| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | plyadd.1 | . . . 4
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) | 
| 2 |  | plyadd.2 | . . . 4
⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) | 
| 3 |  | plyadd.m | . . . 4
⊢ (𝜑 → 𝑀 ∈
ℕ0) | 
| 4 |  | plyadd.n | . . . 4
⊢ (𝜑 → 𝑁 ∈
ℕ0) | 
| 5 |  | plyadd.a | . . . . . 6
⊢ (𝜑 → 𝐴 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) | 
| 6 |  | plybss 26234 | . . . . . . . . . 10
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) | 
| 7 | 1, 6 | syl 17 | . . . . . . . . 9
⊢ (𝜑 → 𝑆 ⊆ ℂ) | 
| 8 |  | 0cnd 11255 | . . . . . . . . . 10
⊢ (𝜑 → 0 ∈
ℂ) | 
| 9 | 8 | snssd 4808 | . . . . . . . . 9
⊢ (𝜑 → {0} ⊆
ℂ) | 
| 10 | 7, 9 | unssd 4191 | . . . . . . . 8
⊢ (𝜑 → (𝑆 ∪ {0}) ⊆
ℂ) | 
| 11 |  | cnex 11237 | . . . . . . . 8
⊢ ℂ
∈ V | 
| 12 |  | ssexg 5322 | . . . . . . . 8
⊢ (((𝑆 ∪ {0}) ⊆ ℂ
∧ ℂ ∈ V) → (𝑆 ∪ {0}) ∈ V) | 
| 13 | 10, 11, 12 | sylancl 586 | . . . . . . 7
⊢ (𝜑 → (𝑆 ∪ {0}) ∈ V) | 
| 14 |  | nn0ex 12534 | . . . . . . 7
⊢
ℕ0 ∈ V | 
| 15 |  | elmapg 8880 | . . . . . . 7
⊢ (((𝑆 ∪ {0}) ∈ V ∧
ℕ0 ∈ V) → (𝐴 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ↔ 𝐴:ℕ0⟶(𝑆 ∪ {0}))) | 
| 16 | 13, 14, 15 | sylancl 586 | . . . . . 6
⊢ (𝜑 → (𝐴 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ↔ 𝐴:ℕ0⟶(𝑆 ∪ {0}))) | 
| 17 | 5, 16 | mpbid 232 | . . . . 5
⊢ (𝜑 → 𝐴:ℕ0⟶(𝑆 ∪ {0})) | 
| 18 | 17, 10 | fssd 6752 | . . . 4
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | 
| 19 |  | plyadd.b | . . . . . 6
⊢ (𝜑 → 𝐵 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) | 
| 20 |  | elmapg 8880 | . . . . . . 7
⊢ (((𝑆 ∪ {0}) ∈ V ∧
ℕ0 ∈ V) → (𝐵 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ↔ 𝐵:ℕ0⟶(𝑆 ∪ {0}))) | 
| 21 | 13, 14, 20 | sylancl 586 | . . . . . 6
⊢ (𝜑 → (𝐵 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ↔ 𝐵:ℕ0⟶(𝑆 ∪ {0}))) | 
| 22 | 19, 21 | mpbid 232 | . . . . 5
⊢ (𝜑 → 𝐵:ℕ0⟶(𝑆 ∪ {0})) | 
| 23 | 22, 10 | fssd 6752 | . . . 4
⊢ (𝜑 → 𝐵:ℕ0⟶ℂ) | 
| 24 |  | plyadd.a2 | . . . 4
⊢ (𝜑 → (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) | 
| 25 |  | plyadd.b2 | . . . 4
⊢ (𝜑 → (𝐵 “
(ℤ≥‘(𝑁 + 1))) = {0}) | 
| 26 |  | plyadd.f | . . . 4
⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))) | 
| 27 |  | plyadd.g | . . . 4
⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) | 
| 28 | 1, 2, 3, 4, 18, 23, 24, 25, 26, 27 | plymullem1 26254 | . . 3
⊢ (𝜑 → (𝐹 ∘f · 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑛 ∈ (0...(𝑀 + 𝑁))(Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · (𝑧↑𝑛)))) | 
| 29 | 3, 4 | nn0addcld 12593 | . . . 4
⊢ (𝜑 → (𝑀 + 𝑁) ∈
ℕ0) | 
| 30 |  | eqid 2736 | . . . . . . 7
