MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplind Structured version   Visualization version   GIF version

Theorem mplind 21998
Description: Prove a property of polynomials by "structural" induction, under a simplified model of structure which loses the sum of products structure. The commutativity condition is stronger than strictly needed. (Contributed by Stefan O'Rear, 11-Mar-2015.)
Hypotheses
Ref Expression
mplind.sk 𝐾 = (Base‘𝑅)
mplind.sv 𝑉 = (𝐼 mVar 𝑅)
mplind.sy 𝑌 = (𝐼 mPoly 𝑅)
mplind.sp + = (+g𝑌)
mplind.st · = (.r𝑌)
mplind.sc 𝐶 = (algSc‘𝑌)
mplind.sb 𝐵 = (Base‘𝑌)
mplind.p ((𝜑 ∧ (𝑥𝐻𝑦𝐻)) → (𝑥 + 𝑦) ∈ 𝐻)
mplind.t ((𝜑 ∧ (𝑥𝐻𝑦𝐻)) → (𝑥 · 𝑦) ∈ 𝐻)
mplind.s ((𝜑𝑥𝐾) → (𝐶𝑥) ∈ 𝐻)
mplind.v ((𝜑𝑥𝐼) → (𝑉𝑥) ∈ 𝐻)
mplind.x (𝜑𝑋𝐵)
mplind.i (𝜑𝐼𝑊)
mplind.r (𝜑𝑅 ∈ CRing)
Assertion
Ref Expression
mplind (𝜑𝑋𝐻)
Distinct variable groups:   𝑥,𝑦, +   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐼   𝜑,𝑥,𝑦   𝑥,𝐻,𝑦   𝑥,𝐾   𝑥, · ,𝑦   𝑥,𝑉   𝑥,𝑌,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝐼(𝑦)   𝐾(𝑦)   𝑉(𝑦)   𝑊(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem mplind
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . . . 6 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
2 mplind.i . . . . . 6 (𝜑𝐼𝑊)
3 mplind.r . . . . . 6 (𝜑𝑅 ∈ CRing)
41, 2, 3psrassa 21903 . . . . 5 (𝜑 → (𝐼 mPwSer 𝑅) ∈ AssAlg)
5 inss2 4186 . . . . . 6 (𝐻𝐵) ⊆ 𝐵
6 mplind.sy . . . . . . . 8 𝑌 = (𝐼 mPoly 𝑅)
7 mplind.sb . . . . . . . 8 𝐵 = (Base‘𝑌)
8 crngring 20156 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
93, 8syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Ring)
101, 6, 7, 2, 9mplsubrg 21935 . . . . . . 7 (𝜑𝐵 ∈ (SubRing‘(𝐼 mPwSer 𝑅)))
11 eqid 2730 . . . . . . . 8 (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅))
1211subrgss 20480 . . . . . . 7 (𝐵 ∈ (SubRing‘(𝐼 mPwSer 𝑅)) → 𝐵 ⊆ (Base‘(𝐼 mPwSer 𝑅)))
1310, 12syl 17 . . . . . 6 (𝜑𝐵 ⊆ (Base‘(𝐼 mPwSer 𝑅)))
145, 13sstrid 3944 . . . . 5 (𝜑 → (𝐻𝐵) ⊆ (Base‘(𝐼 mPwSer 𝑅)))
15 mplind.sv . . . . . . . . 9 𝑉 = (𝐼 mVar 𝑅)
166, 15, 7, 2, 9mvrf2 21923 . . . . . . . 8 (𝜑𝑉:𝐼𝐵)
1716ffnd 6648 . . . . . . 7 (𝜑𝑉 Fn 𝐼)
18 mplind.v . . . . . . . 8 ((𝜑𝑥𝐼) → (𝑉𝑥) ∈ 𝐻)
1918ralrimiva 3122 . . . . . . 7 (𝜑 → ∀𝑥𝐼 (𝑉𝑥) ∈ 𝐻)
20 fnfvrnss 7049 . . . . . . 7 ((𝑉 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑉𝑥) ∈ 𝐻) → ran 𝑉𝐻)
2117, 19, 20syl2anc 584 . . . . . 6 (𝜑 → ran 𝑉𝐻)
