MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qusrhm Structured version   Visualization version   GIF version

Theorem qusrhm 20275
Description: If 𝑆 is a two-sided ideal in 𝑅, then the "natural map" from elements to their cosets is a ring homomorphism from 𝑅 to 𝑅 / 𝑆. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
qusring.u 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))
qusring.i 𝐼 = (2Ideal‘𝑅)
qusrhm.x 𝑋 = (Base‘𝑅)
qusrhm.f 𝐹 = (𝑥𝑋 ↦ [𝑥](𝑅 ~QG 𝑆))
Assertion
Ref Expression
qusrhm ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝐹 ∈ (𝑅 RingHom 𝑈))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑅   𝑥,𝑆   𝑥,𝑈   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem qusrhm
Dummy variables 𝑦 𝑧 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusrhm.x . 2 𝑋 = (Base‘𝑅)
2 eqid 2737 . 2 (1r𝑅) = (1r𝑅)
3 eqid 2737 . 2 (1r𝑈) = (1r𝑈)
4 eqid 2737 . 2 (.r𝑅) = (.r𝑅)
5 eqid 2737 . 2 (.r𝑈) = (.r𝑈)
6 simpl 486 . 2 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑅 ∈ Ring)
7 qusring.u . . 3 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))
8 qusring.i . . 3 𝐼 = (2Ideal‘𝑅)
97, 8qusring 20274 . 2 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑈 ∈ Ring)
10 eqid 2737 . . . . . . . . 9 (LIdeal‘𝑅) = (LIdeal‘𝑅)
11 eqid 2737 . . . . . . . . 9 (oppr𝑅) = (oppr𝑅)
12 eqid 2737 . . . . . . . . 9 (LIdeal‘(oppr𝑅)) = (LIdeal‘(oppr𝑅))
1310, 11, 12, 82idlval 20271 . . . . . . . 8 𝐼 = ((LIdeal‘𝑅) ∩ (LIdeal‘(oppr𝑅)))
1413elin2 4111 . . . . . . 7 (𝑆𝐼 ↔ (𝑆 ∈ (LIdeal‘𝑅) ∧ 𝑆 ∈ (LIdeal‘(oppr𝑅))))
1514simplbi 501 . . . . . 6 (𝑆𝐼𝑆 ∈ (LIdeal‘𝑅))
1610lidlsubg 20253 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑆 ∈ (LIdeal‘𝑅)) → 𝑆 ∈ (SubGrp‘𝑅))
1715, 16sylan2 596 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑆 ∈ (SubGrp‘𝑅))
18 eqid 2737 . . . . . 6 (𝑅 ~QG 𝑆) = (𝑅 ~QG 𝑆)
191, 18eqger 18594 . . . . 5 (𝑆 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝑆) Er 𝑋)
2017, 19syl 17 . . . 4 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → (𝑅 ~QG 𝑆) Er 𝑋)
211fvexi 6731 . . . . 5 𝑋 ∈ V
2221a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑋 ∈ V)
23 qusrhm.f . . . 4 𝐹 = (𝑥𝑋 ↦ [𝑥](𝑅 ~QG 𝑆))
2420, 22, 23divsfval 17052 . . 3 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → (𝐹‘(1r𝑅)) = [(1r𝑅)](𝑅 ~QG 𝑆))
257, 8, 2qus1 20273 . . . 4 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → (𝑈 ∈ Ring ∧ [(1r𝑅)](𝑅 ~QG 𝑆) = (1r𝑈)))
2625simprd 499 . . 3 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → [(1r𝑅)](𝑅 ~QG 𝑆) = (1r𝑈))
2724, 26eqtrd 2777 . 2 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → (𝐹‘(1r𝑅)) = (1r𝑈))
287a1i 11 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆)))
291a1i 11 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑋 = (Base‘𝑅))
301, 18, 8, 42idlcpbl 20272 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → ((𝑎(𝑅 ~QG 𝑆)𝑐𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(.r𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(.r𝑅)𝑑)))
311, 4ringcl 19579 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑦𝑋𝑧𝑋) → (𝑦(.r𝑅)𝑧) ∈ 𝑋)
32313expb 1122 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑦𝑋𝑧𝑋)) → (𝑦(.r𝑅)𝑧) ∈ 𝑋)
