![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qusrhm | Structured version Visualization version GIF version |
Description: If 𝑆 is a two-sided ideal in 𝑅, then the "natural map" from elements to their cosets is a ring homomorphism from 𝑅 to 𝑅 / 𝑆. (Contributed by Mario Carneiro, 15-Jun-2015.) |
Ref | Expression |
---|---|
qusring.u | ⊢ 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆)) |
qusring.i | ⊢ 𝐼 = (2Ideal‘𝑅) |
qusrhm.x | ⊢ 𝑋 = (Base‘𝑅) |
qusrhm.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ [𝑥](𝑅 ~QG 𝑆)) |
Ref | Expression |
---|---|
qusrhm | ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝐹 ∈ (𝑅 RingHom 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusrhm.x | . 2 ⊢ 𝑋 = (Base‘𝑅) | |
2 | eqid 2724 | . 2 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
3 | eqid 2724 | . 2 ⊢ (1r‘𝑈) = (1r‘𝑈) | |
4 | eqid 2724 | . 2 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
5 | eqid 2724 | . 2 ⊢ (.r‘𝑈) = (.r‘𝑈) | |
6 | simpl 482 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑅 ∈ Ring) | |
7 | qusring.u | . . 3 ⊢ 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆)) | |
8 | qusring.i | . . 3 ⊢ 𝐼 = (2Ideal‘𝑅) | |
9 | 7, 8 | qusring 21117 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑈 ∈ Ring) |
10 | eqid 2724 | . . . . . . . . 9 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
11 | eqid 2724 | . . . . . . . . 9 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
12 | eqid 2724 | . . . . . . . . 9 ⊢ (LIdeal‘(oppr‘𝑅)) = (LIdeal‘(oppr‘𝑅)) | |
13 | 10, 11, 12, 8 | 2idlval 21093 | . . . . . . . 8 ⊢ 𝐼 = ((LIdeal‘𝑅) ∩ (LIdeal‘(oppr‘𝑅))) |
14 | 13 | elin2 4189 | . . . . . . 7 ⊢ (𝑆 ∈ 𝐼 ↔ (𝑆 ∈ (LIdeal‘𝑅) ∧ 𝑆 ∈ (LIdeal‘(oppr‘𝑅)))) |
15 | 14 | simplbi 497 | . . . . . 6 ⊢ (𝑆 ∈ 𝐼 → 𝑆 ∈ (LIdeal‘𝑅)) |
16 | 10 | lidlsubg 21067 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ (LIdeal‘𝑅)) → 𝑆 ∈ (SubGrp‘𝑅)) |
17 | 15, 16 | sylan2 592 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑆 ∈ (SubGrp‘𝑅)) |
18 | eqid 2724 | . . . . . 6 ⊢ (𝑅 ~QG 𝑆) = (𝑅 ~QG 𝑆) | |
19 | 1, 18 | eqger 19090 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝑆) Er 𝑋) |
20 | 17, 19 | syl 17 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → (𝑅 ~QG 𝑆) Er 𝑋) |
21 | 1 | fvexi 6895 | . . . . 5 ⊢ 𝑋 ∈ V |
22 | 21 | a1i 11 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑋 ∈ V) |
23 | qusrhm.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ [𝑥](𝑅 ~QG 𝑆)) | |
24 | 20, 22, 23 | divsfval 17489 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → (𝐹‘(1r‘𝑅)) = [(1r‘𝑅)](𝑅 ~QG 𝑆)) |
25 | 7, 8, 2 | qus1 21116 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → (𝑈 ∈ Ring ∧ [(1r‘𝑅)](𝑅 ~QG 𝑆) = (1r‘𝑈))) |
26 | 25 | simprd 495 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → [(1r‘𝑅)](𝑅 ~QG 𝑆) = (1r‘𝑈)) |
27 | 24, 26 | eqtrd 2764 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → (𝐹‘(1r‘𝑅)) = (1r‘𝑈)) |
28 | 7 | a1i 11 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))) |
29 | 1 | a1i 11 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑋 = (Base‘𝑅)) |
30 | 1, 18, 8, 4 | 2idlcpbl 21114 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → ((𝑎(𝑅 ~QG 𝑆)𝑐 ∧ 𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(.r‘𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(.r‘𝑅)𝑑))) |
31 | 1, 4 | ringcl 20140 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑦(.r‘𝑅)𝑧) ∈ 𝑋) |