2216frnd 6655 . . . . . 6 (𝜑 → ran 𝑉𝐵)
2321, 22ssind 4189 . . . . 5 (𝜑 → ran 𝑉 ⊆ (𝐻𝐵))
24 eqid 2730 . . . . . 6 (AlgSpan‘(𝐼 mPwSer 𝑅)) = (AlgSpan‘(𝐼 mPwSer 𝑅))
2524, 11aspss 21807 . . . . 5 (((𝐼 mPwSer 𝑅) ∈ AssAlg ∧ (𝐻𝐵) ⊆ (Base‘(𝐼 mPwSer 𝑅)) ∧ ran 𝑉 ⊆ (𝐻𝐵)) → ((AlgSpan‘(𝐼 mPwSer 𝑅))‘ran 𝑉) ⊆ ((AlgSpan‘(𝐼 mPwSer 𝑅))‘(𝐻𝐵)))
264, 14, 23, 25syl3anc 1373 . . . 4 (𝜑 → ((AlgSpan‘(𝐼 mPwSer 𝑅))‘ran 𝑉) ⊆ ((AlgSpan‘(𝐼 mPwSer 𝑅))‘(𝐻𝐵)))
276, 1, 15, 24, 2, 3mplbas2 21970 . . . . 5 (𝜑 → ((AlgSpan‘(𝐼 mPwSer 𝑅))‘ran 𝑉) = (Base‘𝑌))
2827, 7eqtr4di 2783 . . . 4 (𝜑 → ((AlgSpan‘(𝐼 mPwSer 𝑅))‘ran 𝑉) = 𝐵)
295a1i 11 . . . . . . . 8 (𝜑 → (𝐻𝐵) ⊆ 𝐵)
306mplassa 21952 . . . . . . . . . . . . . 14 ((𝐼𝑊𝑅 ∈ CRing) → 𝑌 ∈ AssAlg)
312, 3, 30syl2anc 584 . . . . . . . . . . . . 13 (𝜑𝑌 ∈ AssAlg)
32 mplind.sc . . . . . . . . . . . . . 14 𝐶 = (algSc‘𝑌)
33 eqid 2730 . . . . . . . . . . . . . 14 (Scalar‘𝑌) = (Scalar‘𝑌)
3432, 33asclrhm 21820 . . . . . . . . . . . . 13 (𝑌 ∈ AssAlg → 𝐶 ∈ ((Scalar‘𝑌) RingHom 𝑌))
3531, 34syl 17 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ((Scalar‘𝑌) RingHom 𝑌))
36 eqid 2730 . . . . . . . . . . . . 13 (1r‘(Scalar‘𝑌)) = (1r‘(Scalar‘𝑌))
37 eqid 2730 . . . . . . . . . . . . 13 (1r𝑌) = (1r𝑌)
3836, 37rhm1 20399 . . . . . . . . . . . 12 (𝐶 ∈ ((Scalar‘𝑌) RingHom 𝑌) → (𝐶‘(1r‘(Scalar‘𝑌))) = (1r𝑌))
3935, 38syl 17 . . . . . . . . . . 11 (𝜑 → (𝐶‘(1r‘(Scalar‘𝑌))) = (1r𝑌))
40 fveq2 6817 . . . . . . . . . . . . 13 (𝑥 = (1r‘(Scalar‘𝑌)) → (𝐶𝑥) = (𝐶‘(1r‘(Scalar‘𝑌))))
4140eleq1d 2814 . . . . . . . . . . . 12 (𝑥 = (1r‘(Scalar‘𝑌)) → ((𝐶𝑥) ∈ 𝐻 ↔ (𝐶‘(1r‘(Scalar‘𝑌))) ∈ 𝐻))
42 mplind.s . . . . . . . . . . . . 13 ((𝜑𝑥𝐾) → (𝐶𝑥) ∈ 𝐻)
4342ralrimiva 3122 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝐾 (𝐶𝑥) ∈ 𝐻)
446, 2, 3mplsca 21943 . . . . . . . . . . . . . . 15 (𝜑𝑅 = (Scalar‘𝑌))
4544, 9eqeltrrd 2830 . . . . . . . . . . . . . 14 (𝜑 → (Scalar‘𝑌) ∈ Ring)
46 eqid 2730 . . . . . . . . . . . . . . 15 (Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌))
4746, 36ringidcl 20176 . . . . . . . . . . . . . 14 ((Scalar‘𝑌) ∈ Ring → (1r‘(Scalar‘𝑌)) ∈ (Base‘(Scalar‘𝑌)))
4845, 47syl 17 . . . . . . . . . . . . 13 (𝜑 → (1r‘(Scalar‘𝑌)) ∈ (Base‘(Scalar‘𝑌)))
49 mplind.sk . . . . . . . . . . . . . 14 𝐾 = (Base‘𝑅)
5044fveq2d 6821 . . . . . . . . . . . . . 14 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑌)))
5149, 50eqtrid 2777 . . . . . . . . . . . . 13 (𝜑𝐾 = (Base‘(Scalar‘𝑌)))
