MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplind Structured version   Visualization version   GIF version

Theorem mplind 22117
Description: Prove a property of polynomials by "structural" induction, under a simplified model of structure which loses the sum of products structure. The commutativity condition is stronger than strictly needed. (Contributed by Stefan O'Rear, 11-Mar-2015.)
Hypotheses
Ref Expression
mplind.sk 𝐾 = (Base‘𝑅)
mplind.sv 𝑉 = (𝐼 mVar 𝑅)
mplind.sy 𝑌 = (𝐼 mPoly 𝑅)
mplind.sp + = (+g𝑌)
mplind.st · = (.r𝑌)
mplind.sc 𝐶 = (algSc‘𝑌)
mplind.sb 𝐵 = (Base‘𝑌)
mplind.p ((𝜑 ∧ (𝑥𝐻𝑦𝐻)) → (𝑥 + 𝑦) ∈ 𝐻)
mplind.t ((𝜑 ∧ (𝑥𝐻𝑦𝐻)) → (𝑥 · 𝑦) ∈ 𝐻)
mplind.s ((𝜑𝑥𝐾) → (𝐶𝑥) ∈ 𝐻)
mplind.v ((𝜑𝑥𝐼) → (𝑉𝑥) ∈ 𝐻)
mplind.x (𝜑𝑋𝐵)
mplind.i (𝜑𝐼𝑊)
mplind.r (𝜑𝑅 ∈ CRing)
Assertion
Ref Expression
mplind (𝜑𝑋𝐻)
Distinct variable groups:   𝑥,𝑦, +   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐼   𝜑,𝑥,𝑦   𝑥,𝐻,𝑦   𝑥,𝐾   𝑥, · ,𝑦   𝑥,𝑉   𝑥,𝑌,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝐼(𝑦)   𝐾(𝑦)   𝑉(𝑦)   𝑊(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem mplind
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . . . 6 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
2 mplind.i . . . . . 6 (𝜑𝐼𝑊)
3 mplind.r . . . . . 6 (𝜑𝑅 ∈ CRing)
41, 2, 3psrassa 22016 . . . . 5 (𝜑 → (𝐼 mPwSer 𝑅) ∈ AssAlg)
5 inss2 4259 . . . . . 6 (𝐻𝐵) ⊆ 𝐵
6 mplind.sy . . . . . . . 8 𝑌 = (𝐼 mPoly 𝑅)
7 mplind.sb . . . . . . . 8 𝐵 = (Base‘𝑌)
8 crngring 20272 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
93, 8syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Ring)
101, 6, 7, 2, 9mplsubrg 22048 . . . . . . 7 (𝜑𝐵 ∈ (SubRing‘(𝐼 mPwSer 𝑅)))
11 eqid 2740 . . . . . . . 8 (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅))
1211subrgss 20600 . . . . . . 7 (𝐵 ∈ (SubRing‘(𝐼 mPwSer 𝑅)) → 𝐵 ⊆ (Base‘(𝐼 mPwSer 𝑅)))
1310, 12syl 17 . . . . . 6 (𝜑𝐵 ⊆ (Base‘(𝐼 mPwSer 𝑅)))
145, 13sstrid 4020 . . . . 5 (𝜑 → (𝐻𝐵) ⊆ (Base‘(𝐼 mPwSer 𝑅)))
15 mplind.sv . . . . . . . . 9 𝑉 = (𝐼 mVar 𝑅)
166, 15, 7, 2, 9mvrf2 22036 . . . . . . . 8 (𝜑𝑉:𝐼𝐵)
1716ffnd 6748 . . . . . . 7 (𝜑𝑉 Fn 𝐼)
18 mplind.v . . . . . . . 8 ((𝜑𝑥𝐼) → (𝑉𝑥) ∈ 𝐻)
1918ralrimiva 3152 . . . . . . 7 (𝜑 → ∀𝑥𝐼 (𝑉𝑥) ∈ 𝐻)
20 fnfvrnss 7155 . . . . . . 7 ((𝑉 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑉𝑥) ∈ 𝐻) → ran 𝑉𝐻)
