![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qusrhm | Structured version Visualization version GIF version |
Description: If 𝑆 is a two-sided ideal in 𝑅, then the "natural map" from elements to their cosets is a ring homomorphism from 𝑅 to 𝑅 / 𝑆. (Contributed by Mario Carneiro, 15-Jun-2015.) |
Ref | Expression |
---|---|
qusring.u | ⊢ 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆)) |
qusring.i | ⊢ 𝐼 = (2Ideal‘𝑅) |
qusrhm.x | ⊢ 𝑋 = (Base‘𝑅) |
qusrhm.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ [𝑥](𝑅 ~QG 𝑆)) |
Ref | Expression |
---|---|
qusrhm | ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝐹 ∈ (𝑅 RingHom 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusrhm.x | . 2 ⊢ 𝑋 = (Base‘𝑅) | |
2 | eqid 2795 | . 2 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
3 | eqid 2795 | . 2 ⊢ (1r‘𝑈) = (1r‘𝑈) | |
4 | eqid 2795 | . 2 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
5 | eqid 2795 | . 2 ⊢ (.r‘𝑈) = (.r‘𝑈) | |
6 | simpl 483 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑅 ∈ Ring) | |
7 | qusring.u | . . 3 ⊢ 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆)) | |
8 | qusring.i | . . 3 ⊢ 𝐼 = (2Ideal‘𝑅) | |
9 | 7, 8 | qusring 19698 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑈 ∈ Ring) |
10 | eqid 2795 | . . . . . . . . 9 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
11 | eqid 2795 | . . . . . . . . 9 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
12 | eqid 2795 | . . . . . . . . 9 ⊢ (LIdeal‘(oppr‘𝑅)) = (LIdeal‘(oppr‘𝑅)) | |
13 | 10, 11, 12, 8 | 2idlval 19695 | . . . . . . . 8 ⊢ 𝐼 = ((LIdeal‘𝑅) ∩ (LIdeal‘(oppr‘𝑅))) |
14 | 13 | elin2 4095 | . . . . . . 7 ⊢ (𝑆 ∈ 𝐼 ↔ (𝑆 ∈ (LIdeal‘𝑅) ∧ 𝑆 ∈ (LIdeal‘(oppr‘𝑅)))) |
15 | 14 | simplbi 498 | . . . . . 6 ⊢ (𝑆 ∈ 𝐼 → 𝑆 ∈ (LIdeal‘𝑅)) |
16 | 10 | lidlsubg 19677 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ (LIdeal‘𝑅)) → 𝑆 ∈ (SubGrp‘𝑅)) |
17 | 15, 16 | sylan2 592 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑆 ∈ (SubGrp‘𝑅)) |
18 | eqid 2795 | . . . . . 6 ⊢ (𝑅 ~QG 𝑆) = (𝑅 ~QG 𝑆) | |
19 | 1, 18 | eqger 18083 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝑆) Er 𝑋) |
20 | 17, 19 | syl 17 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → (𝑅 ~QG 𝑆) Er 𝑋) |
21 | 1 | fvexi 6552 | . . . . 5 ⊢ 𝑋 ∈ V |
22 | 21 | a1i 11 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑋 ∈ V) |
23 | qusrhm.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ [𝑥](𝑅 ~QG 𝑆)) | |
24 | 20, 22, 23 | divsfval 16649 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → (𝐹‘(1r‘𝑅)) = [(1r‘𝑅)](𝑅 ~QG 𝑆)) |
25 | 7, 8, 2 | qus1 19697 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → (𝑈 ∈ Ring ∧ [(1r‘𝑅)](𝑅 ~QG 𝑆) = (1r‘𝑈))) |
26 | 25 | simprd 496 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → [(1r‘𝑅)](𝑅 ~QG 𝑆) = (1r‘𝑈)) |
27 | 24, 26 | eqtrd 2831 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → (𝐹‘(1r‘𝑅)) = (1r‘𝑈)) |
28 | 7 | a1i 11 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))) |
29 | 1 | a1i 11 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑋 = (Base‘𝑅)) |
30 | 1, 18, 8, 4 | 2idlcpbl 19696 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → ((𝑎(𝑅 ~QG 𝑆)𝑐 ∧ 𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(.r‘𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(.r‘𝑅)𝑑))) |
31 | 1, 4 | ringcl 19001 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑦(.r‘𝑅)𝑧) ∈ 𝑋) |
32 | 31 | 3expb 1113 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦(.r‘𝑅)𝑧) ∈ 𝑋) |
33 | 32 | adantlr 711 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦(.r‘𝑅)𝑧) ∈ 𝑋) |
34 | 33 | caovclg 7196 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋)) → (𝑐(.r‘𝑅)𝑑) ∈ 𝑋) |
35 | 28, 29, 20, 6, 30, 34, 4, 5 | qusmulval 16657 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → ([𝑦](𝑅 ~QG 𝑆)(.r‘𝑈)[𝑧](𝑅 ~QG 𝑆)) = [(𝑦(.r‘𝑅)𝑧)](𝑅 ~QG 𝑆)) |
