MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plymullem Structured version   Visualization version   GIF version

Theorem plymullem 24409
Description: Lemma for plymul 24411. (Contributed by Mario Carneiro, 21-Jul-2014.)
Hypotheses
Ref Expression
plyadd.1 (𝜑𝐹 ∈ (Poly‘𝑆))
plyadd.2 (𝜑𝐺 ∈ (Poly‘𝑆))
plyadd.3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
plyadd.m (𝜑𝑀 ∈ ℕ0)
plyadd.n (𝜑𝑁 ∈ ℕ0)
plyadd.a (𝜑𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚0))
plyadd.b (𝜑𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚0))
plyadd.a2 (𝜑 → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})
plyadd.b2 (𝜑 → (𝐵 “ (ℤ‘(𝑁 + 1))) = {0})
plyadd.f (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))))
plyadd.g (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))
plymul.x ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
Assertion
Ref Expression
plymullem (𝜑 → (𝐹𝑓 · 𝐺) ∈ (Poly‘𝑆))
Distinct variable groups:   𝑥,𝑘,𝑦,𝑧,𝐵   𝑥,𝐹,𝑦,𝑧   𝑆,𝑘,𝑥,𝑦,𝑧   𝑥,𝐴,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝜑,𝑘,𝑥,𝑦,𝑧   𝑘,𝑀,𝑧   𝑘,𝑁,𝑧
Allowed substitution hints:   𝐴(𝑘)   𝐹(𝑘)   𝐺(𝑘)   𝑀(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem plymullem
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 plyadd.1 . . . 4 (𝜑𝐹 ∈ (Poly‘𝑆))
2 plyadd.2 . . . 4 (𝜑𝐺 ∈ (Poly‘𝑆))
3 plyadd.m . . . 4 (𝜑𝑀 ∈ ℕ0)
4 plyadd.n . . . 4 (𝜑𝑁 ∈ ℕ0)
5 plyadd.a . . . . . 6 (𝜑𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚0))
6 plybss 24387 . . . . . . . . . 10 (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)
71, 6syl 17 . . . . . . . . 9 (𝜑𝑆 ⊆ ℂ)
8 0cnd 10369 . . . . . . . . . 10 (𝜑 → 0 ∈ ℂ)
98snssd 4571 . . . . . . . . 9 (𝜑 → {0} ⊆ ℂ)
107, 9unssd 4012 . . . . . . . 8 (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ)
11 cnex 10353 . . . . . . . 8 ℂ ∈ V
12 ssexg 5041 . . . . . . . 8 (((𝑆 ∪ {0}) ⊆ ℂ ∧ ℂ ∈ V) → (𝑆 ∪ {0}) ∈ V)
1310, 11, 12sylancl 580 . . . . . . 7 (𝜑 → (𝑆 ∪ {0}) ∈ V)
14 nn0ex 11649 . . . . . . 7 0 ∈ V
15 elmapg 8153 . . . . . . 7 (((𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → (𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ↔ 𝐴:ℕ0⟶(𝑆 ∪ {0})))
1613, 14, 15sylancl 580 . . . . . 6 (𝜑 → (𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ↔ 𝐴:ℕ0⟶(𝑆 ∪ {0})))
175, 16mpbid 224 . . . . 5 (𝜑𝐴:ℕ0⟶(𝑆 ∪ {0}))
1817, 10fssd 6305 . . . 4 (𝜑𝐴:ℕ0⟶ℂ)
19 plyadd.b . . . . . 6 (𝜑𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚0))
20 elmapg 8153 . . . . . . 7 (((𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → (𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ↔ 𝐵:ℕ0⟶(𝑆 ∪ {0})))
2113, 14, 20sylancl 580 . . . . . 6 (𝜑 → (𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ↔ 𝐵:ℕ0⟶(𝑆 ∪ {0})))
2219, 21mpbid 224 . . . . 5 (𝜑𝐵:ℕ0⟶(𝑆 ∪ {0}))
2322, 10fssd 6305 . . . 4 (𝜑𝐵:ℕ0⟶ℂ)
24 plyadd.a2 . . . 4 (𝜑 → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})
25 plyadd.b2 . . . 4 (𝜑 → (𝐵 “ (ℤ‘(𝑁 + 1))) = {0})
26 plyadd.f . . . 4 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))))
27 plyadd.g . . . 4 (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))
281, 2, 3, 4, 18, 23, 24, 25, 26, 27plymullem1 24407 . . 3 (𝜑 → (𝐹𝑓 · 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑛 ∈ (0...(𝑀 + 𝑁))(Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))) · (𝑧𝑛))))