2117, 19, 20syl2anc 583 . . . . . 6 (𝜑 → ran 𝑉𝐻)
2216frnd 6755 . . . . . 6 (𝜑 → ran 𝑉𝐵)
2321, 22ssind 4262 . . . . 5 (𝜑 → ran 𝑉 ⊆ (𝐻𝐵))
24 eqid 2740 . . . . . 6 (AlgSpan‘(𝐼 mPwSer 𝑅)) = (AlgSpan‘(𝐼 mPwSer 𝑅))
2524, 11aspss 21920 . . . . 5 (((𝐼 mPwSer 𝑅) ∈ AssAlg ∧ (𝐻𝐵) ⊆ (Base‘(𝐼 mPwSer 𝑅)) ∧ ran 𝑉 ⊆ (𝐻𝐵)) → ((AlgSpan‘(𝐼 mPwSer 𝑅))‘ran 𝑉) ⊆ ((AlgSpan‘(𝐼 mPwSer 𝑅))‘(𝐻𝐵)))
264, 14, 23, 25syl3anc 1371 . . . 4 (𝜑 → ((AlgSpan‘(𝐼 mPwSer 𝑅))‘ran 𝑉) ⊆ ((AlgSpan‘(𝐼 mPwSer 𝑅))‘(𝐻𝐵)))
276, 1, 15, 24, 2, 3mplbas2 22083 . . . . 5 (𝜑 → ((AlgSpan‘(𝐼 mPwSer 𝑅))‘ran 𝑉) = (Base‘𝑌))
2827, 7eqtr4di 2798 . . . 4 (𝜑 → ((AlgSpan‘(𝐼 mPwSer 𝑅))‘ran 𝑉) = 𝐵)
295a1i 11 . . . . . . . 8 (𝜑 → (𝐻𝐵) ⊆ 𝐵)
306mplassa 22065 . . . . . . . . . . . . . 14 ((𝐼𝑊𝑅 ∈ CRing) → 𝑌 ∈ AssAlg)
312, 3, 30syl2anc 583 . . . . . . . . . . . . 13 (𝜑𝑌 ∈ AssAlg)
32 mplind.sc . . . . . . . . . . . . . 14 𝐶 = (algSc‘𝑌)
33 eqid 2740 . . . . . . . . . . . . . 14 (Scalar‘𝑌) = (Scalar‘𝑌)
3432, 33asclrhm 21933 . . . . . . . . . . . . 13 (𝑌 ∈ AssAlg → 𝐶 ∈ ((Scalar‘𝑌) RingHom 𝑌))
3531, 34syl 17 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ((Scalar‘𝑌) RingHom 𝑌))
36 eqid 2740 . . . . . . . . . . . . 13 (1r‘(Scalar‘𝑌)) = (1r‘(Scalar‘𝑌))
37 eqid 2740 . . . . . . . . . . . . 13 (1r𝑌) = (1r𝑌)
3836, 37rhm1 20515 . . . . . . . . . . . 12 (𝐶 ∈ ((Scalar‘𝑌) RingHom 𝑌) → (𝐶‘(1r‘(Scalar‘𝑌))) = (1r𝑌))
3935, 38syl 17 . . . . . . . . . . 11 (𝜑 → (𝐶‘(1r‘(Scalar‘𝑌))) = (1r𝑌))
40 fveq2 6920 . . . . . . . . . . . . 13 (𝑥 = (1r‘(Scalar‘𝑌)) → (𝐶𝑥) = (𝐶‘(1r‘(Scalar‘𝑌))))
4140eleq1d 2829 . . . . . . . . . . . 12 (𝑥 = (1r‘(Scalar‘𝑌)) → ((𝐶𝑥) ∈ 𝐻 ↔ (𝐶‘(1r‘(Scalar‘𝑌))) ∈ 𝐻))
42 mplind.s . . . . . . . . . . . . 13 ((𝜑𝑥𝐾) → (𝐶𝑥) ∈ 𝐻)
4342ralrimiva 3152 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝐾 (𝐶𝑥) ∈ 𝐻)
446, 2, 3mplsca 22056 . . . . . . . . . . . . . . 15 (𝜑𝑅 = (Scalar‘𝑌))
4544, 9eqeltrrd 2845 . . . . . . . . . . . . . 14 (𝜑 → (Scalar‘𝑌) ∈ Ring)
46 eqid 2740 . . . . . . . . . . . . . . 15 (Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌))
4746, 36ringidcl 20289 . . . . . . . . . . . . . 14 ((Scalar‘𝑌) ∈ Ring → (1r‘(Scalar‘𝑌)) ∈ (Base‘(Scalar‘𝑌)))
4845, 47syl 17 . . . . . . . . . . . . 13 (𝜑 → (1r‘(Scalar‘𝑌)) ∈ (Base‘(Scalar‘𝑌)))
