| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qusrhm | Structured version Visualization version GIF version | ||
| Description: If 𝑆 is a two-sided ideal in 𝑅, then the "natural map" from elements to their cosets is a ring homomorphism from 𝑅 to 𝑅 / 𝑆. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| Ref | Expression |
|---|---|
| qusring.u | ⊢ 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆)) |
| qusring.i | ⊢ 𝐼 = (2Ideal‘𝑅) |
| qusrhm.x | ⊢ 𝑋 = (Base‘𝑅) |
| qusrhm.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ [𝑥](𝑅 ~QG 𝑆)) |
| Ref | Expression |
|---|---|
| qusrhm | ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝐹 ∈ (𝑅 RingHom 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusrhm.x | . 2 ⊢ 𝑋 = (Base‘𝑅) | |
| 2 | eqid 2733 | . 2 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 3 | eqid 2733 | . 2 ⊢ (1r‘𝑈) = (1r‘𝑈) | |
| 4 | eqid 2733 | . 2 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 5 | eqid 2733 | . 2 ⊢ (.r‘𝑈) = (.r‘𝑈) | |
| 6 | simpl 482 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑅 ∈ Ring) | |
| 7 | qusring.u | . . 3 ⊢ 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆)) | |
| 8 | qusring.i | . . 3 ⊢ 𝐼 = (2Ideal‘𝑅) | |
| 9 | 7, 8 | qusring 21222 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑈 ∈ Ring) |
| 10 | eqid 2733 | . . . . . . . . 9 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
| 11 | eqid 2733 | . . . . . . . . 9 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
| 12 | eqid 2733 | . . . . . . . . 9 ⊢ (LIdeal‘(oppr‘𝑅)) = (LIdeal‘(oppr‘𝑅)) | |
| 13 | 10, 11, 12, 8 | 2idlval 21198 | . . . . . . . 8 ⊢ 𝐼 = ((LIdeal‘𝑅) ∩ (LIdeal‘(oppr‘𝑅))) |
| 14 | 13 | elin2 4154 | . . . . . . 7 ⊢ (𝑆 ∈ 𝐼 ↔ (𝑆 ∈ (LIdeal‘𝑅) ∧ 𝑆 ∈ (LIdeal‘(oppr‘𝑅)))) |
| 15 | 14 | simplbi 497 | . . . . . 6 ⊢ (𝑆 ∈ 𝐼 → 𝑆 ∈ (LIdeal‘𝑅)) |
| 16 | 10 | lidlsubg 21170 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ (LIdeal‘𝑅)) → 𝑆 ∈ (SubGrp‘𝑅)) |
| 17 | 15, 16 | sylan2 593 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑆 ∈ (SubGrp‘𝑅)) |
| 18 | eqid 2733 | . . . . . 6 ⊢ (𝑅 ~QG 𝑆) = (𝑅 ~QG 𝑆) | |
| 19 | 1, 18 | eqger 19100 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝑆) Er 𝑋) |
| 20 | 17, 19 | syl 17 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → (𝑅 ~QG 𝑆) Er 𝑋) |
| 21 | 1 | fvexi 6845 | . . . . 5 ⊢ 𝑋 ∈ V |
| 22 | 21 | a1i 11 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑋 ∈ V) |
| 23 | qusrhm.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ [𝑥](𝑅 ~QG 𝑆)) | |
| 24 | 20, 22, 23 | divsfval 17461 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → (𝐹‘(1r‘𝑅)) = [(1r‘𝑅)](𝑅 ~QG 𝑆)) |
| 25 | 7, 8, 2 | qus1 21221 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → (𝑈 ∈ Ring ∧ [(1r‘𝑅)](𝑅 ~QG 𝑆) = (1r‘𝑈))) |
| 26 | 25 | simprd 495 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → [(1r‘𝑅)](𝑅 ~QG 𝑆) = (1r‘𝑈)) |
| 27 | 24, 26 | eqtrd 2768 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → (𝐹‘(1r‘𝑅)) = (1r‘𝑈)) |
| 28 | 7 | a1i 11 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))) |
| 29 | 1 | a1i 11 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑋 = (Base‘𝑅)) |
| 30 | 1, 18, 8, 4 | 2idlcpbl 21219 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → ((𝑎(𝑅 ~QG 𝑆)𝑐 ∧ 𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(.r‘𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(.r‘𝑅)𝑑))) |
| 31 | 1, 4 | ringcl 20178 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑦(.r‘𝑅)𝑧) ∈ 𝑋) |
| 32 | 31 | 3expb 1120 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦(.r‘𝑅)𝑧) ∈ 𝑋) |
