) |
102 | 101, 51 | eleqtrrd 2836 |
. . . . . . . . . . . . . . . 16
β’ (π β
((invgβ(Scalarβπ))β(1rβ(Scalarβπ))) β πΎ) |
103 | 97, 43, 102 | rspcdva 3613 |
. . . . . . . . . . . . . . 15
β’ (π β (πΆβ((invgβ(Scalarβπ))β(1rβ(Scalarβπ)))) β π») |
104 | 95, 103 | eqeltrrd 2834 |
. . . . . . . . . . . . . 14
β’ (π β
((invgβπ)β(1rβπ)) β π») |
105 | 104 | adantr 481 |
. . . . . . . . . . . . 13
β’ ((π β§ π§ β (π» β© π΅)) β ((invgβπ)β(1rβπ)) β π») |
106 | 85 | elin1d 4197 |
. . . . . . . . . . . . 13
β’ ((π β§ π§ β (π» β© π΅)) β π§ β π») |
107 | | mplind.t |
. . . . . . . . . . . . . 14
β’ ((π β§ (π₯ β π» β§ π¦ β π»)) β (π₯ Β· π¦) β π») |
108 | 107 | caovclg 7595 |
. . . . . . . . . . . . 13
β’ ((π β§
(((invgβπ)β(1rβπ)) β π» β§ π§ β π»)) β (((invgβπ)β(1rβπ)) Β· π§) β π») |
109 | 88, 105, 106, 108 | syl12anc 835 |
. . . . . . . . . . . 12
β’ ((π β§ π§ β (π» β© π΅)) β (((invgβπ)β(1rβπ)) Β· π§) β π») |
110 | 87, 109 | eqeltrrd 2834 |
. . . . . . . . . . 11
β’ ((π β§ π§ β (π» β© π΅)) β ((invgβπ)βπ§) β π») |
111 | 70 | adantr 481 |
. . . . . . . . . . . 12
β’ ((π β§ π§ β (π» β© π΅)) β π β Grp) |
112 | 7, 83 | grpinvcl 18868 |
. . . . . . . . . . . 12
β’ ((π β Grp β§ π§ β π΅) β ((invgβπ)βπ§) β π΅) |
113 | 111, 86, 112 | syl2anc 584 |
. . . . . . . . . . 11
β’ ((π β§ π§ β (π» β© π΅)) β ((invgβπ)βπ§) β π΅) |
114 | 110, 113 | elind 4193 |
. . . . . . . . . 10
β’ ((π β§ π§ β (π» β© π΅)) β ((invgβπ)βπ§) β (π» β© π΅)) |
115 | 81, 114 | jca 512 |
. . . . . . . . 9
β’ ((π β§ π§ β (π» β© π΅)) β (βπ€ β (π» β© π΅)(π§ + π€) β (π» β© π΅) β§ ((invgβπ)βπ§) β (π» β© π΅))) |
116 | 115 | ralrimiva 3146 |
. . . . . . . 8
β’ (π β βπ§ β (π» β© π΅)(βπ€ β (π» β© π΅)(π§ + π€) β (π» β© π΅) β§ ((invgβπ)βπ§) β (π» β© π΅))) |
117 | 7, 76, 83 | issubg2 19015 |
. . . . . . . . 9
β’ (π β Grp β ((π» β© π΅) β (SubGrpβπ) β ((π» β© π΅) β π΅ β§ (π» β© π΅) β β
β§ βπ§ β (π» β© π΅)(βπ€ β (π» β© π΅)(π§ + π€) β (π» β© π΅) β§ ((invgβπ)βπ§) β (π» β© π΅))))) |
118 | 70, 117 | syl 17 |
. . . . . . . 8
β’ (π β ((π» β© π΅) β (SubGrpβπ) β ((π» β© π΅) β π΅ β§ (π» β© π΅) β β
β§ βπ§ β (π» β© π΅)(βπ€ β (π» β© π΅)(π§ + π€) β (π» β© π΅) β§ ((invgβπ)βπ§) β (π» β© π΅))))) |
119 | 29, 60, 116, 118 | mpbir3and 1342 |
. . . . . . 7
β’ (π β (π» β© π΅) β (SubGrpβπ)) |
120 | | elinel1 4194 |
. . . . . . . . . . 11
β’ (π₯ β (π» β© π΅) β π₯ β π») |
121 | | elinel1 4194 |
