| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qusmul2idl | Structured version Visualization version GIF version | ||
| Description: Value of the ring operation in a quotient ring by a two-sided ideal. (Contributed by Thierry Arnoux, 1-Sep-2024.) |
| Ref | Expression |
|---|---|
| qusmul2idl.h | ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) |
| qusmul2idl.v | ⊢ 𝐵 = (Base‘𝑅) |
| qusmul2idl.p | ⊢ · = (.r‘𝑅) |
| qusmul2idl.a | ⊢ × = (.r‘𝑄) |
| qusmul2idl.1 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| qusmul2idl.2 | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
| qusmul2idl.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| qusmul2idl.4 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| qusmul2idl | ⊢ (𝜑 → ([𝑋](𝑅 ~QG 𝐼) × [𝑌](𝑅 ~QG 𝐼)) = [(𝑋 · 𝑌)](𝑅 ~QG 𝐼)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusmul2idl.3 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 2 | qusmul2idl.4 | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 3 | qusmul2idl.h | . . . 4 ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))) |
| 5 | qusmul2idl.v | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
| 7 | qusmul2idl.1 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 8 | qusmul2idl.2 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | |
| 9 | 8 | 2idllidld 21164 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) |
| 10 | eqid 2729 | . . . . . 6 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
| 11 | 10 | lidlsubg 21133 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (SubGrp‘𝑅)) |
| 12 | 7, 9, 11 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ (SubGrp‘𝑅)) |
| 13 | eqid 2729 | . . . . 5 ⊢ (𝑅 ~QG 𝐼) = (𝑅 ~QG 𝐼) | |
| 14 | 5, 13 | eqger 19110 | . . . 4 ⊢ (𝐼 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝐼) Er 𝐵) |
| 15 | 12, 14 | syl 17 | . . 3 ⊢ (𝜑 → (𝑅 ~QG 𝐼) Er 𝐵) |
| 16 | eqid 2729 | . . . . 5 ⊢ (2Ideal‘𝑅) = (2Ideal‘𝑅) | |
| 17 | qusmul2idl.p | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 18 | 5, 13, 16, 17 | 2idlcpbl 21182 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (2Ideal‘𝑅)) → ((𝑥(𝑅 ~QG 𝐼)𝑦 ∧ 𝑧(𝑅 ~QG 𝐼)𝑡) → (𝑥 · 𝑧)(𝑅 ~QG 𝐼)(𝑦 · 𝑡))) |
| 19 | 7, 8, 18 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((𝑥(𝑅 ~QG 𝐼)𝑦 ∧ 𝑧(𝑅 ~QG 𝐼)𝑡) → (𝑥 · 𝑧)(𝑅 ~QG 𝐼)(𝑦 · 𝑡))) |
| 20 | 5, 17 | ringcl 20159 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵) → (𝑝 · 𝑞) ∈ 𝐵) |
| 21 | 20 | 3expb 1120 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → (𝑝 · 𝑞) ∈ 𝐵) |
| 22 | 7, 21 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → (𝑝 · 𝑞) ∈ 𝐵) |
| 23 | 22 | caovclg 7581 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵)) → (𝑦 · 𝑡) ∈ 𝐵) |
| 24 | qusmul2idl.a | . . 3 ⊢ × = (.r‘𝑄) | |
| 25 | 4, 6, 15, 7, 19, 23, 17, 24 | qusmulval 17518 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ([𝑋](𝑅 ~QG 𝐼) × [𝑌](𝑅 ~QG 𝐼)) = [(𝑋 · 𝑌)](𝑅 ~QG 𝐼)) |
| 26 | 1, 2, 25 | mpd3an23 1465 | 1 ⊢ (𝜑 → ([𝑋](𝑅 ~QG 𝐼) × [𝑌](𝑅 ~QG 𝐼)) = [(𝑋 · 𝑌)](𝑅 ~QG 𝐼)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 Er wer 8668 [cec 8669 Basecbs 17179 .rcmulr 17221 /s cqus 17468 SubGrpcsubg 19052 ~QG cqg 19054 Ringcrg 20142 LIdealclidl 21116 2Idealc2idl 21159 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-ec 8673 df-qs 8677 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-0g 17404 df-imas 17471 df-qus 17472 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-sbg 18870 df-subg 19055 df-eqg 19057 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-oppr 20246 df-subrg 20479 df-lmod 20768 df-lss 20838 df-sra 21080 df-rgmod 21081 df-lidl 21118 df-2idl 21160 |
| This theorem is referenced by: qusmulcrng 21194 opprqusmulr 33462 qsdrngilem 33465 qsdrnglem2 33467 |
| Copyright terms: Public domain | W3C validator |