49 mplind.sk . . . . . . . . . . . . . 14 𝐾 = (Base‘𝑅)
5044fveq2d 6924 . . . . . . . . . . . . . 14 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑌)))
5149, 50eqtrid 2792 . . . . . . . . . . . . 13 (𝜑𝐾 = (Base‘(Scalar‘𝑌)))
5248, 51eleqtrrd 2847 . . . . . . . . . . . 12 (𝜑 → (1r‘(Scalar‘𝑌)) ∈ 𝐾)
5341, 43, 52rspcdva 3636 . . . . . . . . . . 11 (𝜑 → (𝐶‘(1r‘(Scalar‘𝑌))) ∈ 𝐻)
5439, 53eqeltrrd 2845 . . . . . . . . . 10 (𝜑 → (1r𝑌) ∈ 𝐻)
55 assaring 21904 . . . . . . . . . . . 12 (𝑌 ∈ AssAlg → 𝑌 ∈ Ring)
5631, 55syl 17 . . . . . . . . . . 11 (𝜑𝑌 ∈ Ring)
577, 37ringidcl 20289 . . . . . . . . . . 11 (𝑌 ∈ Ring → (1r𝑌) ∈ 𝐵)
5856, 57syl 17 . . . . . . . . . 10 (𝜑 → (1r𝑌) ∈ 𝐵)
5954, 58elind 4223 . . . . . . . . 9 (𝜑 → (1r𝑌) ∈ (𝐻𝐵))
6059ne0d 4365 . . . . . . . 8 (𝜑 → (𝐻𝐵) ≠ ∅)
61 elinel1 4224 . . . . . . . . . . . . . . 15 (𝑧 ∈ (𝐻𝐵) → 𝑧𝐻)
62 elinel1 4224 . . . . . . . . . . . . . . 15 (𝑤 ∈ (𝐻𝐵) → 𝑤𝐻)
6361, 62anim12i 612 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝐻𝐵) ∧ 𝑤 ∈ (𝐻𝐵)) → (𝑧𝐻𝑤𝐻))
64 mplind.p . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝐻𝑦𝐻)) → (𝑥 + 𝑦) ∈ 𝐻)
6564caovclg 7642 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝐻𝑤𝐻)) → (𝑧 + 𝑤) ∈ 𝐻)
6663, 65sylan2 592 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧 ∈ (𝐻𝐵) ∧ 𝑤 ∈ (𝐻𝐵))) → (𝑧 + 𝑤) ∈ 𝐻)
67 assalmod 21903 . . . . . . . . . . . . . . . . 17 (𝑌 ∈ AssAlg → 𝑌 ∈ LMod)
6831, 67syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑌 ∈ LMod)
69 lmodgrp 20887 . . . . . . . . . . . . . . . 16 (𝑌 ∈ LMod → 𝑌 ∈ Grp)
7068, 69syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑌 ∈ Grp)
7170adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧 ∈ (𝐻𝐵) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑌 ∈ Grp)
72 simprl 770 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑧 ∈ (𝐻𝐵) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑧 ∈ (𝐻𝐵))
7372elin2d 4228 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧 ∈ (𝐻𝐵) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑧𝐵)
74 simprr 772 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑧 ∈ (𝐻𝐵) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑤 ∈ (𝐻𝐵))
7574elin2d 4228 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧 ∈ (𝐻𝐵) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑤𝐵)