32 | 31 | 3expb 1117 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦(.r‘𝑅)𝑧) ∈ 𝑋) |
33 | 32 | adantlr 712 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦(.r‘𝑅)𝑧) ∈ 𝑋) |
34 | 33 | caovclg 7592 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋)) → (𝑐(.r‘𝑅)𝑑) ∈ 𝑋) |
35 | 28, 29, 20, 6, 30, 34, 4, 5 | qusmulval 17497 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → ([𝑦](𝑅 ~QG 𝑆)(.r‘𝑈)[𝑧](𝑅 ~QG 𝑆)) = [(𝑦(.r‘𝑅)𝑧)](𝑅 ~QG 𝑆)) |
36 | 35 | 3expb 1117 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ([𝑦](𝑅 ~QG 𝑆)(.r‘𝑈)[𝑧](𝑅 ~QG 𝑆)) = [(𝑦(.r‘𝑅)𝑧)](𝑅 ~QG 𝑆)) |
37 | 20 | adantr 480 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑅 ~QG 𝑆) Er 𝑋) |
38 | 21 | a1i 11 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑋 ∈ V) |
39 | 37, 38, 23 | divsfval 17489 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐹‘𝑦) = [𝑦](𝑅 ~QG 𝑆)) |
40 | 37, 38, 23 | divsfval 17489 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐹‘𝑧) = [𝑧](𝑅 ~QG 𝑆)) |
41 | 39, 40 | oveq12d 7419 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝐹‘𝑦)(.r‘𝑈)(𝐹‘𝑧)) = ([𝑦](𝑅 ~QG 𝑆)(.r‘𝑈)[𝑧](𝑅 ~QG 𝑆))) |
42 | 37, 38, 23 | divsfval 17489 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐹‘(𝑦(.r‘𝑅)𝑧)) = [(𝑦(.r‘𝑅)𝑧)](𝑅 ~QG 𝑆)) |
43 | 36, 41, 42 | 3eqtr4rd 2775 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐹‘(𝑦(.r‘𝑅)𝑧)) = ((𝐹‘𝑦)(.r‘𝑈)(𝐹‘𝑧))) |
44 | ringabl 20165 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Abel) | |
45 | 44 | adantr 480 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑅 ∈ Abel) |
46 | ablnsg 19752 | . . . . 5 ⊢ (𝑅 ∈ Abel → (NrmSGrp‘𝑅) = (SubGrp‘𝑅)) | |
47 | 45, 46 | syl 17 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → (NrmSGrp‘𝑅) = (SubGrp‘𝑅)) |
48 | 17, 47 | eleqtrrd 2828 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑆 ∈ (NrmSGrp‘𝑅)) |
49 | 1, 7, 23 | qusghm 19165 | . . 3 ⊢ (𝑆 ∈ (NrmSGrp‘𝑅) → 𝐹 ∈ (𝑅 GrpHom 𝑈)) |
50 | 48, 49 | syl 17 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝐹 ∈ (𝑅 GrpHom 𝑈)) |
51 | 1, 2, 3, 4, 5, 6, 9, 27, 43, 50 | isrhm2d 20374 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝐹 ∈ (𝑅 RingHom 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3466 ↦ cmpt 5221 ‘cfv 6533 (class class class)co 7401 Er wer 8695 [cec 8696 Basecbs 17140 .rcmulr 17194 /s cqus 17447 SubGrpcsubg 19032 NrmSGrpcnsg 19033 ~QG cqg 19034 GrpHom cghm 19123 Abelcabl 19686 1rcur 20071 Ringcrg 20123 opprcoppr 20220 RingHom crh 20356 LIdealclidl 21050 2Idealc2idl 21091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-tpos 8206 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8698 df-ec 8700 df-qs 8704 df-map 8817 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-sup 9432 df-inf 9433 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-fz 13481 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-0g 17383 df-imas 17450 df-qus 17451 df-mgm 18560 df-sgrp 18639 df-mnd 18655 df-mhm 18700 df-grp 18853 df-minusg 18854 df-sbg 18855 df-subg 19035 df-nsg 19036 df-eqg 19037 df-ghm 19124 df-cmn 19687 df-abl 19688 df-mgp 20025 df-rng 20043 df-ur 20072 df-ring 20125 df-oppr 20221 df-rhm 20359 df-subrg 20456 df-lmod 20693 df-lss 20764 df-sra 21006 df-rgmod 21007 df-lidl 21052 df-2idl 21092 |
This theorem is referenced by: znzrh2 21401 |
Copyright terms: Public domain | W3C validator |