MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plymullem Structured version   Visualization version   GIF version

Theorem plymullem 26178
Description: Lemma for plymul 26180. (Contributed by Mario Carneiro, 21-Jul-2014.)
Hypotheses
Ref Expression
plyadd.1 (𝜑𝐹 ∈ (Poly‘𝑆))
plyadd.2 (𝜑𝐺 ∈ (Poly‘𝑆))
plyadd.3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
plyadd.m (𝜑𝑀 ∈ ℕ0)
plyadd.n (𝜑𝑁 ∈ ℕ0)
plyadd.a (𝜑𝐴 ∈ ((𝑆 ∪ {0}) ↑m0))
plyadd.b (𝜑𝐵 ∈ ((𝑆 ∪ {0}) ↑m0))
plyadd.a2 (𝜑 → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})
plyadd.b2 (𝜑 → (𝐵 “ (ℤ‘(𝑁 + 1))) = {0})
plyadd.f (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))))
plyadd.g (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))
plymul.x ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
Assertion
Ref Expression
plymullem (𝜑 → (𝐹f · 𝐺) ∈ (Poly‘𝑆))
Distinct variable groups:   𝑥,𝑘,𝑦,𝑧,𝐵   𝑥,𝐹,𝑦,𝑧   𝑆,𝑘,𝑥,𝑦,𝑧   𝑥,𝐴,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝜑,𝑘,𝑥,𝑦,𝑧   𝑘,𝑀,𝑧   𝑘,𝑁,𝑧
Allowed substitution hints:   𝐴(𝑘)   𝐹(𝑘)   𝐺(𝑘)   𝑀(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem plymullem
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 plyadd.1 . . . 4 (𝜑𝐹 ∈ (Poly‘𝑆))
2 plyadd.2 . . . 4 (𝜑𝐺 ∈ (Poly‘𝑆))
3 plyadd.m . . . 4 (𝜑𝑀 ∈ ℕ0)
4 plyadd.n . . . 4 (𝜑𝑁 ∈ ℕ0)
5 plyadd.a . . . . . 6 (𝜑𝐴 ∈ ((𝑆 ∪ {0}) ↑m0))
6 plybss 26156 . . . . . . . . . 10 (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)
71, 6syl 17 . . . . . . . . 9 (𝜑𝑆 ⊆ ℂ)
8 0cnd 11233 . . . . . . . . . 10 (𝜑 → 0 ∈ ℂ)
98snssd 4790 . . . . . . . . 9 (𝜑 → {0} ⊆ ℂ)
107, 9unssd 4172 . . . . . . . 8 (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ)
11 cnex 11215 . . . . . . . 8 ℂ ∈ V
12 ssexg 5298 . . . . . . . 8 (((𝑆 ∪ {0}) ⊆ ℂ ∧ ℂ ∈ V) → (𝑆 ∪ {0}) ∈ V)
1310, 11, 12sylancl 586 . . . . . . 7 (𝜑 → (𝑆 ∪ {0}) ∈ V)
14 nn0ex 12512 . . . . . . 7 0 ∈ V
15 elmapg 8858 . . . . . . 7 (((𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → (𝐴 ∈ ((𝑆 ∪ {0}) ↑m0) ↔ 𝐴:ℕ0⟶(𝑆 ∪ {0})))
1613, 14, 15sylancl 586 . . . . . 6 (𝜑 → (𝐴 ∈ ((𝑆 ∪ {0}) ↑m0) ↔ 𝐴:ℕ0⟶(𝑆 ∪ {0})))
175, 16mpbid 232 . . . . 5 (𝜑𝐴:ℕ0⟶(𝑆 ∪ {0}))
1817, 10fssd 6728 . . . 4 (𝜑𝐴:ℕ0⟶ℂ)
19 plyadd.b . . . . . 6 (𝜑𝐵 ∈ ((𝑆 ∪ {0}) ↑m0))
20 elmapg 8858 . . . . . . 7 (((𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → (𝐵 ∈ ((𝑆 ∪ {0}) ↑m0) ↔ 𝐵:ℕ0⟶(𝑆 ∪ {0})))
2113, 14, 20sylancl 586 . . . . . 6 (𝜑 → (𝐵 ∈ ((𝑆 ∪ {0}) ↑m0) ↔ 𝐵:ℕ0⟶(𝑆 ∪ {0})))
2219, 21mpbid 232 . . . . 5 (𝜑𝐵:ℕ0⟶(𝑆 ∪ {0}))
2322, 10fssd 6728 . . . 4 (𝜑𝐵:ℕ0⟶ℂ)
24 plyadd.a2 . . . 4 (𝜑 → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})
25 plyadd.b2 . . . 4 (𝜑 → (𝐵 “ (ℤ‘(𝑁 + 1))) = {0})
26 plyadd.f . . . 4 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))))
27 plyadd.g . . . 4 (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))
281, 2, 3, 4, 18, 23, 24, 25, 26, 27plymullem1 26176 . . 3 (𝜑 → (𝐹f · 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑛 ∈ (0...(𝑀 + 𝑁))(Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))) · (𝑧𝑛))))