76 mplind.sp . . . . . . . . . . . . . . 15 + = (+g𝑌)
777, 76grpcl 18981 . . . . . . . . . . . . . 14 ((𝑌 ∈ Grp ∧ 𝑧𝐵𝑤𝐵) → (𝑧 + 𝑤) ∈ 𝐵)
7871, 73, 75, 77syl3anc 1371 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧 ∈ (𝐻𝐵) ∧ 𝑤 ∈ (𝐻𝐵))) → (𝑧 + 𝑤) ∈ 𝐵)
7966, 78elind 4223 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧 ∈ (𝐻𝐵) ∧ 𝑤 ∈ (𝐻𝐵))) → (𝑧 + 𝑤) ∈ (𝐻𝐵))
8079anassrs 467 . . . . . . . . . . 11 (((𝜑𝑧 ∈ (𝐻𝐵)) ∧ 𝑤 ∈ (𝐻𝐵)) → (𝑧 + 𝑤) ∈ (𝐻𝐵))
8180ralrimiva 3152 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐻𝐵)) → ∀𝑤 ∈ (𝐻𝐵)(𝑧 + 𝑤) ∈ (𝐻𝐵))
82 mplind.st . . . . . . . . . . . . 13 · = (.r𝑌)
83 eqid 2740 . . . . . . . . . . . . 13 (invg𝑌) = (invg𝑌)
8456adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐻𝐵)) → 𝑌 ∈ Ring)
85 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐻𝐵)) → 𝑧 ∈ (𝐻𝐵))
8685elin2d 4228 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐻𝐵)) → 𝑧𝐵)
877, 82, 37, 83, 84, 86ringnegl 20325 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐻𝐵)) → (((invg𝑌)‘(1r𝑌)) · 𝑧) = ((invg𝑌)‘𝑧))
88 simpl 482 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐻𝐵)) → 𝜑)
89 rhmghm 20510 . . . . . . . . . . . . . . . . . 18 (𝐶 ∈ ((Scalar‘𝑌) RingHom 𝑌) → 𝐶 ∈ ((Scalar‘𝑌) GrpHom 𝑌))
9035, 89syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐶 ∈ ((Scalar‘𝑌) GrpHom 𝑌))
91 eqid 2740 . . . . . . . . . . . . . . . . . 18 (invg‘(Scalar‘𝑌)) = (invg‘(Scalar‘𝑌))
9246, 91, 83ghminv 19263 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ ((Scalar‘𝑌) GrpHom 𝑌) ∧ (1r‘(Scalar‘𝑌)) ∈ (Base‘(Scalar‘𝑌))) → (𝐶‘((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌)))) = ((invg𝑌)‘(𝐶‘(1r‘(Scalar‘𝑌)))))
9390, 48, 92syl2anc 583 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐶‘((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌)))) = ((invg𝑌)‘(𝐶‘(1r‘(Scalar‘𝑌)))))
9439fveq2d 6924 . . . . . . . . . . . . . . . 16 (𝜑 → ((invg𝑌)‘(𝐶‘(1r‘(Scalar‘𝑌)))) = ((invg𝑌)‘(1r𝑌)))
9593, 94eqtrd 2780 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶‘((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌)))) = ((invg𝑌)‘(1r𝑌)))
96 fveq2 6920 . . . . . . . . . . . . . . . . 17 (𝑥 = ((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌))) → (𝐶𝑥) = (𝐶‘((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌)))))