5248, 51eleqtrrd 2832 . . . . . . . . . . . 12 (𝜑 → (1r‘(Scalar‘𝑌)) ∈ 𝐾)
5341, 43, 52rspcdva 3576 . . . . . . . . . . 11 (𝜑 → (𝐶‘(1r‘(Scalar‘𝑌))) ∈ 𝐻)
5439, 53eqeltrrd 2830 . . . . . . . . . 10 (𝜑 → (1r𝑌) ∈ 𝐻)
55 assaring 21791 . . . . . . . . . . . 12 (𝑌 ∈ AssAlg → 𝑌 ∈ Ring)
5631, 55syl 17 . . . . . . . . . . 11 (𝜑𝑌 ∈ Ring)
577, 37ringidcl 20176 . . . . . . . . . . 11 (𝑌 ∈ Ring → (1r𝑌) ∈ 𝐵)
5856, 57syl 17 . . . . . . . . . 10 (𝜑 → (1r𝑌) ∈ 𝐵)
5954, 58elind 4148 . . . . . . . . 9 (𝜑 → (1r𝑌) ∈ (𝐻𝐵))
6059ne0d 4290 . . . . . . . 8 (𝜑 → (𝐻𝐵) ≠ ∅)
61 elinel1 4149 . . . . . . . . . . . . . . 15 (𝑧 ∈ (𝐻𝐵) → 𝑧𝐻)
62 elinel1 4149 . . . . . . . . . . . . . . 15 (𝑤 ∈ (𝐻𝐵) → 𝑤𝐻)
6361, 62anim12i 613 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝐻𝐵) ∧ 𝑤 ∈ (𝐻𝐵)) → (𝑧𝐻𝑤𝐻))
64 mplind.p . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝐻𝑦𝐻)) → (𝑥 + 𝑦) ∈ 𝐻)
6564caovclg 7533 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝐻𝑤𝐻)) → (𝑧 + 𝑤) ∈ 𝐻)
6663, 65sylan2 593 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧 ∈ (𝐻𝐵) ∧ 𝑤 ∈ (𝐻𝐵))) → (𝑧 + 𝑤) ∈ 𝐻)
67 assalmod 21790 . . . . . . . . . . . . . . . . 17 (𝑌 ∈ AssAlg → 𝑌 ∈ LMod)
6831, 67syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑌 ∈ LMod)
69 lmodgrp 20793 . . . . . . . . . . . . . . . 16 (𝑌 ∈ LMod → 𝑌 ∈ Grp)
7068, 69syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑌 ∈ Grp)
7170adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧 ∈ (𝐻𝐵) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑌 ∈ Grp)
72 simprl 770 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑧 ∈ (𝐻𝐵) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑧 ∈ (𝐻𝐵))
7372elin2d 4153 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧 ∈ (𝐻𝐵) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑧𝐵)
74 simprr 772 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑧 ∈ (𝐻𝐵) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑤 ∈ (𝐻𝐵))
7574elin2d 4153 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧 ∈ (𝐻𝐵) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑤𝐵)
76 mplind.sp . . . . . . . . . . . . . . 15 + = (+g𝑌)
777, 76grpcl 18846 . . . . . . . . . . . . . 14 ((𝑌 ∈ Grp ∧ 𝑧𝐵𝑤𝐵) → (𝑧 + 𝑤) ∈ 𝐵)
7871, 73, 75, 77syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧 ∈ (𝐻𝐵) ∧ 𝑤 ∈ (𝐻𝐵))) → (𝑧 + 𝑤) ∈ 𝐵)
