Step | Hyp | Ref
| Expression |
1 | | plyadd.1 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
2 | | plyadd.2 |
. . . 4
⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) |
3 | | plyadd.m |
. . . 4
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
4 | | plyadd.n |
. . . 4
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
5 | | plyadd.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) |
6 | | plybss 25260 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) |
7 | 1, 6 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 ⊆ ℂ) |
8 | | 0cnd 10899 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ∈
ℂ) |
9 | 8 | snssd 4739 |
. . . . . . . . 9
⊢ (𝜑 → {0} ⊆
ℂ) |
10 | 7, 9 | unssd 4116 |
. . . . . . . 8
⊢ (𝜑 → (𝑆 ∪ {0}) ⊆
ℂ) |
11 | | cnex 10883 |
. . . . . . . 8
⊢ ℂ
∈ V |
12 | | ssexg 5242 |
. . . . . . . 8
⊢ (((𝑆 ∪ {0}) ⊆ ℂ
∧ ℂ ∈ V) → (𝑆 ∪ {0}) ∈ V) |
13 | 10, 11, 12 | sylancl 585 |
. . . . . . 7
⊢ (𝜑 → (𝑆 ∪ {0}) ∈ V) |
14 | | nn0ex 12169 |
. . . . . . 7
⊢
ℕ0 ∈ V |
15 | | elmapg 8586 |
. . . . . . 7
⊢ (((𝑆 ∪ {0}) ∈ V ∧
ℕ0 ∈ V) → (𝐴 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ↔ 𝐴:ℕ0⟶(𝑆 ∪ {0}))) |
16 | 13, 14, 15 | sylancl 585 |
. . . . . 6
⊢ (𝜑 → (𝐴 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ↔ 𝐴:ℕ0⟶(𝑆 ∪ {0}))) |
17 | 5, 16 | mpbid 231 |
. . . . 5
⊢ (𝜑 → 𝐴:ℕ0⟶(𝑆 ∪ {0})) |
18 | 17, 10 | fssd 6602 |
. . . 4
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
19 | | plyadd.b |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) |
20 | | elmapg 8586 |
. . . . . . 7
⊢ (((𝑆 ∪ {0}) ∈ V ∧
ℕ0 ∈ V) → (𝐵 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ↔ 𝐵:ℕ0⟶(𝑆 ∪ {0}))) |
21 | 13, 14, 20 | sylancl 585 |
. . . . . 6
⊢ (𝜑 → (𝐵 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ↔ 𝐵:ℕ0⟶(𝑆 ∪ {0}))) |
22 | 19, 21 | mpbid 231 |
. . . . 5
⊢ (𝜑 → 𝐵:ℕ0⟶(𝑆 ∪ {0})) |
23 | 22, 10 | fssd 6602 |
. . . 4
⊢ (𝜑 → 𝐵:ℕ0⟶ℂ) |
24 | | plyadd.a2 |
. . . 4
⊢ (𝜑 → (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) |
25 | | plyadd.b2 |
. . . 4
⊢ (𝜑 → (𝐵 “
(ℤ≥‘(𝑁 + 1))) = {0}) |
26 | | plyadd.f |
. . . 4
⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))) |
27 | | plyadd.g |
. . . 4
⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) |
28 | 1, 2, 3, 4, 18, 23, 24, 25, 26, 27 | plymullem1 25280 |
. . 3
⊢ (𝜑 → (𝐹 ∘f · 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑛 ∈ (0...(𝑀 + 𝑁))(Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · (𝑧↑𝑛)))) |
29 | 3, 4 | nn0addcld 12227 |
. . . 4
⊢ (𝜑 → (𝑀 + 𝑁) ∈
ℕ0) |
30 | | eqid 2738 |
. . . . . . 7
⊢ (𝑆 ∪ {0}) = (𝑆 ∪ {0}) |
