Step | Hyp | Ref
| Expression |
1 | | plyadd.1 |
. . . 4
β’ (π β πΉ β (Polyβπ)) |
2 | | plyadd.2 |
. . . 4
β’ (π β πΊ β (Polyβπ)) |
3 | | plyadd.m |
. . . 4
β’ (π β π β
β0) |
4 | | plyadd.n |
. . . 4
β’ (π β π β
β0) |
5 | | plyadd.a |
. . . . . 6
β’ (π β π΄ β ((π βͺ {0}) βm
β0)) |
6 | | plybss 25699 |
. . . . . . . . . 10
β’ (πΉ β (Polyβπ) β π β β) |
7 | 1, 6 | syl 17 |
. . . . . . . . 9
β’ (π β π β β) |
8 | | 0cnd 11203 |
. . . . . . . . . 10
β’ (π β 0 β
β) |
9 | 8 | snssd 4811 |
. . . . . . . . 9
β’ (π β {0} β
β) |
10 | 7, 9 | unssd 4185 |
. . . . . . . 8
β’ (π β (π βͺ {0}) β
β) |
11 | | cnex 11187 |
. . . . . . . 8
β’ β
β V |
12 | | ssexg 5322 |
. . . . . . . 8
β’ (((π βͺ {0}) β β
β§ β β V) β (π βͺ {0}) β V) |
13 | 10, 11, 12 | sylancl 586 |
. . . . . . 7
β’ (π β (π βͺ {0}) β V) |
14 | | nn0ex 12474 |
. . . . . . 7
β’
β0 β V |
15 | | elmapg 8829 |
. . . . . . 7
β’ (((π βͺ {0}) β V β§
β0 β V) β (π΄ β ((π βͺ {0}) βm
β0) β π΄:β0βΆ(π βͺ {0}))) |
16 | 13, 14, 15 | sylancl 586 |
. . . . . 6
β’ (π β (π΄ β ((π βͺ {0}) βm
β0) β π΄:β0βΆ(π βͺ {0}))) |
17 | 5, 16 | mpbid 231 |
. . . . 5
β’ (π β π΄:β0βΆ(π βͺ {0})) |
18 | 17, 10 | fssd 6732 |
. . . 4
β’ (π β π΄:β0βΆβ) |
19 | | plyadd.b |
. . . . . 6
β’ (π β π΅ β ((π βͺ {0}) βm
β0)) |
20 | | elmapg 8829 |
. . . . . . 7
β’ (((π βͺ {0}) β V β§
β0 β V) β (π΅ β ((π βͺ {0}) βm
β0) β π΅:β0βΆ(π βͺ {0}))) |
21 | 13, 14, 20 | sylancl 586 |
. . . . . 6
β’ (π β (π΅ β ((π βͺ {0}) βm
β0) β π΅:β0βΆ(π βͺ {0}))) |
22 | 19, 21 | mpbid 231 |
. . . . 5
β’ (π β π΅:β0βΆ(π βͺ {0})) |
23 | 22, 10 | fssd 6732 |
. . . 4
β’ (π β π΅:β0βΆβ) |
24 | | plyadd.a2 |
. . . 4
β’ (π β (π΄ β
(β€β₯β(π + 1))) = {0}) |
25 | | plyadd.b2 |
. . . 4
β’ (π β (π΅ β
(β€β₯β(π + 1))) = {0}) |
26 | | plyadd.f |
. . . 4
β’ (π β πΉ = (π§ β β β¦ Ξ£π β (0...π)((π΄βπ) Β· (π§βπ)))) |
27 | | plyadd.g |
. . . 4
β’ (π β πΊ = (π§ β β β¦ Ξ£π β (0...π)((π΅βπ) Β· (π§βπ)))) |
28 | 1, 2, 3, 4, 18, 23, 24, 25, 26, 27 | plymullem1 25719 |
. . 3
β’ (π β (πΉ βf Β· πΊ) = (π§ β β β¦ Ξ£π β (0...(π + π))(Ξ£π β (0...π)((π΄βπ) Β· (π΅β(π β π))) Β· (π§βπ)))) |
29 | 3, 4 | nn0addcld 12532 |
. . . 4
β’ (π β (π + π) β
β0) |
30 | | eqid 2732 |
. . . . . . 7
β’ (π βͺ {0}) = (π βͺ {0}) |
31 | | plyadd.3 |
. . . . . . 7