7966, 78elind 4148 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧 ∈ (𝐻𝐵) ∧ 𝑤 ∈ (𝐻𝐵))) → (𝑧 + 𝑤) ∈ (𝐻𝐵))
8079anassrs 467 . . . . . . . . . . 11 (((𝜑𝑧 ∈ (𝐻𝐵)) ∧ 𝑤 ∈ (𝐻𝐵)) → (𝑧 + 𝑤) ∈ (𝐻𝐵))
8180ralrimiva 3122 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐻𝐵)) → ∀𝑤 ∈ (𝐻𝐵)(𝑧 + 𝑤) ∈ (𝐻𝐵))
82 mplind.st . . . . . . . . . . . . 13 · = (.r𝑌)
83 eqid 2730 . . . . . . . . . . . . 13 (invg𝑌) = (invg𝑌)
8456adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐻𝐵)) → 𝑌 ∈ Ring)
85 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐻𝐵)) → 𝑧 ∈ (𝐻𝐵))
8685elin2d 4153 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐻𝐵)) → 𝑧𝐵)
877, 82, 37, 83, 84, 86ringnegl 20213 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐻𝐵)) → (((invg𝑌)‘(1r𝑌)) · 𝑧) = ((invg𝑌)‘𝑧))
88 simpl 482 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐻𝐵)) → 𝜑)
89 rhmghm 20394 . . . . . . . . . . . . . . . . . 18 (𝐶 ∈ ((Scalar‘𝑌) RingHom 𝑌) → 𝐶 ∈ ((Scalar‘𝑌) GrpHom 𝑌))
9035, 89syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐶 ∈ ((Scalar‘𝑌) GrpHom 𝑌))
91 eqid 2730 . . . . . . . . . . . . . . . . . 18 (invg‘(Scalar‘𝑌)) = (invg‘(Scalar‘𝑌))
9246, 91, 83ghminv 19128 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ ((Scalar‘𝑌) GrpHom 𝑌) ∧ (1r‘(Scalar‘𝑌)) ∈ (Base‘(Scalar‘𝑌))) → (𝐶‘((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌)))) = ((invg𝑌)‘(𝐶‘(1r‘(Scalar‘𝑌)))))
9390, 48, 92syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐶‘((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌)))) = ((invg𝑌)‘(𝐶‘(1r‘(Scalar‘𝑌)))))
9439fveq2d 6821 . . . . . . . . . . . . . . . 16 (𝜑 → ((invg𝑌)‘(𝐶‘(1r‘(Scalar‘𝑌)))) = ((invg𝑌)‘(1r𝑌)))
9593, 94eqtrd 2765 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶‘((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌)))) = ((invg𝑌)‘(1r𝑌)))
96 fveq2 6817 . . . . . . . . . . . . . . . . 17 (𝑥 = ((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌))) → (𝐶𝑥) = (𝐶‘((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌)))))
9796eleq1d 2814 . . . . . . . . . . . . . . . 16 (𝑥 = ((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌))) → ((𝐶𝑥) ∈ 𝐻 ↔ (𝐶‘((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌)))) ∈ 𝐻))
98 ringgrp 20149 . . . . . . . . . . . . . . . . . . 19 ((Scalar‘𝑌) ∈ Ring → (Scalar‘𝑌) ∈ Grp)
9945, 98syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (Scalar‘𝑌) ∈ Grp)