9796eleq1d 2829 . . . . . . . . . . . . . . . 16 (𝑥 = ((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌))) → ((𝐶𝑥) ∈ 𝐻 ↔ (𝐶‘((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌)))) ∈ 𝐻))
98 ringgrp 20265 . . . . . . . . . . . . . . . . . . 19 ((Scalar‘𝑌) ∈ Ring → (Scalar‘𝑌) ∈ Grp)
9945, 98syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (Scalar‘𝑌) ∈ Grp)
10046, 91grpinvcl 19027 . . . . . . . . . . . . . . . . . 18 (((Scalar‘𝑌) ∈ Grp ∧ (1r‘(Scalar‘𝑌)) ∈ (Base‘(Scalar‘𝑌))) → ((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌))) ∈ (Base‘(Scalar‘𝑌)))
10199, 48, 100syl2anc 583 . . . . . . . . . . . . . . . . 17 (𝜑 → ((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌))) ∈ (Base‘(Scalar‘𝑌)))
102101, 51eleqtrrd 2847 . . . . . . . . . . . . . . . 16 (𝜑 → ((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌))) ∈ 𝐾)
10397, 43, 102rspcdva 3636 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶‘((invg‘(Scalar‘𝑌))‘(1r‘(Scalar‘𝑌)))) ∈ 𝐻)
10495, 103eqeltrrd 2845 . . . . . . . . . . . . . 14 (𝜑 → ((invg𝑌)‘(1r𝑌)) ∈ 𝐻)
105104adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐻𝐵)) → ((invg𝑌)‘(1r𝑌)) ∈ 𝐻)
10685elin1d 4227 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐻𝐵)) → 𝑧𝐻)
107 mplind.t . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝐻𝑦𝐻)) → (𝑥 · 𝑦) ∈ 𝐻)
108107caovclg 7642 . . . . . . . . . . . . 13 ((𝜑 ∧ (((invg𝑌)‘(1r𝑌)) ∈ 𝐻𝑧𝐻)) → (((invg𝑌)‘(1r𝑌)) · 𝑧) ∈ 𝐻)
10988, 105, 106, 108syl12anc 836 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐻𝐵)) → (((invg𝑌)‘(1r𝑌)) · 𝑧) ∈ 𝐻)
11087, 109eqeltrrd 2845 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐻𝐵)) → ((invg𝑌)‘𝑧) ∈ 𝐻)
11170adantr 480 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐻𝐵)) → 𝑌 ∈ Grp)
1127, 83grpinvcl 19027 . . . . . . . . . . . 12 ((𝑌 ∈ Grp ∧ 𝑧𝐵) → ((invg𝑌)‘𝑧) ∈ 𝐵)
113111, 86, 112syl2anc 583 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐻𝐵)) → ((invg𝑌)‘𝑧) ∈ 𝐵)
114110, 113elind 4223 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐻𝐵)) → ((invg𝑌)‘𝑧) ∈ (𝐻𝐵))
11581, 114jca 511 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐻𝐵)) → (∀𝑤 ∈ (𝐻𝐵)(𝑧 + 𝑤) ∈ (𝐻𝐵) ∧ ((invg𝑌)‘𝑧) ∈ (𝐻𝐵)))
116115ralrimiva 3152 . . . . . . . 8 (𝜑 → ∀𝑧 ∈ (𝐻𝐵)(∀𝑤 ∈ (𝐻𝐵)(𝑧 + 𝑤) ∈ (𝐻𝐵) ∧ ((invg𝑌)‘𝑧) ∈ (𝐻𝐵)))
