MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qusrhm Structured version   Visualization version   GIF version

Theorem qusrhm 21118
Description: If 𝑆 is a two-sided ideal in 𝑅, then the "natural map" from elements to their cosets is a ring homomorphism from 𝑅 to 𝑅 / 𝑆. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
qusring.u 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))
qusring.i 𝐼 = (2Ideal‘𝑅)
qusrhm.x 𝑋 = (Base‘𝑅)
qusrhm.f 𝐹 = (𝑥𝑋 ↦ [𝑥](𝑅 ~QG 𝑆))
Assertion
Ref Expression
qusrhm ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝐹 ∈ (𝑅 RingHom 𝑈))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑅   𝑥,𝑆   𝑥,𝑈   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem qusrhm
Dummy variables 𝑦 𝑧 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusrhm.x . 2 𝑋 = (Base‘𝑅)
2 eqid 2724 . 2 (1r𝑅) = (1r𝑅)
3 eqid 2724 . 2 (1r𝑈) = (1r𝑈)
4 eqid 2724 . 2 (.r𝑅) = (.r𝑅)
5 eqid 2724 . 2 (.r𝑈) = (.r𝑈)
6 simpl 482 . 2 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑅 ∈ Ring)
7 qusring.u . . 3 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))
8 qusring.i . . 3 𝐼 = (2Ideal‘𝑅)
97, 8qusring 21117 . 2 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑈 ∈ Ring)
10 eqid 2724 . . . . . . . . 9 (LIdeal‘𝑅) = (LIdeal‘𝑅)
11 eqid 2724 . . . . . . . . 9 (oppr𝑅) = (oppr𝑅)
12 eqid 2724 . . . . . . . . 9 (LIdeal‘(oppr𝑅)) = (LIdeal‘(oppr𝑅))
1310, 11, 12, 82idlval 21093 . . . . . . . 8 𝐼 = ((LIdeal‘𝑅) ∩ (LIdeal‘(oppr𝑅)))
1413elin2 4189 . . . . . . 7 (𝑆𝐼 ↔ (𝑆 ∈ (LIdeal‘𝑅) ∧ 𝑆 ∈ (LIdeal‘(oppr𝑅))))
1514simplbi 497 . . . . . 6 (𝑆𝐼𝑆 ∈ (LIdeal‘𝑅))
1610lidlsubg 21067 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑆 ∈ (LIdeal‘𝑅)) → 𝑆 ∈ (SubGrp‘𝑅))
1715, 16sylan2 592 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑆 ∈ (SubGrp‘𝑅))
18 eqid 2724 . . . . . 6 (𝑅 ~QG 𝑆) = (𝑅 ~QG 𝑆)
191, 18eqger 19090 . . . . 5 (𝑆 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝑆) Er 𝑋)
2017, 19syl 17 . . . 4 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → (𝑅 ~QG 𝑆) Er 𝑋)
211fvexi 6895 . . . . 5 𝑋 ∈ V
2221a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑋 ∈ V)
23 qusrhm.f . . . 4 𝐹 = (𝑥𝑋 ↦ [𝑥](𝑅 ~QG 𝑆))
2420, 22, 23divsfval 17489 . . 3 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → (𝐹‘(1r𝑅)) = [(1r𝑅)](𝑅 ~QG 𝑆))
257, 8, 2qus1 21116 . . . 4 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → (𝑈 ∈ Ring ∧ [(1r𝑅)](𝑅 ~QG 𝑆) = (1r𝑈)))
2625simprd 495 . . 3 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → [(1r𝑅)](𝑅 ~QG 𝑆) = (1r𝑈))
2724, 26eqtrd 2764 . 2 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → (𝐹‘(1r𝑅)) = (1r𝑈))
287a1i 11 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆)))
291a1i 11 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑋 = (Base‘𝑅))
301, 18, 8, 42idlcpbl 21114 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → ((𝑎(𝑅 ~QG 𝑆)𝑐𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(.r𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(.r𝑅)𝑑)))
311, 4ringcl 20140 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑦𝑋𝑧𝑋) → (𝑦(.r𝑅)𝑧) ∈ 𝑋)
32313expb 1117 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑦𝑋𝑧𝑋)) → (𝑦(.r𝑅)𝑧) ∈ 𝑋)
