MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qusrhm Structured version   Visualization version   GIF version

Theorem qusrhm 19511
Description: If 𝑆 is a two-sided ideal in 𝑅, then the "natural map" from elements to their cosets is a ring homomorphism from 𝑅 to 𝑅 / 𝑆. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
qusring.u 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))
qusring.i 𝐼 = (2Ideal‘𝑅)
qusrhm.x 𝑋 = (Base‘𝑅)
qusrhm.f 𝐹 = (𝑥𝑋 ↦ [𝑥](𝑅 ~QG 𝑆))
Assertion
Ref Expression
qusrhm ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝐹 ∈ (𝑅 RingHom 𝑈))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑅   𝑥,𝑆   𝑥,𝑈   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem qusrhm
Dummy variables 𝑦 𝑧 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusrhm.x . 2 𝑋 = (Base‘𝑅)
2 eqid 2765 . 2 (1r𝑅) = (1r𝑅)
3 eqid 2765 . 2 (1r𝑈) = (1r𝑈)
4 eqid 2765 . 2 (.r𝑅) = (.r𝑅)
5 eqid 2765 . 2 (.r𝑈) = (.r𝑈)
6 simpl 474 . 2 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑅 ∈ Ring)
7 qusring.u . . 3 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))
8 qusring.i . . 3 𝐼 = (2Ideal‘𝑅)
97, 8qusring 19510 . 2 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑈 ∈ Ring)
10 eqid 2765 . . . . . . . . 9 (LIdeal‘𝑅) = (LIdeal‘𝑅)
11 eqid 2765 . . . . . . . . 9 (oppr𝑅) = (oppr𝑅)
12 eqid 2765 . . . . . . . . 9 (LIdeal‘(oppr𝑅)) = (LIdeal‘(oppr𝑅))
1310, 11, 12, 82idlval 19507 . . . . . . . 8 𝐼 = ((LIdeal‘𝑅) ∩ (LIdeal‘(oppr𝑅)))
1413elin2 3963 . . . . . . 7 (𝑆𝐼 ↔ (𝑆 ∈ (LIdeal‘𝑅) ∧ 𝑆 ∈ (LIdeal‘(oppr𝑅))))
1514simplbi 491 . . . . . 6 (𝑆𝐼𝑆 ∈ (LIdeal‘𝑅))
1610lidlsubg 19489 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑆 ∈ (LIdeal‘𝑅)) → 𝑆 ∈ (SubGrp‘𝑅))
1715, 16sylan2 586 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑆 ∈ (SubGrp‘𝑅))
18 eqid 2765 . . . . . 6 (𝑅 ~QG 𝑆) = (𝑅 ~QG 𝑆)
191, 18eqger 17908 . . . . 5 (𝑆 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝑆) Er 𝑋)
2017, 19syl 17 . . . 4 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → (𝑅 ~QG 𝑆) Er 𝑋)
211fvexi 6389 . . . . 5 𝑋 ∈ V
2221a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑋 ∈ V)
23 qusrhm.f . . . 4 𝐹 = (𝑥𝑋 ↦ [𝑥](𝑅 ~QG 𝑆))
2420, 22, 23divsfval 16473 . . 3 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → (𝐹‘(1r𝑅)) = [(1r𝑅)](𝑅 ~QG 𝑆))
257, 8, 2qus1 19509 . . . 4 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → (𝑈 ∈ Ring ∧ [(1r𝑅)](𝑅 ~QG 𝑆) = (1r𝑈)))
2625simprd 489 . . 3 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → [(1r𝑅)](𝑅 ~QG 𝑆) = (1r𝑈))
2724, 26eqtrd 2799 . 2 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → (𝐹‘(1r𝑅)) = (1r𝑈))
287a1i 11 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆)))
291a1i 11 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑋 = (Base‘𝑅))
301, 18, 8, 42idlcpbl 19508 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → ((𝑎(𝑅 ~QG 𝑆)𝑐𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(.r𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(.r𝑅)𝑑)))
311, 4ringcl 18828 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑦𝑋𝑧𝑋) → (𝑦(.r𝑅)𝑧) ∈ 𝑋)
32313expb 1149 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑦𝑋𝑧𝑋)) → (𝑦(.r𝑅)𝑧) ∈ 𝑋)
3332adantlr 706 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝑦𝑋𝑧𝑋)) → (𝑦(.r𝑅)𝑧) ∈ 𝑋)