1177, 76, 83issubg2 19181 . . . . . . . . 9 (𝑌 ∈ Grp → ((𝐻𝐵) ∈ (SubGrp‘𝑌) ↔ ((𝐻𝐵) ⊆ 𝐵 ∧ (𝐻𝐵) ≠ ∅ ∧ ∀𝑧 ∈ (𝐻𝐵)(∀𝑤 ∈ (𝐻𝐵)(𝑧 + 𝑤) ∈ (𝐻𝐵) ∧ ((invg𝑌)‘𝑧) ∈ (𝐻𝐵)))))
11870, 117syl 17 . . . . . . . 8 (𝜑 → ((𝐻𝐵) ∈ (SubGrp‘𝑌) ↔ ((𝐻𝐵) ⊆ 𝐵 ∧ (𝐻𝐵) ≠ ∅ ∧ ∀𝑧 ∈ (𝐻𝐵)(∀𝑤 ∈ (𝐻𝐵)(𝑧 + 𝑤) ∈ (𝐻𝐵) ∧ ((invg𝑌)‘𝑧) ∈ (𝐻𝐵)))))
11929, 60, 116, 118mpbir3and 1342 . . . . . . 7 (𝜑 → (𝐻𝐵) ∈ (SubGrp‘𝑌))
120 elinel1 4224 . . . . . . . . . . 11 (𝑥 ∈ (𝐻𝐵) → 𝑥𝐻)
121 elinel1 4224 . . . . . . . . . . 11 (𝑦 ∈ (𝐻𝐵) → 𝑦𝐻)
122120, 121anim12i 612 . . . . . . . . . 10 ((𝑥 ∈ (𝐻𝐵) ∧ 𝑦 ∈ (𝐻𝐵)) → (𝑥𝐻𝑦𝐻))
123122, 107sylan2 592 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝐻𝐵) ∧ 𝑦 ∈ (𝐻𝐵))) → (𝑥 · 𝑦) ∈ 𝐻)
12456adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (𝐻𝐵) ∧ 𝑦 ∈ (𝐻𝐵))) → 𝑌 ∈ Ring)
125 simprl 770 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (𝐻𝐵) ∧ 𝑦 ∈ (𝐻𝐵))) → 𝑥 ∈ (𝐻𝐵))
126125elin2d 4228 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (𝐻𝐵) ∧ 𝑦 ∈ (𝐻𝐵))) → 𝑥𝐵)
127 simprr 772 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (𝐻𝐵) ∧ 𝑦 ∈ (𝐻𝐵))) → 𝑦 ∈ (𝐻𝐵))
128127elin2d 4228 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (𝐻𝐵) ∧ 𝑦 ∈ (𝐻𝐵))) → 𝑦𝐵)
1297, 82ringcl 20277 . . . . . . . . . 10 ((𝑌 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → (𝑥 · 𝑦) ∈ 𝐵)
130124, 126, 128, 129syl3anc 1371 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝐻𝐵) ∧ 𝑦 ∈ (𝐻𝐵))) → (𝑥 · 𝑦) ∈ 𝐵)
131123, 130elind 4223 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝐻𝐵) ∧ 𝑦 ∈ (𝐻𝐵))) → (𝑥 · 𝑦) ∈ (𝐻𝐵))
132131ralrimivva 3208 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (𝐻𝐵)∀𝑦 ∈ (𝐻𝐵)(𝑥 · 𝑦) ∈ (𝐻𝐵))
1337, 37, 82issubrg2 20620 . . . . . . . 8 (𝑌 ∈ Ring → ((𝐻𝐵) ∈ (SubRing‘𝑌) ↔ ((𝐻𝐵) ∈ (SubGrp‘𝑌) ∧ (1r𝑌) ∈ (𝐻𝐵) ∧ ∀𝑥 ∈ (𝐻𝐵)∀𝑦 ∈ (𝐻𝐵)(𝑥 · 𝑦) ∈ (𝐻𝐵))))
13456, 133syl 17 . . . . . . 7 (𝜑 → ((𝐻𝐵) ∈ (SubRing‘𝑌) ↔ ((𝐻𝐵) ∈ (SubGrp‘𝑌) ∧ (1r𝑌) ∈ (𝐻𝐵) ∧ ∀𝑥 ∈ (𝐻𝐵)∀𝑦 ∈ (𝐻𝐵)(𝑥 · 𝑦) ∈ (𝐻𝐵))))
135119, 59, 132, 134mpbir3and 1342 . . . . . 6 (𝜑 → (𝐻𝐵) ∈ (SubRing‘𝑌))
1366, 1, 7mplval2 22039 . . . . . . . 8 𝑌 = ((𝐼 mPwSer 𝑅) ↾s 𝐵)
137136subsubrg 20626 . . . . . . 7 (𝐵 ∈ (SubRing‘(𝐼 mPwSer 𝑅)) → ((𝐻𝐵) ∈ (SubRing‘𝑌) ↔ ((𝐻𝐵) ∈ (SubRing‘(𝐼 mPwSer 𝑅)) ∧ (𝐻𝐵) ⊆ 𝐵)))
138137simprbda 498 . . . . . 6 ((𝐵 ∈ (SubRing‘(𝐼 mPwSer 𝑅)) ∧ (𝐻𝐵) ∈ (SubRing‘𝑌)) → (𝐻𝐵) ∈ (SubRing‘(𝐼 mPwSer 𝑅)))