31 | | plyadd.3 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
32 | 7, 30, 31 | un0addcl 12196 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑆 ∪ {0}) ∧ 𝑦 ∈ (𝑆 ∪ {0}))) → (𝑥 + 𝑦) ∈ (𝑆 ∪ {0})) |
33 | | fzfid 13621 |
. . . . . 6
⊢ (𝜑 → (0...𝑛) ∈ Fin) |
34 | | elfznn0 13278 |
. . . . . . . . 9
⊢ (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0) |
35 | | ffvelrn 6941 |
. . . . . . . . 9
⊢ ((𝐴:ℕ0⟶(𝑆 ∪ {0}) ∧ 𝑘 ∈ ℕ0)
→ (𝐴‘𝑘) ∈ (𝑆 ∪ {0})) |
36 | 17, 34, 35 | syl2an 595 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑛)) → (𝐴‘𝑘) ∈ (𝑆 ∪ {0})) |
37 | | fznn0sub 13217 |
. . . . . . . . 9
⊢ (𝑘 ∈ (0...𝑛) → (𝑛 − 𝑘) ∈
ℕ0) |
38 | | ffvelrn 6941 |
. . . . . . . . 9
⊢ ((𝐵:ℕ0⟶(𝑆 ∪ {0}) ∧ (𝑛 − 𝑘) ∈ ℕ0) → (𝐵‘(𝑛 − 𝑘)) ∈ (𝑆 ∪ {0})) |
39 | 22, 37, 38 | syl2an 595 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑛)) → (𝐵‘(𝑛 − 𝑘)) ∈ (𝑆 ∪ {0})) |
40 | 36, 39 | jca 511 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑛)) → ((𝐴‘𝑘) ∈ (𝑆 ∪ {0}) ∧ (𝐵‘(𝑛 − 𝑘)) ∈ (𝑆 ∪ {0}))) |
41 | | plymul.x |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) |
42 | 7, 30, 41 | un0mulcl 12197 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑆 ∪ {0}) ∧ 𝑦 ∈ (𝑆 ∪ {0}))) → (𝑥 · 𝑦) ∈ (𝑆 ∪ {0})) |
43 | 42 | caovclg 7442 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝐴‘𝑘) ∈ (𝑆 ∪ {0}) ∧ (𝐵‘(𝑛 − 𝑘)) ∈ (𝑆 ∪ {0}))) → ((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) ∈ (𝑆 ∪ {0})) |
44 | 40, 43 | syldan 590 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑛)) → ((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) ∈ (𝑆 ∪ {0})) |
45 | | ssun2 4103 |
. . . . . . . 8
⊢ {0}
⊆ (𝑆 ∪
{0}) |
46 | | c0ex 10900 |
. . . . . . . . 9
⊢ 0 ∈
V |
47 | 46 | snss 4716 |
. . . . . . . 8
⊢ (0 ∈
(𝑆 ∪ {0}) ↔ {0}
⊆ (𝑆 ∪
{0})) |
48 | 45, 47 | mpbir 230 |
. . . . . . 7
⊢ 0 ∈
(𝑆 ∪
{0}) |
49 | 48 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 0 ∈ (𝑆 ∪ {0})) |
50 | 10, 32, 33, 44, 49 | fsumcllem 15372 |
. . . . 5
⊢ (𝜑 → Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) ∈ (𝑆 ∪ {0})) |
51 | 50 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) → Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) ∈ (𝑆 ∪ {0})) |
52 | 10, 29, 51 | elplyd 25268 |
. . 3
⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑛 ∈ (0...(𝑀 + 𝑁))(Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · (𝑧↑𝑛))) ∈ (Poly‘(𝑆 ∪ {0}))) |
53 | 28, 52 | eqeltrd 2839 |
. 2
⊢ (𝜑 → (𝐹 ∘f · 𝐺) ∈ (Poly‘(𝑆 ∪ {0}))) |
54 | | plyun0 25263 |
. 2
⊢
(Poly‘(𝑆 ∪
{0})) = (Poly‘𝑆) |
55 | 53, 54 | eleqtrdi 2849 |
1
⊢ (𝜑 → (𝐹 ∘f · 𝐺) ∈ (Poly‘𝑆)) |