MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qusmul2idl Structured version   Visualization version   GIF version

Theorem qusmul2idl 21195
Description: Value of the ring operation in a quotient ring by a two-sided ideal. (Contributed by Thierry Arnoux, 1-Sep-2024.)
Hypotheses
Ref Expression
qusmul2idl.h 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
qusmul2idl.v 𝐵 = (Base‘𝑅)
qusmul2idl.p · = (.r𝑅)
qusmul2idl.a × = (.r𝑄)
qusmul2idl.1 (𝜑𝑅 ∈ Ring)
qusmul2idl.2 (𝜑𝐼 ∈ (2Ideal‘𝑅))
qusmul2idl.3 (𝜑𝑋𝐵)
qusmul2idl.4 (𝜑𝑌𝐵)
Assertion
Ref Expression
qusmul2idl (𝜑 → ([𝑋](𝑅 ~QG 𝐼) × [𝑌](𝑅 ~QG 𝐼)) = [(𝑋 · 𝑌)](𝑅 ~QG 𝐼))

Proof of Theorem qusmul2idl
Dummy variables 𝑡 𝑥 𝑦 𝑧 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusmul2idl.3 . 2 (𝜑𝑋𝐵)
2 qusmul2idl.4 . 2 (𝜑𝑌𝐵)
3 qusmul2idl.h . . . 4 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
43a1i 11 . . 3 (𝜑𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)))
5 qusmul2idl.v . . . 4 𝐵 = (Base‘𝑅)
65a1i 11 . . 3 (𝜑𝐵 = (Base‘𝑅))
7 qusmul2idl.1 . . . . 5 (𝜑𝑅 ∈ Ring)
8 qusmul2idl.2 . . . . . 6 (𝜑𝐼 ∈ (2Ideal‘𝑅))
982idllidld 21170 . . . . 5 (𝜑𝐼 ∈ (LIdeal‘𝑅))
10 eqid 2730 . . . . . 6 (LIdeal‘𝑅) = (LIdeal‘𝑅)
1110lidlsubg 21139 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (SubGrp‘𝑅))
127, 9, 11syl2anc 584 . . . 4 (𝜑𝐼 ∈ (SubGrp‘𝑅))
13 eqid 2730 . . . . 5 (𝑅 ~QG 𝐼) = (𝑅 ~QG 𝐼)
145, 13eqger 19116 . . . 4 (𝐼 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝐼) Er 𝐵)
1512, 14syl 17 . . 3 (𝜑 → (𝑅 ~QG 𝐼) Er 𝐵)
16 eqid 2730 . . . . 5 (2Ideal‘𝑅) = (2Ideal‘𝑅)
17 qusmul2idl.p . . . . 5 · = (.r𝑅)
185, 13, 16, 172idlcpbl 21188 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (2Ideal‘𝑅)) → ((𝑥(𝑅 ~QG 𝐼)𝑦𝑧(𝑅 ~QG 𝐼)𝑡) → (𝑥 · 𝑧)(𝑅 ~QG 𝐼)(𝑦 · 𝑡)))
197, 8, 18syl2anc 584 . . 3 (𝜑 → ((𝑥(𝑅 ~QG 𝐼)𝑦𝑧(𝑅 ~QG 𝐼)𝑡) → (𝑥 · 𝑧)(𝑅 ~QG 𝐼)(𝑦 · 𝑡)))
205, 17ringcl 20165 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑝𝐵𝑞𝐵) → (𝑝 · 𝑞) ∈ 𝐵)
21203expb 1120 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑝𝐵𝑞𝐵)) → (𝑝 · 𝑞) ∈ 𝐵)
227, 21sylan 580 . . . 4 ((𝜑 ∧ (𝑝𝐵𝑞𝐵)) → (𝑝 · 𝑞) ∈ 𝐵)
2322caovclg 7583 . . 3 ((𝜑 ∧ (𝑦𝐵𝑡𝐵)) → (𝑦 · 𝑡) ∈ 𝐵)
24 qusmul2idl.a . . 3 × = (.r𝑄)
254, 6, 15, 7, 19, 23, 17, 24qusmulval 17524 . 2 ((𝜑𝑋𝐵𝑌𝐵) → ([𝑋](𝑅 ~QG 𝐼) × [𝑌](𝑅 ~QG 𝐼)) = [(𝑋 · 𝑌)](𝑅 ~QG 𝐼))
261, 2, 25mpd3an23 1465 1 (𝜑 → ([𝑋](𝑅 ~QG 𝐼) × [𝑌](𝑅 ~QG 𝐼)) = [(𝑋 · 𝑌)](𝑅 ~QG 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5109  cfv 6513  (class class class)co 7389   Er wer 8670  [cec 8671  Basecbs 17185  .rcmulr 17227   /s cqus 17474  SubGrpcsubg 19058   ~QG cqg 19060  Ringcrg 20148  LIdealclidl 21122  2Idealc2idl 21165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-er 8673  df-ec 8675  df-qs 8679  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-sup 9399  df-inf 9400  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-z 12536  df-dec 12656  df-uz 12800  df-fz 13475  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-0g 17410  df-imas 17477  df-qus 17478  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-grp 18874  df-minusg 18875  df-sbg 18876  df-subg 19061  df-eqg 19063  df-cmn 19718  df-abl 19719  df-mgp 20056  df-rng 20068  df-ur 20097  df-ring 20150  df-oppr 20252  df-subrg 20485  df-lmod 20774  df-lss 20844  df-sra 21086  df-rgmod 21087  df-lidl 21124  df-2idl 21166
This theorem is referenced by:  qusmulcrng  21200  opprqusmulr  33468  qsdrngilem  33471  qsdrnglem2  33473
  Copyright terms: Public domain W3C validator