13910, 135, 138syl2anc 583 . . . . 5 (𝜑 → (𝐻𝐵) ∈ (SubRing‘(𝐼 mPwSer 𝑅)))
140 assalmod 21903 . . . . . . 7 ((𝐼 mPwSer 𝑅) ∈ AssAlg → (𝐼 mPwSer 𝑅) ∈ LMod)
1414, 140syl 17 . . . . . 6 (𝜑 → (𝐼 mPwSer 𝑅) ∈ LMod)
1421, 6, 7, 2, 9mpllss 22046 . . . . . 6 (𝜑𝐵 ∈ (LSubSp‘(𝐼 mPwSer 𝑅)))
14331adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑌 ∈ AssAlg)
144 simprl 770 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑧 ∈ (Base‘(Scalar‘𝑌)))
145 simprr 772 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑤 ∈ (𝐻𝐵))
146145elin2d 4228 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑤𝐵)
147 eqid 2740 . . . . . . . . . . . 12 ( ·𝑠𝑌) = ( ·𝑠𝑌)
14832, 33, 46, 7, 82, 147asclmul1 21929 . . . . . . . . . . 11 ((𝑌 ∈ AssAlg ∧ 𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤𝐵) → ((𝐶𝑧) · 𝑤) = (𝑧( ·𝑠𝑌)𝑤))
149143, 144, 146, 148syl3anc 1371 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → ((𝐶𝑧) · 𝑤) = (𝑧( ·𝑠𝑌)𝑤))
150 fveq2 6920 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝐶𝑥) = (𝐶𝑧))
151150eleq1d 2829 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → ((𝐶𝑥) ∈ 𝐻 ↔ (𝐶𝑧) ∈ 𝐻))
15243adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → ∀𝑥𝐾 (𝐶𝑥) ∈ 𝐻)
15351adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝐾 = (Base‘(Scalar‘𝑌)))
154144, 153eleqtrrd 2847 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑧𝐾)
155151, 152, 154rspcdva 3636 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → (𝐶𝑧) ∈ 𝐻)
156145elin1d 4227 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑤𝐻)
157155, 156jca 511 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → ((𝐶𝑧) ∈ 𝐻𝑤𝐻))
158107caovclg 7642 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐶𝑧) ∈ 𝐻𝑤𝐻)) → ((𝐶𝑧) · 𝑤) ∈ 𝐻)
159157, 158syldan 590 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → ((𝐶𝑧) · 𝑤) ∈ 𝐻)
160149, 159eqeltrrd 2845 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → (𝑧( ·𝑠𝑌)𝑤) ∈ 𝐻)
16168adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → 𝑌 ∈ LMod)
1627, 33, 147, 46lmodvscl 20898 . . . . . . . . . 10 ((𝑌 ∈ LMod ∧ 𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤𝐵) → (𝑧( ·𝑠𝑌)𝑤) ∈ 𝐵)
163161, 144, 146, 162syl3anc 1371 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → (𝑧( ·𝑠𝑌)𝑤) ∈ 𝐵)