⊢ (𝑆 ∪ {0}) = (𝑆 ∪ {0}) | 
| 31 |  | plyadd.3 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | 
| 32 | 7, 30, 31 | un0addcl 12561 | . . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑆 ∪ {0}) ∧ 𝑦 ∈ (𝑆 ∪ {0}))) → (𝑥 + 𝑦) ∈ (𝑆 ∪ {0})) | 
| 33 |  | fzfid 14015 | . . . . . 6
⊢ (𝜑 → (0...𝑛) ∈ Fin) | 
| 34 |  | elfznn0 13661 | . . . . . . . . 9
⊢ (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0) | 
| 35 |  | ffvelcdm 7100 | . . . . . . . . 9
⊢ ((𝐴:ℕ0⟶(𝑆 ∪ {0}) ∧ 𝑘 ∈ ℕ0)
→ (𝐴‘𝑘) ∈ (𝑆 ∪ {0})) | 
| 36 | 17, 34, 35 | syl2an 596 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑛)) → (𝐴‘𝑘) ∈ (𝑆 ∪ {0})) | 
| 37 |  | fznn0sub 13597 | . . . . . . . . 9
⊢ (𝑘 ∈ (0...𝑛) → (𝑛 − 𝑘) ∈
ℕ0) | 
| 38 |  | ffvelcdm 7100 | . . . . . . . . 9
⊢ ((𝐵:ℕ0⟶(𝑆 ∪ {0}) ∧ (𝑛 − 𝑘) ∈ ℕ0) → (𝐵‘(𝑛 − 𝑘)) ∈ (𝑆 ∪ {0})) | 
| 39 | 22, 37, 38 | syl2an 596 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑛)) → (𝐵‘(𝑛 − 𝑘)) ∈ (𝑆 ∪ {0})) | 
| 40 | 36, 39 | jca 511 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑛)) → ((𝐴‘𝑘) ∈ (𝑆 ∪ {0}) ∧ (𝐵‘(𝑛 − 𝑘)) ∈ (𝑆 ∪ {0}))) | 
| 41 |  | plymul.x | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) | 
| 42 | 7, 30, 41 | un0mulcl 12562 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑆 ∪ {0}) ∧ 𝑦 ∈ (𝑆 ∪ {0}))) → (𝑥 · 𝑦) ∈ (𝑆 ∪ {0})) | 
| 43 | 42 | caovclg 7626 | . . . . . . 7
⊢ ((𝜑 ∧ ((𝐴‘𝑘) ∈ (𝑆 ∪ {0}) ∧ (𝐵‘(𝑛 − 𝑘)) ∈ (𝑆 ∪ {0}))) → ((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) ∈ (𝑆 ∪ {0})) | 
| 44 | 40, 43 | syldan 591 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑛)) → ((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) ∈ (𝑆 ∪ {0})) | 
| 45 |  | ssun2 4178 | . . . . . . . 8
⊢ {0}
⊆ (𝑆 ∪
{0}) | 
| 46 |  | c0ex 11256 | . . . . . . . . 9
⊢ 0 ∈
V | 
| 47 | 46 | snss 4784 | . . . . . . . 8
⊢ (0 ∈
(𝑆 ∪ {0}) ↔ {0}
⊆ (𝑆 ∪
{0})) | 
| 48 | 45, 47 | mpbir 231 | . . . . . . 7
⊢ 0 ∈
(𝑆 ∪
{0}) | 
| 49 | 48 | a1i 11 | . . . . . 6
⊢ (𝜑 → 0 ∈ (𝑆 ∪ {0})) | 
| 50 | 10, 32, 33, 44, 49 | fsumcllem 15769 | . . . . 5
⊢ (𝜑 → Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) ∈ (𝑆 ∪ {0})) | 
| 51 | 50 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) → Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) ∈ (𝑆 ∪ {0})) | 
| 52 | 10, 29, 51 | elplyd 26242 | . . 3
⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑛 ∈ (0...(𝑀 + 𝑁))(Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · (𝑧↑𝑛))) ∈ (Poly‘(𝑆 ∪ {0}))) | 
| 53 | 28, 52 | eqeltrd 2840 | . 2
⊢ (𝜑 → (𝐹 ∘f · 𝐺) ∈ (Poly‘(𝑆 ∪ {0}))) | 
| 54 |  | plyun0 26237 | . 2
⊢
(Poly‘(𝑆 ∪
{0})) = (Poly‘𝑆) | 
| 55 | 53, 54 | eleqtrdi 2850 | 1
⊢ (𝜑 → (𝐹 ∘f · 𝐺) ∈ (Poly‘𝑆)) |