MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ercpbl Structured version   Visualization version   GIF version

Theorem ercpbl 17502
Description: Translate the function compatibility relation to a quotient set. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.)
Hypotheses
Ref Expression
ercpbl.r (𝜑 Er 𝑉)
ercpbl.v (𝜑𝑉𝑊)
ercpbl.f 𝐹 = (𝑥𝑉 ↦ [𝑥] )
ercpbl.c ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (𝑎 + 𝑏) ∈ 𝑉)
ercpbl.e (𝜑 → ((𝐴 𝐶𝐵 𝐷) → (𝐴 + 𝐵) (𝐶 + 𝐷)))
Assertion
Ref Expression
ercpbl ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → (((𝐹𝐴) = (𝐹𝐶) ∧ (𝐹𝐵) = (𝐹𝐷)) → (𝐹‘(𝐴 + 𝐵)) = (𝐹‘(𝐶 + 𝐷))))
Distinct variable groups:   𝑥,   𝑎,𝑏,𝑥,𝐴   𝐵,𝑏,𝑥   𝑥,𝐶   𝑥,𝐷   𝑉,𝑎,𝑏,𝑥   + ,𝑎,𝑏,𝑥   𝜑,𝑎,𝑏,𝑥
Allowed substitution hints:   𝐵(𝑎)   𝐶(𝑎,𝑏)   𝐷(𝑎,𝑏)   (𝑎,𝑏)   𝐹(𝑥,𝑎,𝑏)   𝑊(𝑥,𝑎,𝑏)

Proof of Theorem ercpbl
StepHypRef Expression
1 ercpbl.e . . 3 (𝜑 → ((𝐴 𝐶𝐵 𝐷) → (𝐴 + 𝐵) (𝐶 + 𝐷)))
213ad2ant1 1132 . 2 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → ((𝐴 𝐶𝐵 𝐷) → (𝐴 + 𝐵) (𝐶 + 𝐷)))
3 ercpbl.r . . . . 5 (𝜑 Er 𝑉)
433ad2ant1 1132 . . . 4 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → Er 𝑉)
5 ercpbl.v . . . . 5 (𝜑𝑉𝑊)
653ad2ant1 1132 . . . 4 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → 𝑉𝑊)
7 ercpbl.f . . . 4 𝐹 = (𝑥𝑉 ↦ [𝑥] )
8 simp2l 1198 . . . 4 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → 𝐴𝑉)
94, 6, 7, 8ercpbllem 17501 . . 3 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → ((𝐹𝐴) = (𝐹𝐶) ↔ 𝐴 𝐶))
10 simp2r 1199 . . . 4 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → 𝐵𝑉)
114, 6, 7, 10ercpbllem 17501 . . 3 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → ((𝐹𝐵) = (𝐹𝐷) ↔ 𝐵 𝐷))
129, 11anbi12d 630 . 2 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → (((𝐹𝐴) = (𝐹𝐶) ∧ (𝐹𝐵) = (𝐹𝐷)) ↔ (𝐴 𝐶𝐵 𝐷)))
13 ercpbl.c . . . . 5 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (𝑎 + 𝑏) ∈ 𝑉)
1413caovclg 7603 . . . 4 ((𝜑 ∧ (𝐴𝑉𝐵𝑉)) → (𝐴 + 𝐵) ∈ 𝑉)
15143adant3 1131 . . 3 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → (𝐴 + 𝐵) ∈ 𝑉)
164, 6, 7, 15ercpbllem 17501 . 2 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → ((𝐹‘(𝐴 + 𝐵)) = (𝐹‘(𝐶 + 𝐷)) ↔ (𝐴 + 𝐵) (𝐶 + 𝐷)))
172, 12, 163imtr4d 294 1 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → (((𝐹𝐴) = (𝐹𝐶) ∧ (𝐹𝐵) = (𝐹𝐷)) → (𝐹‘(𝐴 + 𝐵)) = (𝐹‘(𝐶 + 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2105   class class class wbr 5148  cmpt 5231  cfv 6543  (class class class)co 7412   Er wer 8706  [cec 8707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7415  df-er 8709  df-ec 8711
This theorem is referenced by:  qusaddvallem  17504  qusaddflem  17505  qusgrp2  18984  qusrng  20081  qusring2  20229  quslmod  32908
  Copyright terms: Public domain W3C validator