164160, 163elind 4223 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑤 ∈ (𝐻𝐵))) → (𝑧( ·𝑠𝑌)𝑤) ∈ (𝐻𝐵))
165164ralrimivva 3208 . . . . . . 7 (𝜑 → ∀𝑧 ∈ (Base‘(Scalar‘𝑌))∀𝑤 ∈ (𝐻𝐵)(𝑧( ·𝑠𝑌)𝑤) ∈ (𝐻𝐵))
166 eqid 2740 . . . . . . . . 9 (LSubSp‘𝑌) = (LSubSp‘𝑌)
16733, 46, 7, 147, 166islss4 20983 . . . . . . . 8 (𝑌 ∈ LMod → ((𝐻𝐵) ∈ (LSubSp‘𝑌) ↔ ((𝐻𝐵) ∈ (SubGrp‘𝑌) ∧ ∀𝑧 ∈ (Base‘(Scalar‘𝑌))∀𝑤 ∈ (𝐻𝐵)(𝑧( ·𝑠𝑌)𝑤) ∈ (𝐻𝐵))))
16868, 167syl 17 . . . . . . 7 (𝜑 → ((𝐻𝐵) ∈ (LSubSp‘𝑌) ↔ ((𝐻𝐵) ∈ (SubGrp‘𝑌) ∧ ∀𝑧 ∈ (Base‘(Scalar‘𝑌))∀𝑤 ∈ (𝐻𝐵)(𝑧( ·𝑠𝑌)𝑤) ∈ (𝐻𝐵))))
169119, 165, 168mpbir2and 712 . . . . . 6 (𝜑 → (𝐻𝐵) ∈ (LSubSp‘𝑌))
170 eqid 2740 . . . . . . . 8 (LSubSp‘(𝐼 mPwSer 𝑅)) = (LSubSp‘(𝐼 mPwSer 𝑅))
171136, 170, 166lsslss 20982 . . . . . . 7 (((𝐼 mPwSer 𝑅) ∈ LMod ∧ 𝐵 ∈ (LSubSp‘(𝐼 mPwSer 𝑅))) → ((𝐻𝐵) ∈ (LSubSp‘𝑌) ↔ ((𝐻𝐵) ∈ (LSubSp‘(𝐼 mPwSer 𝑅)) ∧ (𝐻𝐵) ⊆ 𝐵)))
172171simprbda 498 . . . . . 6 ((((𝐼 mPwSer 𝑅) ∈ LMod ∧ 𝐵 ∈ (LSubSp‘(𝐼 mPwSer 𝑅))) ∧ (𝐻𝐵) ∈ (LSubSp‘𝑌)) → (𝐻𝐵) ∈ (LSubSp‘(𝐼 mPwSer 𝑅)))
173141, 142, 169, 172syl21anc 837 . . . . 5 (𝜑 → (𝐻𝐵) ∈ (LSubSp‘(𝐼 mPwSer 𝑅)))
17424, 11, 170aspid 21918 . . . . 5 (((𝐼 mPwSer 𝑅) ∈ AssAlg ∧ (𝐻𝐵) ∈ (SubRing‘(𝐼 mPwSer 𝑅)) ∧ (𝐻𝐵) ∈ (LSubSp‘(𝐼 mPwSer 𝑅))) → ((AlgSpan‘(𝐼 mPwSer 𝑅))‘(𝐻𝐵)) = (𝐻𝐵))
1754, 139, 173, 174syl3anc 1371 . . . 4 (𝜑 → ((AlgSpan‘(𝐼 mPwSer 𝑅))‘(𝐻𝐵)) = (𝐻𝐵))
17626, 28, 1753sstr3d 4055 . . 3 (𝜑𝐵 ⊆ (𝐻𝐵))
177 mplind.x . . 3 (𝜑𝑋𝐵)
178176, 177sseldd 4009 . 2 (𝜑𝑋 ∈ (𝐻𝐵))
179178elin1d 4227 1 (𝜑𝑋𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  cin 3975  wss 3976  c0 4352  ran crn 5701   Fn wfn 6568  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  .rcmulr 17312  Scalarcsca 17314   ·𝑠 cvsca 17315  Grpcgrp 18973  invgcminusg 18974  SubGrpcsubg 19160   GrpHom cghm 19252  1rcur 20208  Ringcrg 20260  CRingccrg 20261   RingHom crh 20495  SubRingcsubrg 20595  LModclmod 20880  LSubSpclss 20952  AssAlgcasa 21893  AlgSpancasp 21894  algSccascl 21895   mPwSer cmps 21947   mVar cmvr 21948   mPoly cmpl 21949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-srg 20214  df-ring 20262  df-cring 20263  df-rhm 20498  df-subrng 20572  df-subrg 20597  df-lmod 20882  df-lss 20953  df-assa 21896  df-asp 21897  df-ascl 21898  df-psr 21952  df-mvr 21953  df-mpl 21954
This theorem is referenced by:  mpfind  22154
  Copyright terms: Public domain W3C validator