![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qusmul2idl | Structured version Visualization version GIF version |
Description: Value of the ring operation in a quotient ring by a two-sided ideal. (Contributed by Thierry Arnoux, 1-Sep-2024.) |
Ref | Expression |
---|---|
qusmul2idl.h | ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) |
qusmul2idl.v | ⊢ 𝐵 = (Base‘𝑅) |
qusmul2idl.p | ⊢ · = (.r‘𝑅) |
qusmul2idl.a | ⊢ × = (.r‘𝑄) |
qusmul2idl.1 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
qusmul2idl.2 | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
qusmul2idl.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
qusmul2idl.4 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
qusmul2idl | ⊢ (𝜑 → ([𝑋](𝑅 ~QG 𝐼) × [𝑌](𝑅 ~QG 𝐼)) = [(𝑋 · 𝑌)](𝑅 ~QG 𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusmul2idl.3 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
2 | qusmul2idl.4 | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
3 | qusmul2idl.h | . . . 4 ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) | |
4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))) |
5 | qusmul2idl.v | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
7 | qusmul2idl.1 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
8 | qusmul2idl.2 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | |
9 | 8 | 2idllidld 21238 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) |
10 | eqid 2726 | . . . . . 6 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
11 | 10 | lidlsubg 21207 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (SubGrp‘𝑅)) |
12 | 7, 9, 11 | syl2anc 582 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ (SubGrp‘𝑅)) |
13 | eqid 2726 | . . . . 5 ⊢ (𝑅 ~QG 𝐼) = (𝑅 ~QG 𝐼) | |
14 | 5, 13 | eqger 19167 | . . . 4 ⊢ (𝐼 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝐼) Er 𝐵) |
15 | 12, 14 | syl 17 | . . 3 ⊢ (𝜑 → (𝑅 ~QG 𝐼) Er 𝐵) |
16 | eqid 2726 | . . . . 5 ⊢ (2Ideal‘𝑅) = (2Ideal‘𝑅) | |
17 | qusmul2idl.p | . . . . 5 ⊢ · = (.r‘𝑅) | |
18 | 5, 13, 16, 17 | 2idlcpbl 21256 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (2Ideal‘𝑅)) → ((𝑥(𝑅 ~QG 𝐼)𝑦 ∧ 𝑧(𝑅 ~QG 𝐼)𝑡) → (𝑥 · 𝑧)(𝑅 ~QG 𝐼)(𝑦 · 𝑡))) |
19 | 7, 8, 18 | syl2anc 582 | . . 3 ⊢ (𝜑 → ((𝑥(𝑅 ~QG 𝐼)𝑦 ∧ 𝑧(𝑅 ~QG 𝐼)𝑡) → (𝑥 · 𝑧)(𝑅 ~QG 𝐼)(𝑦 · 𝑡))) |
20 | 5, 17 | ringcl 20228 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵) → (𝑝 · 𝑞) ∈ 𝐵) |
21 | 20 | 3expb 1117 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → (𝑝 · 𝑞) ∈ 𝐵) |
22 | 7, 21 | sylan 578 | . . . 4 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → (𝑝 · 𝑞) ∈ 𝐵) |
23 | 22 | caovclg 7609 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵)) → (𝑦 · 𝑡) ∈ 𝐵) |
24 | qusmul2idl.a | . . 3 ⊢ × = (.r‘𝑄) | |
25 | 4, 6, 15, 7, 19, 23, 17, 24 | qusmulval 17564 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ([𝑋](𝑅 ~QG 𝐼) × [𝑌](𝑅 ~QG 𝐼)) = [(𝑋 · 𝑌)](𝑅 ~QG 𝐼)) |
26 | 1, 2, 25 | mpd3an23 1460 | 1 ⊢ (𝜑 → ([𝑋](𝑅 ~QG 𝐼) × [𝑌](𝑅 ~QG 𝐼)) = [(𝑋 · 𝑌)](𝑅 ~QG 𝐼)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 class class class wbr 5145 ‘cfv 6545 (class class class)co 7415 Er wer 8722 [cec 8723 Basecbs 17207 .rcmulr 17261 /s cqus 17514 SubGrpcsubg 19109 ~QG cqg 19111 Ringcrg 20211 LIdealclidl 21190 2Idealc2idl 21233 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7737 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3365 df-reu 3366 df-rab 3421 df-v 3466 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3968 df-nul 4325 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4908 df-iun 4997 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6370 df-on 6371 df-lim 6372 df-suc 6373 df-iota 6497 df-fun 6547 df-fn 6548 df-f 6549 df-f1 6550 df-fo 6551 df-f1o 6552 df-fv 6553 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-1st 7994 df-2nd 7995 df-tpos 8232 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-ec 8727 df-qs 8731 df-en 8966 df-dom 8967 df-sdom 8968 df-fin 8969 df-sup 9477 df-inf 9478 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-nn 12258 df-2 12320 df-3 12321 df-4 12322 df-5 12323 df-6 12324 df-7 12325 df-8 12326 df-9 12327 df-n0 12518 df-z 12604 df-dec 12723 df-uz 12868 df-fz 13532 df-struct 17143 df-sets 17160 df-slot 17178 df-ndx 17190 df-base 17208 df-ress 17237 df-plusg 17273 df-mulr 17274 df-sca 17276 df-vsca 17277 df-ip 17278 df-tset 17279 df-ple 17280 df-ds 17282 df-0g 17450 df-imas 17517 df-qus 17518 df-mgm 18627 df-sgrp 18706 df-mnd 18722 df-grp 18925 df-minusg 18926 df-sbg 18927 df-subg 19112 df-eqg 19114 df-cmn 19775 df-abl 19776 df-mgp 20113 df-rng 20131 df-ur 20160 df-ring 20213 df-oppr 20311 df-subrg 20548 df-lmod 20833 df-lss 20904 df-sra 21146 df-rgmod 21147 df-lidl 21192 df-2idl 21234 |
This theorem is referenced by: qusmulcrng 21268 opprqusmulr 33371 qsdrngilem 33374 qsdrnglem2 33376 |
Copyright terms: Public domain | W3C validator |