β’ ((π β§ (π₯ β π β§ π¦ β π)) β (π₯ + π¦) β π) |
32 | 7, 30, 31 | un0addcl 12501 |
. . . . . 6
β’ ((π β§ (π₯ β (π βͺ {0}) β§ π¦ β (π βͺ {0}))) β (π₯ + π¦) β (π βͺ {0})) |
33 | | fzfid 13934 |
. . . . . 6
β’ (π β (0...π) β Fin) |
34 | | elfznn0 13590 |
. . . . . . . . 9
β’ (π β (0...π) β π β β0) |
35 | | ffvelcdm 7080 |
. . . . . . . . 9
β’ ((π΄:β0βΆ(π βͺ {0}) β§ π β β0)
β (π΄βπ) β (π βͺ {0})) |
36 | 17, 34, 35 | syl2an 596 |
. . . . . . . 8
β’ ((π β§ π β (0...π)) β (π΄βπ) β (π βͺ {0})) |
37 | | fznn0sub 13529 |
. . . . . . . . 9
β’ (π β (0...π) β (π β π) β
β0) |
38 | | ffvelcdm 7080 |
. . . . . . . . 9
β’ ((π΅:β0βΆ(π βͺ {0}) β§ (π β π) β β0) β (π΅β(π β π)) β (π βͺ {0})) |
39 | 22, 37, 38 | syl2an 596 |
. . . . . . . 8
β’ ((π β§ π β (0...π)) β (π΅β(π β π)) β (π βͺ {0})) |
40 | 36, 39 | jca 512 |
. . . . . . 7
β’ ((π β§ π β (0...π)) β ((π΄βπ) β (π βͺ {0}) β§ (π΅β(π β π)) β (π βͺ {0}))) |
41 | | plymul.x |
. . . . . . . . 9
β’ ((π β§ (π₯ β π β§ π¦ β π)) β (π₯ Β· π¦) β π) |
42 | 7, 30, 41 | un0mulcl 12502 |
. . . . . . . 8
β’ ((π β§ (π₯ β (π βͺ {0}) β§ π¦ β (π βͺ {0}))) β (π₯ Β· π¦) β (π βͺ {0})) |
43 | 42 | caovclg 7595 |
. . . . . . 7
β’ ((π β§ ((π΄βπ) β (π βͺ {0}) β§ (π΅β(π β π)) β (π βͺ {0}))) β ((π΄βπ) Β· (π΅β(π β π))) β (π βͺ {0})) |
44 | 40, 43 | syldan 591 |
. . . . . 6
β’ ((π β§ π β (0...π)) β ((π΄βπ) Β· (π΅β(π β π))) β (π βͺ {0})) |
45 | | ssun2 4172 |
. . . . . . . 8
β’ {0}
β (π βͺ
{0}) |
46 | | c0ex 11204 |
. . . . . . . . 9
β’ 0 β
V |
47 | 46 | snss 4788 |
. . . . . . . 8
β’ (0 β
(π βͺ {0}) β {0}
β (π βͺ
{0})) |
48 | 45, 47 | mpbir 230 |
. . . . . . 7
β’ 0 β
(π βͺ
{0}) |
49 | 48 | a1i 11 |
. . . . . 6
β’ (π β 0 β (π βͺ {0})) |
50 | 10, 32, 33, 44, 49 | fsumcllem 15674 |
. . . . 5
β’ (π β Ξ£π β (0...π)((π΄βπ) Β· (π΅β(π β π))) β (π βͺ {0})) |
51 | 50 | adantr 481 |
. . . 4
β’ ((π β§ π β (0...(π + π))) β Ξ£π β (0...π)((π΄βπ) Β· (π΅β(π β π))) β (π βͺ {0})) |
52 | 10, 29, 51 | elplyd 25707 |
. . 3
β’ (π β (π§ β β β¦ Ξ£π β (0...(π + π))(Ξ£π β (0...π)((π΄βπ) Β· (π΅β(π β π))) Β· (π§βπ))) β (Polyβ(π βͺ {0}))) |
53 | 28, 52 | eqeltrd 2833 |
. 2
β’ (π β (πΉ βf Β· πΊ) β (Polyβ(π βͺ {0}))) |
54 | | plyun0 25702 |
. 2
β’
(Polyβ(π βͺ
{0})) = (Polyβπ) |
55 | 53, 54 | eleqtrdi 2843 |
1
β’ (π β (πΉ βf Β· πΊ) β (Polyβπ)) |