10046, 91grpinvcl 18892 . . . . . . . . . . . . . . . . . 18 (((Scalar‘𝑌) ∈ Grp ∧ (1r‘(Scalar‘𝑌)) ∈ (Base‘(Scalar‘𝑌))) → ((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌))) ∈ (Base‘(Scalar‘𝑌)))
10199, 48, 100syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝜑 → ((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌))) ∈ (Base‘(Scalar‘𝑌)))
102101, 51eleqtrrd 2832 . . . . . . . . . . . . . . . 16 (𝜑 → ((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌))) ∈ 𝐾)
10397, 43, 102rspcdva 3576 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶‘((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌)))) ∈ 𝐻)
10495, 103eqeltrrd 2830 . . . . . . . . . . . . . 14 (𝜑 → ((invg𝑌)‘(1r𝑌)) ∈ 𝐻)
105104adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐻𝐵)) → ((invg𝑌)‘(1r𝑌)) ∈ 𝐻)
10685elin1d 4152 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐻𝐵)) → 𝑧𝐻)
107 mplind.t . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝐻𝑦𝐻)) → (𝑥 · 𝑦) ∈ 𝐻)
108107caovclg 7533 . . . . . . . . . . . . 13 ((𝜑 ∧ (((invg𝑌)‘(1r𝑌)) ∈ 𝐻𝑧𝐻)) → (((invg𝑌)‘(1r𝑌)) · 𝑧) ∈ 𝐻)
10988, 105, 106, 108syl12anc 836 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐻𝐵)) → (((invg𝑌)‘(1r𝑌)) · 𝑧) ∈ 𝐻)
11087, 109eqeltrrd 2830 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐻𝐵)) → ((invg𝑌)‘𝑧) ∈ 𝐻)
11170adantr 480 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐻𝐵)) → 𝑌 ∈ Grp)
1127, 83grpinvcl 18892 . . . . . . . . . . . 12 ((𝑌 ∈ Grp ∧ 𝑧𝐵) → ((invg𝑌)‘𝑧) ∈ 𝐵)
113111, 86, 112syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐻𝐵)) → ((invg𝑌)‘𝑧) ∈ 𝐵)
114110, 113elind 4148 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐻𝐵)) → ((invg𝑌)‘𝑧) ∈ (𝐻𝐵))
11581, 114jca 511 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐻𝐵)) → (∀𝑤 ∈ (𝐻𝐵)(𝑧 + 𝑤) ∈ (𝐻𝐵) ∧ ((invg𝑌)‘𝑧) ∈ (𝐻𝐵)))
116115ralrimiva 3122 . . . . . . . 8 (𝜑 → ∀𝑧 ∈ (𝐻𝐵)(∀𝑤 ∈ (𝐻𝐵)(𝑧 + 𝑤) ∈ (𝐻𝐵) ∧ ((invg𝑌)‘𝑧) ∈ (𝐻𝐵)))
1177, 76, 83issubg2 19046 . . . . . . . . 9 (𝑌 ∈ Grp → ((𝐻𝐵) ∈ (SubGrp‘𝑌) ↔ ((𝐻𝐵) ⊆ 𝐵 ∧ (𝐻𝐵) ≠ ∅ ∧ ∀𝑧 ∈ (𝐻𝐵)(∀𝑤 ∈ (𝐻𝐵)(𝑧 + 𝑤) ∈ (𝐻𝐵) ∧ ((invg𝑌)‘𝑧) ∈ (𝐻𝐵)))))
11870, 117syl 17 . . . . . . . 8 (𝜑 → ((𝐻𝐵) ∈ (SubGrp‘𝑌) ↔ ((𝐻𝐵) ⊆ 𝐵 ∧ (𝐻𝐵) ≠ ∅ ∧ ∀𝑧 ∈ (𝐻𝐵)(∀𝑤 ∈ (𝐻𝐵)(𝑧 + 𝑤) ∈ (𝐻𝐵) ∧ ((invg𝑌)‘𝑧) ∈ (𝐻𝐵)))))
11929, 60, 116, 118mpbir3and 1343 . . . . . . 7 (𝜑 → (𝐻𝐵) ∈ (SubGrp‘𝑌))
120 elinel1 4149 . . . . . . . . . . 11 (𝑥 ∈ (𝐻𝐵) → 𝑥𝐻)
121 elinel1 4149 . . . . . . . . . . 11 (𝑦 ∈ (𝐻𝐵) → 𝑦𝐻)