293, 4nn0addcld 11706 . . . 4 (𝜑 → (𝑀 + 𝑁) ∈ ℕ0)
30 eqid 2778 . . . . . . 7 (𝑆 ∪ {0}) = (𝑆 ∪ {0})
31 plyadd.3 . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
327, 30, 31un0addcl 11677 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑆 ∪ {0}) ∧ 𝑦 ∈ (𝑆 ∪ {0}))) → (𝑥 + 𝑦) ∈ (𝑆 ∪ {0}))
33 fzfid 13091 . . . . . 6 (𝜑 → (0...𝑛) ∈ Fin)
34 elfznn0 12751 . . . . . . . . 9 (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0)
35 ffvelrn 6621 . . . . . . . . 9 ((𝐴:ℕ0⟶(𝑆 ∪ {0}) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ (𝑆 ∪ {0}))
3617, 34, 35syl2an 589 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑛)) → (𝐴𝑘) ∈ (𝑆 ∪ {0}))
37 fznn0sub 12690 . . . . . . . . 9 (𝑘 ∈ (0...𝑛) → (𝑛𝑘) ∈ ℕ0)
38 ffvelrn 6621 . . . . . . . . 9 ((𝐵:ℕ0⟶(𝑆 ∪ {0}) ∧ (𝑛𝑘) ∈ ℕ0) → (𝐵‘(𝑛𝑘)) ∈ (𝑆 ∪ {0}))
3922, 37, 38syl2an 589 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑛)) → (𝐵‘(𝑛𝑘)) ∈ (𝑆 ∪ {0}))
4036, 39jca 507 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑛)) → ((𝐴𝑘) ∈ (𝑆 ∪ {0}) ∧ (𝐵‘(𝑛𝑘)) ∈ (𝑆 ∪ {0})))
41 plymul.x . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
427, 30, 41un0mulcl 11678 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝑆 ∪ {0}) ∧ 𝑦 ∈ (𝑆 ∪ {0}))) → (𝑥 · 𝑦) ∈ (𝑆 ∪ {0}))
4342caovclg 7103 . . . . . . 7 ((𝜑 ∧ ((𝐴𝑘) ∈ (𝑆 ∪ {0}) ∧ (𝐵‘(𝑛𝑘)) ∈ (𝑆 ∪ {0}))) → ((𝐴𝑘) · (𝐵‘(𝑛𝑘))) ∈ (𝑆 ∪ {0}))
4440, 43syldan 585 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑛)) → ((𝐴𝑘) · (𝐵‘(𝑛𝑘))) ∈ (𝑆 ∪ {0}))
45 ssun2 4000 . . . . . . . 8 {0} ⊆ (𝑆 ∪ {0})
46 c0ex 10370 . . . . . . . . 9 0 ∈ V
4746snss 4549 . . . . . . . 8 (0 ∈ (𝑆 ∪ {0}) ↔ {0} ⊆ (𝑆 ∪ {0}))
4845, 47mpbir 223 . . . . . . 7 0 ∈ (𝑆 ∪ {0})
4948a1i 11 . . . . . 6 (𝜑 → 0 ∈ (𝑆 ∪ {0}))
5010, 32, 33, 44, 49fsumcllem 14870 . . . . 5 (𝜑 → Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))) ∈ (𝑆 ∪ {0}))
5150adantr 474 . . . 4 ((𝜑𝑛 ∈ (0...(𝑀 + 𝑁))) → Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))) ∈ (𝑆 ∪ {0}))
5210, 29, 51elplyd 24395 . . 3 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑛 ∈ (0...(𝑀 + 𝑁))(Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))) · (𝑧𝑛))) ∈ (Poly‘(𝑆 ∪ {0})))
5328, 52eqeltrd 2859 . 2 (𝜑 → (𝐹𝑓 · 𝐺) ∈ (Poly‘(𝑆 ∪ {0})))
54 plyun0 24390 . 2 (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆)
5553, 54syl6eleq 2869 1 (𝜑 → (𝐹𝑓 · 𝐺) ∈ (Poly‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wcel 2107  Vcvv 3398  cun 3790  wss 3792  {csn 4398  cmpt 4965  cima 5358  wf 6131  cfv 6135  (class class class)co 6922  𝑓 cof 7172  𝑚 cmap 8140  cc 10270  0cc0 10272  1c1 10273   + caddc 10275   · cmul 10277  cmin 10606  0cn0 11642  cuz 11992  ...cfz 12643  cexp 13178  Σcsu 14824  Polycply 24377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-sup 8636  df-oi 8704  df-card 9098  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-z 11729  df-uz 11993  df-rp 12138  df-fz 12644  df-fzo 12785  df-seq 13120  df-exp 13179  df-hash 13436  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-clim 14627  df-sum 14825  df-ply 24381
This theorem is referenced by:  plymul  24411
  Copyright terms: Public domain W3C validator