3433caovclg 7024 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝑐𝑋𝑑𝑋)) → (𝑐(.r𝑅)𝑑) ∈ 𝑋)
3528, 29, 20, 6, 30, 34, 4, 5qusmulval 16481 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ 𝑦𝑋𝑧𝑋) → ([𝑦](𝑅 ~QG 𝑆)(.r𝑈)[𝑧](𝑅 ~QG 𝑆)) = [(𝑦(.r𝑅)𝑧)](𝑅 ~QG 𝑆))
36353expb 1149 . . 3 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝑦𝑋𝑧𝑋)) → ([𝑦](𝑅 ~QG 𝑆)(.r𝑈)[𝑧](𝑅 ~QG 𝑆)) = [(𝑦(.r𝑅)𝑧)](𝑅 ~QG 𝑆))
3720adantr 472 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝑦𝑋𝑧𝑋)) → (𝑅 ~QG 𝑆) Er 𝑋)
3821a1i 11 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝑦𝑋𝑧𝑋)) → 𝑋 ∈ V)
3937, 38, 23divsfval 16473 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹𝑦) = [𝑦](𝑅 ~QG 𝑆))
4037, 38, 23divsfval 16473 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹𝑧) = [𝑧](𝑅 ~QG 𝑆))
4139, 40oveq12d 6860 . . 3 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝑦𝑋𝑧𝑋)) → ((𝐹𝑦)(.r𝑈)(𝐹𝑧)) = ([𝑦](𝑅 ~QG 𝑆)(.r𝑈)[𝑧](𝑅 ~QG 𝑆)))
4237, 38, 23divsfval 16473 . . 3 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹‘(𝑦(.r𝑅)𝑧)) = [(𝑦(.r𝑅)𝑧)](𝑅 ~QG 𝑆))
4336, 41, 423eqtr4rd 2810 . 2 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹‘(𝑦(.r𝑅)𝑧)) = ((𝐹𝑦)(.r𝑈)(𝐹𝑧)))
44 ringabl 18847 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Abel)
4544adantr 472 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑅 ∈ Abel)
46 ablnsg 18516 . . . . 5 (𝑅 ∈ Abel → (NrmSGrp‘𝑅) = (SubGrp‘𝑅))
4745, 46syl 17 . . . 4 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → (NrmSGrp‘𝑅) = (SubGrp‘𝑅))
4817, 47eleqtrrd 2847 . . 3 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑆 ∈ (NrmSGrp‘𝑅))
491, 7, 23qusghm 17961 . . 3 (𝑆 ∈ (NrmSGrp‘𝑅) → 𝐹 ∈ (𝑅 GrpHom 𝑈))
5048, 49syl 17 . 2 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝐹 ∈ (𝑅 GrpHom 𝑈))
511, 2, 3, 4, 5, 6, 9, 27, 43, 50isrhm2d 18997 1 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝐹 ∈ (𝑅 RingHom 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1652  wcel 2155  Vcvv 3350  cmpt 4888  cfv 6068  (class class class)co 6842   Er wer 7944  [cec 7945  Basecbs 16130  .rcmulr 16215   /s cqus 16431  SubGrpcsubg 17852  NrmSGrpcnsg 17853   ~QG cqg 17854   GrpHom cghm 17921  Abelcabl 18460  1rcur 18768  Ringcrg 18814  opprcoppr 18889   RingHom crh 18981  LIdealclidl 19444  2Idealc2idl 19505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-tpos 7555  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-ec 7949  df-qs 7953  df-map 8062  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-sup 8555  df-inf 8556  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-dec 11741  df-uz 11887  df-fz 12534  df-struct 16132  df-ndx 16133  df-slot 16134  df-base 16136  df-sets 16137  df-ress 16138  df-plusg 16227  df-mulr 16228  df-sca 16230  df-vsca 16231  df-ip 16232  df-tset 16233  df-ple 16234  df-ds 16236  df-0g 16368  df-imas 16434  df-qus 16435  df-mgm 17508  df-sgrp 17550  df-mnd 17561  df-mhm 17601  df-grp 17692  df-minusg 17693  df-sbg 17694  df-subg 17855  df-nsg 17856  df-eqg 17857  df-ghm 17922  df-cmn 18461  df-abl 18462  df-mgp 18757  df-ur 18769  df-ring 18816  df-oppr 18890  df-rnghom 18984  df-subrg 19047  df-lmod 19134  df-lss 19202  df-sra 19446  df-rgmod 19447  df-lidl 19448  df-2idl 19506
This theorem is referenced by:  znzrh2  20166
  Copyright terms: Public domain W3C validator