122120, 121anim12i 613 . . . . . . . . . 10 ((𝑥 ∈ (𝐻𝐵) ∧ 𝑦 ∈ (𝐻𝐵)) → (𝑥𝐻𝑦𝐻))
123122, 107sylan2 593 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝐻𝐵) ∧ 𝑦 ∈ (𝐻𝐵))) → (𝑥 · 𝑦) ∈ 𝐻)
12456adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (𝐻𝐵) ∧ 𝑦 ∈ (𝐻𝐵))) → 𝑌 ∈ Ring)
125 simprl 770 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (𝐻𝐵) ∧ 𝑦 ∈ (𝐻𝐵))) → 𝑥 ∈ (𝐻𝐵))
126125elin2d 4153 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (𝐻𝐵) ∧ 𝑦 ∈ (𝐻𝐵))) → 𝑥𝐵)
127 simprr 772 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (𝐻𝐵) ∧ 𝑦 ∈ (𝐻𝐵))) → 𝑦 ∈ (𝐻𝐵))
128127elin2d 4153 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (𝐻𝐵) ∧ 𝑦 ∈ (𝐻𝐵))) → 𝑦𝐵)
1297, 82ringcl 20161 . . . . . . . . . 10 ((𝑌 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → (𝑥 · 𝑦) ∈ 𝐵)
130124, 126, 128, 129syl3anc 1373 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝐻𝐵) ∧ 𝑦 ∈ (𝐻𝐵))) → (𝑥 · 𝑦) ∈ 𝐵)
131123, 130elind 4148 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝐻𝐵) ∧ 𝑦 ∈ (𝐻𝐵))) → (𝑥 · 𝑦) ∈ (𝐻𝐵))
132131ralrimivva 3173 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (𝐻𝐵)∀𝑦 ∈ (𝐻𝐵)(𝑥 · 𝑦) ∈ (𝐻𝐵))
1337, 37, 82issubrg2 20500 . . . . . . . 8 (𝑌 ∈ Ring → ((𝐻𝐵) ∈ (SubRing‘𝑌) ↔ ((𝐻𝐵) ∈ (SubGrp‘𝑌) ∧ (1r𝑌) ∈ (𝐻𝐵) ∧ ∀𝑥 ∈ (𝐻𝐵)∀𝑦 ∈ (𝐻𝐵)(𝑥 · 𝑦) ∈ (𝐻𝐵))))
13456, 133syl 17 . . . . . . 7 (𝜑 → ((𝐻𝐵) ∈ (SubRing‘𝑌) ↔ ((𝐻𝐵) ∈ (SubGrp‘𝑌) ∧ (1r𝑌) ∈ (𝐻𝐵) ∧ ∀𝑥 ∈ (𝐻𝐵)∀𝑦 ∈ (𝐻𝐵)(𝑥 · 𝑦) ∈ (𝐻𝐵))))
135119, 59, 132, 134mpbir3and 1343 . . . . . 6 (𝜑 → (𝐻𝐵) ∈ (SubRing‘𝑌))
1366, 1, 7mplval2 21926 . . . . . . . 8 𝑌 = ((𝐼 mPwSer 𝑅) ↾s 𝐵)
137136subsubrg 20506 . . . . . . 7 (𝐵 ∈ (SubRing‘(𝐼 mPwSer 𝑅)) → ((𝐻𝐵) ∈ (SubRing‘𝑌) ↔ ((𝐻𝐵) ∈ (SubRing‘(𝐼 mPwSer 𝑅)) ∧ (𝐻𝐵) ⊆ 𝐵)))
138137simprbda 498 . . . . . 6 ((𝐵 ∈ (SubRing‘(𝐼 mPwSer 𝑅)) ∧ (𝐻𝐵) ∈ (SubRing‘𝑌)) → (𝐻𝐵) ∈ (SubRing‘(𝐼 mPwSer 𝑅)))
13910, 135, 138syl2anc 584 . . . . 5 (𝜑 → (𝐻𝐵) ∈ (SubRing‘(𝐼 mPwSer 𝑅)))
140 assalmod 21790 . . . . . . 7 ((𝐼 mPwSer 𝑅) ∈ AssAlg → (𝐼 mPwSer 𝑅) ∈ LMod)
1414, 140syl 17 . . . . . 6 (𝜑 → (𝐼 mPwSer 𝑅) ∈ LMod)
1421, 6, 7, 2, 9mpllss 21933 . . . . . 6 (𝜑𝐵 ∈ (LSubSp‘(𝐼 mPwSer 𝑅)))
14331adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑌 ∈ AssAlg)
144 simprl 770 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑧 ∈ (Base‘(Scalar‘𝑌)))
145 simprr 772 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑤 ∈ (𝐻𝐵))