36 | 35 | 3expb 1113 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ([𝑦](𝑅 ~QG 𝑆)(.r‘𝑈)[𝑧](𝑅 ~QG 𝑆)) = [(𝑦(.r‘𝑅)𝑧)](𝑅 ~QG 𝑆)) |
37 | 20 | adantr 481 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑅 ~QG 𝑆) Er 𝑋) |
38 | 21 | a1i 11 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑋 ∈ V) |
39 | 37, 38, 23 | divsfval 16649 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐹‘𝑦) = [𝑦](𝑅 ~QG 𝑆)) |
40 | 37, 38, 23 | divsfval 16649 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐹‘𝑧) = [𝑧](𝑅 ~QG 𝑆)) |
41 | 39, 40 | oveq12d 7034 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝐹‘𝑦)(.r‘𝑈)(𝐹‘𝑧)) = ([𝑦](𝑅 ~QG 𝑆)(.r‘𝑈)[𝑧](𝑅 ~QG 𝑆))) |
42 | 37, 38, 23 | divsfval 16649 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐹‘(𝑦(.r‘𝑅)𝑧)) = [(𝑦(.r‘𝑅)𝑧)](𝑅 ~QG 𝑆)) |
43 | 36, 41, 42 | 3eqtr4rd 2842 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐹‘(𝑦(.r‘𝑅)𝑧)) = ((𝐹‘𝑦)(.r‘𝑈)(𝐹‘𝑧))) |
44 | ringabl 19020 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Abel) | |
45 | 44 | adantr 481 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑅 ∈ Abel) |
46 | ablnsg 18690 | . . . . 5 ⊢ (𝑅 ∈ Abel → (NrmSGrp‘𝑅) = (SubGrp‘𝑅)) | |
47 | 45, 46 | syl 17 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → (NrmSGrp‘𝑅) = (SubGrp‘𝑅)) |
48 | 17, 47 | eleqtrrd 2886 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑆 ∈ (NrmSGrp‘𝑅)) |
49 | 1, 7, 23 | qusghm 18136 | . . 3 ⊢ (𝑆 ∈ (NrmSGrp‘𝑅) → 𝐹 ∈ (𝑅 GrpHom 𝑈)) |
50 | 48, 49 | syl 17 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝐹 ∈ (𝑅 GrpHom 𝑈)) |
51 | 1, 2, 3, 4, 5, 6, 9, 27, 43, 50 | isrhm2d 19170 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝐹 ∈ (𝑅 RingHom 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1522 ∈ wcel 2081 Vcvv 3437 ↦ cmpt 5041 ‘cfv 6225 (class class class)co 7016 Er wer 8136 [cec 8137 Basecbs 16312 .rcmulr 16395 /s cqus 16607 SubGrpcsubg 18027 NrmSGrpcnsg 18028 ~QG cqg 18029 GrpHom cghm 18096 Abelcabl 18634 1rcur 18941 Ringcrg 18987 opprcoppr 19062 RingHom crh 19154 LIdealclidl 19632 2Idealc2idl 19693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-cnex 10439 ax-resscn 10440 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-addrcl 10444 ax-mulcl 10445 ax-mulrcl 10446 ax-mulcom 10447 ax-addass 10448 ax-mulass 10449 ax-distr 10450 ax-i2m1 10451 ax-1ne0 10452 ax-1rid 10453 ax-rnegex 10454 ax-rrecex 10455 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 ax-pre-ltadd 10459 ax-pre-mulgt0 10460 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rmo 3113 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-int 4783 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-riota 6977 df-ov 7019 df-oprab 7020 df-mpo 7021 df-om 7437 df-1st 7545 df-2nd 7546 df-tpos 7743 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-1o 7953 df-oadd 7957 df-er 8139 df-ec 8141 df-qs 8145 df-map 8258 df-en 8358 df-dom 8359 df-sdom 8360 df-fin 8361 df-sup 8752 df-inf 8753 df-pnf 10523 df-mnf 10524 df-xr 10525 df-ltxr 10526 df-le 10527 df-sub 10719 df-neg 10720 df-nn 11487 df-2 11548 df-3 11549 df-4 11550 df-5 11551 df-6 11552 df-7 11553 df-8 11554 df-9 11555 df-n0 11746 df-z 11830 df-dec 11948 df-uz 12094 df-fz 12743 df-struct 16314 df-ndx 16315 df-slot 16316 df-base 16318 df-sets 16319 df-ress 16320 df-plusg 16407 df-mulr 16408 df-sca 16410 df-vsca 16411 df-ip 16412 df-tset 16413 df-ple 16414 df-ds 16416 df-0g 16544 df-imas 16610 df-qus 16611 df-mgm 17681 df-sgrp 17723 df-mnd 17734 df-mhm 17774 df-grp 17864 df-minusg 17865 df-sbg 17866 df-subg 18030 df-nsg 18031 df-eqg 18032 df-ghm 18097 df-cmn 18635 df-abl 18636 df-mgp 18930 df-ur 18942 df-ring 18989 df-oppr 19063 df-rnghom 19157 df-subrg 19223 df-lmod 19326 df-lss 19394 df-sra 19634 df-rgmod 19635 df-lidl 19636 df-2idl 19694 |
This theorem is referenced by: znzrh2 20374 |
Copyright terms: Public domain | W3C validator |