| 33 | 32 | adantlr 715 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦(.r‘𝑅)𝑧) ∈ 𝑋) |
| 34 | 33 | caovclg 7547 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋)) → (𝑐(.r‘𝑅)𝑑) ∈ 𝑋) |
| 35 | 28, 29, 20, 6, 30, 34, 4, 5 | qusmulval 17469 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → ([𝑦](𝑅 ~QG 𝑆)(.r‘𝑈)[𝑧](𝑅 ~QG 𝑆)) = [(𝑦(.r‘𝑅)𝑧)](𝑅 ~QG 𝑆)) |
| 36 | 35 | 3expb 1120 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ([𝑦](𝑅 ~QG 𝑆)(.r‘𝑈)[𝑧](𝑅 ~QG 𝑆)) = [(𝑦(.r‘𝑅)𝑧)](𝑅 ~QG 𝑆)) |
| 37 | 20 | adantr 480 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑅 ~QG 𝑆) Er 𝑋) |
| 38 | 21 | a1i 11 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑋 ∈ V) |
| 39 | 37, 38, 23 | divsfval 17461 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐹‘𝑦) = [𝑦](𝑅 ~QG 𝑆)) |
| 40 | 37, 38, 23 | divsfval 17461 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐹‘𝑧) = [𝑧](𝑅 ~QG 𝑆)) |
| 41 | 39, 40 | oveq12d 7373 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝐹‘𝑦)(.r‘𝑈)(𝐹‘𝑧)) = ([𝑦](𝑅 ~QG 𝑆)(.r‘𝑈)[𝑧](𝑅 ~QG 𝑆))) |
| 42 | 37, 38, 23 | divsfval 17461 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐹‘(𝑦(.r‘𝑅)𝑧)) = [(𝑦(.r‘𝑅)𝑧)](𝑅 ~QG 𝑆)) |
| 43 | 36, 41, 42 | 3eqtr4rd 2779 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐹‘(𝑦(.r‘𝑅)𝑧)) = ((𝐹‘𝑦)(.r‘𝑈)(𝐹‘𝑧))) |
| 44 | ringabl 20209 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Abel) | |
| 45 | 44 | adantr 480 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑅 ∈ Abel) |
| 46 | ablnsg 19769 | . . . . 5 ⊢ (𝑅 ∈ Abel → (NrmSGrp‘𝑅) = (SubGrp‘𝑅)) | |
| 47 | 45, 46 | syl 17 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → (NrmSGrp‘𝑅) = (SubGrp‘𝑅)) |
| 48 | 17, 47 | eleqtrrd 2836 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑆 ∈ (NrmSGrp‘𝑅)) |
| 49 | 1, 7, 23 | qusghm 19177 | . . 3 ⊢ (𝑆 ∈ (NrmSGrp‘𝑅) → 𝐹 ∈ (𝑅 GrpHom 𝑈)) |
| 50 | 48, 49 | syl 17 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝐹 ∈ (𝑅 GrpHom 𝑈)) |
| 51 | 1, 2, 3, 4, 5, 6, 9, 27, 43, 50 | isrhm2d 20414 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝐹 ∈ (𝑅 RingHom 𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3438 ↦ cmpt 5176 ‘cfv 6489 (class class class)co 7355 Er wer 8628 [cec 8629 Basecbs 17130 .rcmulr 17172 /s cqus 17419 SubGrpcsubg 19043 NrmSGrpcnsg 19044 ~QG cqg 19045 GrpHom cghm 19134 Abelcabl 19703 1rcur 20109 Ringcrg 20161 opprcoppr 20264 RingHom crh 20397 LIdealclidl 21153 2Idealc2idl 21196 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-tpos 8165 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-ec 8633 df-qs 8637 df-map 8761 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-sup 9336 df-inf 9337 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-nn 12136 df-2 12198 df-3 12199 df-4 12200 df-5 12201 df-6 12202 df-7 12203 df-8 12204 df-9 12205 df-n0 12392 df-z 12479 df-dec 12599 df-uz 12743 df-fz 13418 df-struct 17068 df-sets 17085 df-slot 17103 df-ndx 17115 df-base 17131 df-ress 17152 df-plusg 17184 df-mulr 17185 df-sca 17187 df-vsca 17188 df-ip 17189 df-tset 17190 df-ple 17191 df-ds 17193 df-0g 17355 df-imas 17422 df-qus 17423 df-mgm 18558 df-sgrp 18637 df-mnd 18653 df-mhm 18701 df-grp 18859 df-minusg 18860 df-sbg 18861 df-subg 19046 df-nsg 19047 df-eqg 19048 df-ghm 19135 df-cmn 19704 df-abl 19705 df-mgp 20069 df-rng 20081 df-ur 20110 df-ring 20163 df-oppr 20265 df-rhm 20400 df-subrg 20495 df-lmod 20805 df-lss 20875 df-sra 21117 df-rgmod 21118 df-lidl 21155 df-2idl 21197 |
| This theorem is referenced by: znzrh2 21492 |
| Copyright terms: Public domain | W3C validator |