3332adantlr 715 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝑦𝑋𝑧𝑋)) → (𝑦(.r𝑅)𝑧) ∈ 𝑋)
3433caovclg 7400 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝑐𝑋𝑑𝑋)) → (𝑐(.r𝑅)𝑑) ∈ 𝑋)
3528, 29, 20, 6, 30, 34, 4, 5qusmulval 17060 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ 𝑦𝑋𝑧𝑋) → ([𝑦](𝑅 ~QG 𝑆)(.r𝑈)[𝑧](𝑅 ~QG 𝑆)) = [(𝑦(.r𝑅)𝑧)](𝑅 ~QG 𝑆))
36353expb 1122 . . 3 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝑦𝑋𝑧𝑋)) → ([𝑦](𝑅 ~QG 𝑆)(.r𝑈)[𝑧](𝑅 ~QG 𝑆)) = [(𝑦(.r𝑅)𝑧)](𝑅 ~QG 𝑆))
3720adantr 484 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝑦𝑋𝑧𝑋)) → (𝑅 ~QG 𝑆) Er 𝑋)
3821a1i 11 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝑦𝑋𝑧𝑋)) → 𝑋 ∈ V)
3937, 38, 23divsfval 17052 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹𝑦) = [𝑦](𝑅 ~QG 𝑆))
4037, 38, 23divsfval 17052 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹𝑧) = [𝑧](𝑅 ~QG 𝑆))
4139, 40oveq12d 7231 . . 3 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝑦𝑋𝑧𝑋)) → ((𝐹𝑦)(.r𝑈)(𝐹𝑧)) = ([𝑦](𝑅 ~QG 𝑆)(.r𝑈)[𝑧](𝑅 ~QG 𝑆)))
4237, 38, 23divsfval 17052 . . 3 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹‘(𝑦(.r𝑅)𝑧)) = [(𝑦(.r𝑅)𝑧)](𝑅 ~QG 𝑆))
4336, 41, 423eqtr4rd 2788 . 2 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹‘(𝑦(.r𝑅)𝑧)) = ((𝐹𝑦)(.r𝑈)(𝐹𝑧)))
44 ringabl 19598 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Abel)
4544adantr 484 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑅 ∈ Abel)
46 ablnsg 19232 . . . . 5 (𝑅 ∈ Abel → (NrmSGrp‘𝑅) = (SubGrp‘𝑅))
4745, 46syl 17 . . . 4 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → (NrmSGrp‘𝑅) = (SubGrp‘𝑅))
4817, 47eleqtrrd 2841 . . 3 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑆 ∈ (NrmSGrp‘𝑅))
491, 7, 23qusghm 18659 . . 3 (𝑆 ∈ (NrmSGrp‘𝑅) → 𝐹 ∈ (𝑅 GrpHom 𝑈))
5048, 49syl 17 . 2 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝐹 ∈ (𝑅 GrpHom 𝑈))
511, 2, 3, 4, 5, 6, 9, 27, 43, 50isrhm2d 19748 1 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝐹 ∈ (𝑅 RingHom 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  Vcvv 3408  cmpt 5135  cfv 6380  (class class class)co 7213   Er wer 8388  [cec 8389  Basecbs 16760  .rcmulr 16803   /s cqus 17010  SubGrpcsubg 18537  NrmSGrpcnsg 18538   ~QG cqg 18539   GrpHom cghm 18619  Abelcabl 19171  1rcur 19516  Ringcrg 19562  opprcoppr 19640   RingHom crh 19732  LIdealclidl 20207  2Idealc2idl 20269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-tpos 7968  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-ec 8393  df-qs 8397  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-sup 9058  df-inf 9059  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-fz 13096  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-0g 16946  df-imas 17013  df-qus 17014  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-mhm 18218  df-grp 18368  df-minusg 18369  df-sbg 18370  df-subg 18540  df-nsg 18541  df-eqg 18542  df-ghm 18620  df-cmn 19172  df-abl 19173  df-mgp 19505  df-ur 19517  df-ring 19564  df-oppr 19641  df-rnghom 19735  df-subrg 19798  df-lmod 19901  df-lss 19969  df-sra 20209  df-rgmod 20210  df-lidl 20211  df-2idl 20270
This theorem is referenced by:  znzrh2  20510
  Copyright terms: Public domain W3C validator