146145elin2d 4153 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑤𝐵)
147 eqid 2730 . . . . . . . . . . . 12 ( ·𝑠𝑌) = ( ·𝑠𝑌)
14832, 33, 46, 7, 82, 147asclmul1 21816 . . . . . . . . . . 11 ((𝑌 ∈ AssAlg ∧ 𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤𝐵) → ((𝐶𝑧) · 𝑤) = (𝑧( ·𝑠𝑌)𝑤))
149143, 144, 146, 148syl3anc 1373 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → ((𝐶𝑧) · 𝑤) = (𝑧( ·𝑠𝑌)𝑤))
150 fveq2 6817 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝐶𝑥) = (𝐶𝑧))
151150eleq1d 2814 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → ((𝐶𝑥) ∈ 𝐻 ↔ (𝐶𝑧) ∈ 𝐻))
15243adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → ∀𝑥𝐾 (𝐶𝑥) ∈ 𝐻)
15351adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝐾 = (Base‘(Scalar‘𝑌)))
154144, 153eleqtrrd 2832 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑧𝐾)
155151, 152, 154rspcdva 3576 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → (𝐶𝑧) ∈ 𝐻)
156145elin1d 4152 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑤𝐻)
157155, 156jca 511 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → ((𝐶𝑧) ∈ 𝐻𝑤𝐻))
158107caovclg 7533 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐶𝑧) ∈ 𝐻𝑤𝐻)) → ((𝐶𝑧) · 𝑤) ∈ 𝐻)
159157, 158syldan 591 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → ((𝐶𝑧) · 𝑤) ∈ 𝐻)
160149, 159eqeltrrd 2830 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → (𝑧( ·𝑠𝑌)𝑤) ∈ 𝐻)
16168adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑌 ∈ LMod)
1627, 33, 147, 46lmodvscl 20804 . . . . . . . . . 10 ((𝑌 ∈ LMod ∧ 𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤𝐵) → (𝑧( ·𝑠𝑌)𝑤) ∈ 𝐵)
163161, 144, 146, 162syl3anc 1373 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → (𝑧( ·𝑠𝑌)𝑤) ∈ 𝐵)
164160, 163elind 4148 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → (𝑧( ·𝑠𝑌)𝑤) ∈ (𝐻𝐵))
165164ralrimivva 3173 . . . . . . 7 (𝜑 → ∀𝑧 ∈ (Base‘(Scalar‘𝑌))∀𝑤 ∈ (𝐻𝐵)(𝑧( ·𝑠𝑌)𝑤) ∈ (𝐻𝐵))
166 eqid 2730 . . . . . . . . 9 (LSubSp‘𝑌) = (LSubSp‘𝑌)
16733, 46, 7, 147, 166islss4 20888 . . . . . . . 8 (𝑌 ∈ LMod → ((𝐻𝐵) ∈ (LSubSp‘𝑌) ↔ ((𝐻𝐵) ∈ (SubGrp‘𝑌) ∧ ∀𝑧 ∈ (Base‘(Scalar‘𝑌))∀𝑤 ∈ (𝐻𝐵)(𝑧( ·𝑠𝑌)𝑤) ∈ (𝐻𝐵))))
16868, 167syl 17 . . . . . . 7 (𝜑 → ((𝐻𝐵) ∈ (LSubSp‘𝑌) ↔ ((𝐻𝐵) ∈ (SubGrp‘𝑌) ∧ ∀𝑧 ∈ (Base‘(Scalar‘𝑌))∀𝑤 ∈ (𝐻𝐵)(𝑧( ·𝑠𝑌)𝑤) ∈ (𝐻𝐵))))
169119, 165, 168mpbir2and 713 . . . . . 6 (𝜑 → (𝐻𝐵) ∈ (LSubSp‘𝑌))
170 eqid 2730 . . . . . . . 8 (LSubSp‘(𝐼 mPwSer 𝑅)) = (LSubSp‘(𝐼 mPwSer 𝑅))