. . . . . . . . . . 11
β’ (π¦ β (π» β© π΅) β π¦ β π») |
122 | 120, 121 | anim12i 613 |
. . . . . . . . . 10
β’ ((π₯ β (π» β© π΅) β§ π¦ β (π» β© π΅)) β (π₯ β π» β§ π¦ β π»)) |
123 | 122, 107 | sylan2 593 |
. . . . . . . . 9
β’ ((π β§ (π₯ β (π» β© π΅) β§ π¦ β (π» β© π΅))) β (π₯ Β· π¦) β π») |
124 | 56 | adantr 481 |
. . . . . . . . . 10
β’ ((π β§ (π₯ β (π» β© π΅) β§ π¦ β (π» β© π΅))) β π β Ring) |
125 | | simprl 769 |
. . . . . . . . . . 11
β’ ((π β§ (π₯ β (π» β© π΅) β§ π¦ β (π» β© π΅))) β π₯ β (π» β© π΅)) |
126 | 125 | elin2d 4198 |
. . . . . . . . . 10
β’ ((π β§ (π₯ β (π» β© π΅) β§ π¦ β (π» β© π΅))) β π₯ β π΅) |
127 | | simprr 771 |
. . . . . . . . . . 11
β’ ((π β§ (π₯ β (π» β© π΅) β§ π¦ β (π» β© π΅))) β π¦ β (π» β© π΅)) |
128 | 127 | elin2d 4198 |
. . . . . . . . . 10
β’ ((π β§ (π₯ β (π» β© π΅) β§ π¦ β (π» β© π΅))) β π¦ β π΅) |
129 | 7, 82 | ringcl 20066 |
. . . . . . . . . 10
β’ ((π β Ring β§ π₯ β π΅ β§ π¦ β π΅) β (π₯ Β· π¦) β π΅) |
130 | 124, 126,
128, 129 | syl3anc 1371 |
. . . . . . . . 9
β’ ((π β§ (π₯ β (π» β© π΅) β§ π¦ β (π» β© π΅))) β (π₯ Β· π¦) β π΅) |
131 | 123, 130 | elind 4193 |
. . . . . . . 8
β’ ((π β§ (π₯ β (π» β© π΅) β§ π¦ β (π» β© π΅))) β (π₯ Β· π¦) β (π» β© π΅)) |
132 | 131 | ralrimivva 3200 |
. . . . . . 7
β’ (π β βπ₯ β (π» β© π΅)βπ¦ β (π» β© π΅)(π₯ Β· π¦) β (π» β© π΅)) |
133 | 7, 37, 82 | issubrg2 20375 |
. . . . . . . 8
β’ (π β Ring β ((π» β© π΅) β (SubRingβπ) β ((π» β© π΅) β (SubGrpβπ) β§ (1rβπ) β (π» β© π΅) β§ βπ₯ β (π» β© π΅)βπ¦ β (π» β© π΅)(π₯ Β· π¦) β (π» β© π΅)))) |
134 | 56, 133 | syl 17 |
. . . . . . 7
β’ (π β ((π» β© π΅) β (SubRingβπ) β ((π» β© π΅) β (SubGrpβπ) β§ (1rβπ) β (π» β© π΅) β§ βπ₯ β (π» β© π΅)βπ¦ β (π» β© π΅)(π₯ Β· π¦) β (π» β© π΅)))) |
135 | 119, 59, 132, 134 | mpbir3and 1342 |
. . . . . 6
β’ (π β (π» β© π΅) β (SubRingβπ)) |
136 | 6, 1, 7 | mplval2 21546 |
. . . . . . . 8
β’ π = ((πΌ mPwSer π
) βΎs π΅) |
137 | 136 | subsubrg 20382 |
. . . . . . 7
β’ (π΅ β (SubRingβ(πΌ mPwSer π
)) β ((π» β© π΅) β (SubRingβπ) β ((π» β© π΅) β (SubRingβ(πΌ mPwSer π
)) β§ (π» β© π΅) β π΅))) |
138 | 137 | simprbda 499 |
. . . . . 6
β’ ((π΅ β (SubRingβ(πΌ mPwSer π
)) β§ (π» β© π΅) β (SubRingβπ)) β (π» β© π΅) β (SubRingβ(πΌ mPwSer π
))) |
139 | 10, 135, 138 | syl2anc 584 |
. . . . 5
β’ (π β (π» β© π΅) β (SubRingβ(πΌ mPwSer π
))) |
140 | | assalmod 21406 |
. . . . . . 7
β’ ((πΌ mPwSer π