3332adantlr 712 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝑦𝑋𝑧𝑋)) → (𝑦(.r𝑅)𝑧) ∈ 𝑋)
3433caovclg 7592 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝑐𝑋𝑑𝑋)) → (𝑐(.r𝑅)𝑑) ∈ 𝑋)
3528, 29, 20, 6, 30, 34, 4, 5qusmulval 17497 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ 𝑦𝑋𝑧𝑋) → ([𝑦](𝑅 ~QG 𝑆)(.r𝑈)[𝑧](𝑅 ~QG 𝑆)) = [(𝑦(.r𝑅)𝑧)](𝑅 ~QG 𝑆))
36353expb 1117 . . 3 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝑦𝑋𝑧𝑋)) → ([𝑦](𝑅 ~QG 𝑆)(.r𝑈)[𝑧](𝑅 ~QG 𝑆)) = [(𝑦(.r𝑅)𝑧)](𝑅 ~QG 𝑆))
3720adantr 480 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝑦𝑋𝑧𝑋)) → (𝑅 ~QG 𝑆) Er 𝑋)
3821a1i 11 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝑦𝑋𝑧𝑋)) → 𝑋 ∈ V)
3937, 38, 23divsfval 17489 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹𝑦) = [𝑦](𝑅 ~QG 𝑆))
4037, 38, 23divsfval 17489 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹𝑧) = [𝑧](𝑅 ~QG 𝑆))
4139, 40oveq12d 7419 . . 3 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝑦𝑋𝑧𝑋)) → ((𝐹𝑦)(.r𝑈)(𝐹𝑧)) = ([𝑦](𝑅 ~QG 𝑆)(.r𝑈)[𝑧](𝑅 ~QG 𝑆)))
4237, 38, 23divsfval 17489 . . 3 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹‘(𝑦(.r𝑅)𝑧)) = [(𝑦(.r𝑅)𝑧)](𝑅 ~QG 𝑆))
4336, 41, 423eqtr4rd 2775 . 2 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹‘(𝑦(.r𝑅)𝑧)) = ((𝐹𝑦)(.r𝑈)(𝐹𝑧)))
44 ringabl 20165 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Abel)
4544adantr 480 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑅 ∈ Abel)
46 ablnsg 19752 . . . . 5 (𝑅 ∈ Abel → (NrmSGrp‘𝑅) = (SubGrp‘𝑅))
4745, 46syl 17 . . . 4 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → (NrmSGrp‘𝑅) = (SubGrp‘𝑅))
4817, 47eleqtrrd 2828 . . 3 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑆 ∈ (NrmSGrp‘𝑅))
491, 7, 23qusghm 19165 . . 3 (𝑆 ∈ (NrmSGrp‘𝑅) → 𝐹 ∈ (𝑅 GrpHom 𝑈))
5048, 49syl 17 . 2 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝐹 ∈ (𝑅 GrpHom 𝑈))
511, 2, 3, 4, 5, 6, 9, 27, 43, 50isrhm2d 20374 1 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝐹 ∈ (𝑅 RingHom 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  Vcvv 3466  cmpt 5221  cfv 6533  (class class class)co 7401   Er wer 8695  [cec 8696  Basecbs 17140  .rcmulr 17194   /s cqus 17447  SubGrpcsubg 19032  NrmSGrpcnsg 19033   ~QG cqg 19034   GrpHom cghm 19123  Abelcabl 19686  1rcur 20071  Ringcrg 20123  opprcoppr 20220   RingHom crh 20356  LIdealclidl 21050  2Idealc2idl 21091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-tpos 8206  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8698  df-ec 8700  df-qs 8704  df-map 8817  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-sup 9432  df-inf 9433  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-0g 17383  df-imas 17450  df-qus 17451  df-mgm 18560  df-sgrp 18639  df-mnd 18655  df-mhm 18700  df-grp 18853  df-minusg 18854  df-sbg 18855  df-subg 19035  df-nsg 19036  df-eqg 19037  df-ghm 19124  df-cmn 19687  df-abl 19688  df-mgp 20025  df-rng 20043  df-ur 20072  df-ring 20125  df-oppr 20221  df-rhm 20359  df-subrg 20456  df-lmod 20693  df-lss 20764  df-sra 21006  df-rgmod 21007  df-lidl 21052  df-2idl 21092
This theorem is referenced by:  znzrh2  21401
  Copyright terms: Public domain W3C validator