293, 4nn0addcld 12571 . . . 4 (𝜑 → (𝑀 + 𝑁) ∈ ℕ0)
30 eqid 2736 . . . . . . 7 (𝑆 ∪ {0}) = (𝑆 ∪ {0})
31 plyadd.3 . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
327, 30, 31un0addcl 12539 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑆 ∪ {0}) ∧ 𝑦 ∈ (𝑆 ∪ {0}))) → (𝑥 + 𝑦) ∈ (𝑆 ∪ {0}))
33 fzfid 13996 . . . . . 6 (𝜑 → (0...𝑛) ∈ Fin)
34 elfznn0 13642 . . . . . . . . 9 (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0)
35 ffvelcdm 7076 . . . . . . . . 9 ((𝐴:ℕ0⟶(𝑆 ∪ {0}) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ (𝑆 ∪ {0}))
3617, 34, 35syl2an 596 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑛)) → (𝐴𝑘) ∈ (𝑆 ∪ {0}))
37 fznn0sub 13578 . . . . . . . . 9 (𝑘 ∈ (0...𝑛) → (𝑛𝑘) ∈ ℕ0)
38 ffvelcdm 7076 . . . . . . . . 9 ((𝐵:ℕ0⟶(𝑆 ∪ {0}) ∧ (𝑛𝑘) ∈ ℕ0) → (𝐵‘(𝑛𝑘)) ∈ (𝑆 ∪ {0}))
3922, 37, 38syl2an 596 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑛)) → (𝐵‘(𝑛𝑘)) ∈ (𝑆 ∪ {0}))
4036, 39jca 511 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑛)) → ((𝐴𝑘) ∈ (𝑆 ∪ {0}) ∧ (𝐵‘(𝑛𝑘)) ∈ (𝑆 ∪ {0})))
41 plymul.x . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
427, 30, 41un0mulcl 12540 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝑆 ∪ {0}) ∧ 𝑦 ∈ (𝑆 ∪ {0}))) → (𝑥 · 𝑦) ∈ (𝑆 ∪ {0}))
4342caovclg 7604 . . . . . . 7 ((𝜑 ∧ ((𝐴𝑘) ∈ (𝑆 ∪ {0}) ∧ (𝐵‘(𝑛𝑘)) ∈ (𝑆 ∪ {0}))) → ((𝐴𝑘) · (𝐵‘(𝑛𝑘))) ∈ (𝑆 ∪ {0}))
4440, 43syldan 591 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑛)) → ((𝐴𝑘) · (𝐵‘(𝑛𝑘))) ∈ (𝑆 ∪ {0}))
45 ssun2 4159 . . . . . . . 8 {0} ⊆ (𝑆 ∪ {0})
46 c0ex 11234 . . . . . . . . 9 0 ∈ V
4746snss 4766 . . . . . . . 8 (0 ∈ (𝑆 ∪ {0}) ↔ {0} ⊆ (𝑆 ∪ {0}))
4845, 47mpbir 231 . . . . . . 7 0 ∈ (𝑆 ∪ {0})
4948a1i 11 . . . . . 6 (𝜑 → 0 ∈ (𝑆 ∪ {0}))
5010, 32, 33, 44, 49fsumcllem 15753 . . . . 5 (𝜑 → Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))) ∈ (𝑆 ∪ {0}))
5150adantr 480 . . . 4 ((𝜑𝑛 ∈ (0...(𝑀 + 𝑁))) → Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))) ∈ (𝑆 ∪ {0}))
5210, 29, 51elplyd 26164 . . 3 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑛 ∈ (0...(𝑀 + 𝑁))(Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))) · (𝑧𝑛))) ∈ (Poly‘(𝑆 ∪ {0})))
5328, 52eqeltrd 2835 . 2 (𝜑 → (𝐹f · 𝐺) ∈ (Poly‘(𝑆 ∪ {0})))
54 plyun0 26159 . 2 (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆)
5553, 54eleqtrdi 2845 1 (𝜑 → (𝐹f · 𝐺) ∈ (Poly‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3464  cun 3929  wss 3931  {csn 4606  cmpt 5206  cima 5662  wf 6532  cfv 6536  (class class class)co 7410  f cof 7674  m cmap 8845  cc 11132  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139  cmin 11471  0cn0 12506  cuz 12857  ...cfz 13529  cexp 14084  Σcsu 15707  Polycply 26146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-sum 15708  df-ply 26150
This theorem is referenced by:  plymul  26180
  Copyright terms: Public domain W3C validator