) β AssAlg β (πΌ mPwSer π
) β LMod) |
141 | 4, 140 | syl 17 |
. . . . . 6
β’ (π β (πΌ mPwSer π
) β LMod) |
142 | 1, 6, 7, 2, 9 | mpllss 21553 |
. . . . . 6
β’ (π β π΅ β (LSubSpβ(πΌ mPwSer π
))) |
143 | 31 | adantr 481 |
. . . . . . . . . . 11
β’ ((π β§ (π§ β (Baseβ(Scalarβπ)) β§ π€ β (π» β© π΅))) β π β AssAlg) |
144 | | simprl 769 |
. . . . . . . . . . 11
β’ ((π β§ (π§ β (Baseβ(Scalarβπ)) β§ π€ β (π» β© π΅))) β π§ β (Baseβ(Scalarβπ))) |
145 | | simprr 771 |
. . . . . . . . . . . 12
β’ ((π β§ (π§ β (Baseβ(Scalarβπ)) β§ π€ β (π» β© π΅))) β π€ β (π» β© π΅)) |
146 | 145 | elin2d 4198 |
. . . . . . . . . . 11
β’ ((π β§ (π§ β (Baseβ(Scalarβπ)) β§ π€ β (π» β© π΅))) β π€ β π΅) |
147 | | eqid 2732 |
. . . . . . . . . . . 12
β’ (
Β·π βπ) = ( Β·π
βπ) |
148 | 32, 33, 46, 7, 82, 147 | asclmul1 21431 |
. . . . . . . . . . 11
β’ ((π β AssAlg β§ π§ β
(Baseβ(Scalarβπ)) β§ π€ β π΅) β ((πΆβπ§) Β· π€) = (π§( Β·π
βπ)π€)) |
149 | 143, 144,
146, 148 | syl3anc 1371 |
. . . . . . . . . 10
β’ ((π β§ (π§ β (Baseβ(Scalarβπ)) β§ π€ β (π» β© π΅))) β ((πΆβπ§) Β· π€) = (π§( Β·π
βπ)π€)) |
150 | | fveq2 6888 |
. . . . . . . . . . . . . 14
β’ (π₯ = π§ β (πΆβπ₯) = (πΆβπ§)) |
151 | 150 | eleq1d 2818 |
. . . . . . . . . . . . 13
β’ (π₯ = π§ β ((πΆβπ₯) β π» β (πΆβπ§) β π»)) |
152 | 43 | adantr 481 |
. . . . . . . . . . . . 13
β’ ((π β§ (π§ β (Baseβ(Scalarβπ)) β§ π€ β (π» β© π΅))) β βπ₯ β πΎ (πΆβπ₯) β π») |
153 | 51 | adantr 481 |
. . . . . . . . . . . . . 14
β’ ((π β§ (π§ β (Baseβ(Scalarβπ)) β§ π€ β (π» β© π΅))) β πΎ = (Baseβ(Scalarβπ))) |
154 | 144, 153 | eleqtrrd 2836 |
. . . . . . . . . . . . 13
β’ ((π β§ (π§ β (Baseβ(Scalarβπ)) β§ π€ β (π» β© π΅))) β π§ β πΎ) |
155 | 151, 152,
154 | rspcdva 3613 |
. . . . . . . . . . . 12
β’ ((π β§ (π§ β (Baseβ(Scalarβπ)) β§ π€ β (π» β© π΅))) β (πΆβπ§) β π») |
156 | 145 | elin1d 4197 |
. . . . . . . . . . . 12
β’ ((π β§ (π§ β (Baseβ(Scalarβπ)) β§ π€ β (π» β© π΅))) β π€ β π») |
157 | 155, 156 | jca 512 |
. . . . . . . . . . 11
β’ ((π β§ (π§ β (Baseβ(Scalarβπ)) β§ π€ β (π» β© π΅))) β ((πΆβπ§) β π» β§ π€ β π»)) |
158 | 107 | caovclg 7595 |
. . . . . . . . . . 11
β’ ((π β§ ((πΆβπ§) β π» β§ π€ β π»)) β ((πΆβπ§) Β· π€) β π») |
159 | 157, 158 | syldan 591 |
. . . . . . . . . 10
β’ ((π β§ (π§ β (Baseβ(Scalarβπ)) β§ π€ β (π» β© π΅))) β ((πΆβπ§) Β· π€) β π») |
160 | 149, 159 | eqeltrrd 2834 |
. . . . . . . . 9