171136, 170, 166lsslss 20887 . . . . . . 7 (((𝐼 mPwSer 𝑅) ∈ LMod ∧ 𝐵 ∈ (LSubSp‘(𝐼 mPwSer 𝑅))) → ((𝐻𝐵) ∈ (LSubSp‘𝑌) ↔ ((𝐻𝐵) ∈ (LSubSp‘(𝐼 mPwSer 𝑅)) ∧ (𝐻𝐵) ⊆ 𝐵)))
172171simprbda 498 . . . . . 6 ((((𝐼 mPwSer 𝑅) ∈ LMod ∧ 𝐵 ∈ (LSubSp‘(𝐼 mPwSer 𝑅))) ∧ (𝐻𝐵) ∈ (LSubSp‘𝑌)) → (𝐻𝐵) ∈ (LSubSp‘(𝐼 mPwSer 𝑅)))
173141, 142, 169, 172syl21anc 837 . . . . 5 (𝜑 → (𝐻𝐵) ∈ (LSubSp‘(𝐼 mPwSer 𝑅)))
17424, 11, 170aspid 21805 . . . . 5 (((𝐼 mPwSer 𝑅) ∈ AssAlg ∧ (𝐻𝐵) ∈ (SubRing‘(𝐼 mPwSer 𝑅)) ∧ (𝐻𝐵) ∈ (LSubSp‘(𝐼 mPwSer 𝑅))) → ((AlgSpan‘(𝐼 mPwSer 𝑅))‘(𝐻𝐵)) = (𝐻𝐵))
1754, 139, 173, 174syl3anc 1373 . . . 4 (𝜑 → ((AlgSpan‘(𝐼 mPwSer 𝑅))‘(𝐻𝐵)) = (𝐻𝐵))
17626, 28, 1753sstr3d 3987 . . 3 (𝜑𝐵 ⊆ (𝐻𝐵))
177 mplind.x . . 3 (𝜑𝑋𝐵)
178176, 177sseldd 3933 . 2 (𝜑𝑋 ∈ (𝐻𝐵))
179178elin1d 4152 1 (𝜑𝑋𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2110  wne 2926  wral 3045  cin 3899  wss 3900  c0 4281  ran crn 5615   Fn wfn 6472  cfv 6477  (class class class)co 7341  Basecbs 17112  +gcplusg 17153  .rcmulr 17154  Scalarcsca 17156   ·𝑠 cvsca 17157  Grpcgrp 18838  invgcminusg 18839  SubGrpcsubg 19025   GrpHom cghm 19117  1rcur 20092  Ringcrg 20144  CRingccrg 20145   RingHom crh 20380  SubRingcsubrg 20477  LModclmod 20786  LSubSpclss 20857  AssAlgcasa 21780  AlgSpancasp 21781  algSccascl 21782   mPwSer cmps 21834   mVar cmvr 21835   mPoly cmpl 21836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-ofr 7606  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-sup 9321  df-oi 9391  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-uz 12725  df-fz 13400  df-fzo 13547  df-seq 13901  df-hash 14230  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-sca 17169  df-vsca 17170  df-ip 17171  df-tset 17172  df-ple 17173  df-ds 17175  df-hom 17177  df-cco 17178  df-0g 17337  df-gsum 17338  df-prds 17343  df-pws 17345  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-mhm 18683  df-submnd 18684  df-grp 18841  df-minusg 18842  df-sbg 18843  df-mulg 18973  df-subg 19028  df-ghm 19118  df-cntz 19222  df-cmn 19687  df-abl 19688  df-mgp 20052  df-rng 20064  df-ur 20093  df-srg 20098  df-ring 20146  df-cring 20147  df-rhm 20383  df-subrng 20454  df-subrg 20478  df-lmod 20788  df-lss 20858  df-assa 21783  df-asp 21784  df-ascl 21785  df-psr 21839  df-mvr 21840  df-mpl 21841
This theorem is referenced by:  mpfind  22035
  Copyright terms: Public domain W3C validator