β’ ((π β§ (π§ β (Baseβ(Scalarβπ)) β§ π€ β (π» β© π΅))) β (π§( Β·π
βπ)π€) β π») |
161 | 68 | adantr 481 |
. . . . . . . . . 10
β’ ((π β§ (π§ β (Baseβ(Scalarβπ)) β§ π€ β (π» β© π΅))) β π β LMod) |
162 | 7, 33, 147, 46 | lmodvscl 20481 |
. . . . . . . . . 10
β’ ((π β LMod β§ π§ β
(Baseβ(Scalarβπ)) β§ π€ β π΅) β (π§( Β·π
βπ)π€) β π΅) |
163 | 161, 144,
146, 162 | syl3anc 1371 |
. . . . . . . . 9
β’ ((π β§ (π§ β (Baseβ(Scalarβπ)) β§ π€ β (π» β© π΅))) β (π§( Β·π
βπ)π€) β π΅) |
164 | 160, 163 | elind 4193 |
. . . . . . . 8
β’ ((π β§ (π§ β (Baseβ(Scalarβπ)) β§ π€ β (π» β© π΅))) β (π§( Β·π
βπ)π€) β (π» β© π΅)) |
165 | 164 | ralrimivva 3200 |
. . . . . . 7
β’ (π β βπ§ β (Baseβ(Scalarβπ))βπ€ β (π» β© π΅)(π§( Β·π
βπ)π€) β (π» β© π΅)) |
166 | | eqid 2732 |
. . . . . . . . 9
β’
(LSubSpβπ) =
(LSubSpβπ) |
167 | 33, 46, 7, 147, 166 | islss4 20565 |
. . . . . . . 8
β’ (π β LMod β ((π» β© π΅) β (LSubSpβπ) β ((π» β© π΅) β (SubGrpβπ) β§ βπ§ β (Baseβ(Scalarβπ))βπ€ β (π» β© π΅)(π§( Β·π
βπ)π€) β (π» β© π΅)))) |
168 | 68, 167 | syl 17 |
. . . . . . 7
β’ (π β ((π» β© π΅) β (LSubSpβπ) β ((π» β© π΅) β (SubGrpβπ) β§ βπ§ β (Baseβ(Scalarβπ))βπ€ β (π» β© π΅)(π§( Β·π
βπ)π€) β (π» β© π΅)))) |
169 | 119, 165,
168 | mpbir2and 711 |
. . . . . 6
β’ (π β (π» β© π΅) β (LSubSpβπ)) |
170 | | eqid 2732 |
. . . . . . . 8
β’
(LSubSpβ(πΌ
mPwSer π
)) =
(LSubSpβ(πΌ mPwSer
π
)) |
171 | 136, 170,
166 | lsslss 20564 |
. . . . . . 7
β’ (((πΌ mPwSer π
) β LMod β§ π΅ β (LSubSpβ(πΌ mPwSer π
))) β ((π» β© π΅) β (LSubSpβπ) β ((π» β© π΅) β (LSubSpβ(πΌ mPwSer π
)) β§ (π» β© π΅) β π΅))) |
172 | 171 | simprbda 499 |
. . . . . 6
β’ ((((πΌ mPwSer π
) β LMod β§ π΅ β (LSubSpβ(πΌ mPwSer π
))) β§ (π» β© π΅) β (LSubSpβπ)) β (π» β© π΅) β (LSubSpβ(πΌ mPwSer π
))) |
173 | 141, 142,
169, 172 | syl21anc 836 |
. . . . 5
β’ (π β (π» β© π΅) β (LSubSpβ(πΌ mPwSer π
))) |
174 | 24, 11, 170 | aspid 21420 |
. . . . 5
β’ (((πΌ mPwSer π
) β AssAlg β§ (π» β© π΅) β (SubRingβ(πΌ mPwSer π
)) β§ (π» β© π΅) β (LSubSpβ(πΌ mPwSer π
))) β ((AlgSpanβ(πΌ mPwSer π
))β(π» β© π΅)) = (π» β© π΅)) |
175 | 4, 139, 173, 174 | syl3anc 1371 |
. . . 4
β’ (π β ((AlgSpanβ(πΌ mPwSer π
))β(π» β© π΅)) = (π» β© π΅)) |
176 | 26, 28, 175 | 3sstr3d 4027 |
. . 3
β’ (π β π΅ β (π» β© π΅)) |
177 | | mplind.x |
. . 3
β’ (π β π β π΅) |
178 | 176, 177 | sseldd 3982 |
. 2
β’ (π β π β (π» β© π΅)) |
179 | 178 | elin1d 4197 |
1
β’ (π β π β π») |