| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qusmul2idl | Structured version Visualization version GIF version | ||
| Description: Value of the ring operation in a quotient ring by a two-sided ideal. (Contributed by Thierry Arnoux, 1-Sep-2024.) |
| Ref | Expression |
|---|---|
| qusmul2idl.h | ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) |
| qusmul2idl.v | ⊢ 𝐵 = (Base‘𝑅) |
| qusmul2idl.p | ⊢ · = (.r‘𝑅) |
| qusmul2idl.a | ⊢ × = (.r‘𝑄) |
| qusmul2idl.1 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| qusmul2idl.2 | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
| qusmul2idl.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| qusmul2idl.4 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| qusmul2idl | ⊢ (𝜑 → ([𝑋](𝑅 ~QG 𝐼) × [𝑌](𝑅 ~QG 𝐼)) = [(𝑋 · 𝑌)](𝑅 ~QG 𝐼)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusmul2idl.3 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 2 | qusmul2idl.4 | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 3 | qusmul2idl.h | . . . 4 ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))) |
| 5 | qusmul2idl.v | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
| 7 | qusmul2idl.1 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 8 | qusmul2idl.2 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | |
| 9 | 8 | 2idllidld 21170 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) |
| 10 | eqid 2730 | . . . . . 6 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
| 11 | 10 | lidlsubg 21139 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (SubGrp‘𝑅)) |
| 12 | 7, 9, 11 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ (SubGrp‘𝑅)) |
| 13 | eqid 2730 | . . . . 5 ⊢ (𝑅 ~QG 𝐼) = (𝑅 ~QG 𝐼) | |
| 14 | 5, 13 | eqger 19116 | . . . 4 ⊢ (𝐼 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝐼) Er 𝐵) |
| 15 | 12, 14 | syl 17 | . . 3 ⊢ (𝜑 → (𝑅 ~QG 𝐼) Er 𝐵) |
| 16 | eqid 2730 | . . . . 5 ⊢ (2Ideal‘𝑅) = (2Ideal‘𝑅) | |
| 17 | qusmul2idl.p | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 18 | 5, 13, 16, 17 | 2idlcpbl 21188 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (2Ideal‘𝑅)) → ((𝑥(𝑅 ~QG 𝐼)𝑦 ∧ 𝑧(𝑅 ~QG 𝐼)𝑡) → (𝑥 · 𝑧)(𝑅 ~QG 𝐼)(𝑦 · 𝑡))) |
| 19 | 7, 8, 18 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((𝑥(𝑅 ~QG 𝐼)𝑦 ∧ 𝑧(𝑅 ~QG 𝐼)𝑡) → (𝑥 · 𝑧)(𝑅 ~QG 𝐼)(𝑦 · 𝑡))) |
| 20 | 5, 17 | ringcl 20165 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵) → (𝑝 · 𝑞) ∈ 𝐵) |
| 21 | 20 | 3expb 1120 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → (𝑝 · 𝑞) ∈ 𝐵) |
| 22 | 7, 21 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → (𝑝 · 𝑞) ∈ 𝐵) |
| 23 | 22 | caovclg 7583 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵)) → (𝑦 · 𝑡) ∈ 𝐵) |
| 24 | qusmul2idl.a | . . 3 ⊢ × = (.r‘𝑄) | |
| 25 | 4, 6, 15, 7, 19, 23, 17, 24 | qusmulval 17524 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ([𝑋](𝑅 ~QG 𝐼) × [𝑌](𝑅 ~QG 𝐼)) = [(𝑋 · 𝑌)](𝑅 ~QG 𝐼)) |
| 26 | 1, 2, 25 | mpd3an23 1465 | 1 ⊢ (𝜑 → ([𝑋](𝑅 ~QG 𝐼) × [𝑌](𝑅 ~QG 𝐼)) = [(𝑋 · 𝑌)](𝑅 ~QG 𝐼)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5109 ‘cfv 6513 (class class class)co 7389 Er wer 8670 [cec 8671 Basecbs 17185 .rcmulr 17227 /s cqus 17474 SubGrpcsubg 19058 ~QG cqg 19060 Ringcrg 20148 LIdealclidl 21122 2Idealc2idl 21165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-ec 8675 df-qs 8679 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-sup 9399 df-inf 9400 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-dec 12656 df-uz 12800 df-fz 13475 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-0g 17410 df-imas 17477 df-qus 17478 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-grp 18874 df-minusg 18875 df-sbg 18876 df-subg 19061 df-eqg 19063 df-cmn 19718 df-abl 19719 df-mgp 20056 df-rng 20068 df-ur 20097 df-ring 20150 df-oppr 20252 df-subrg 20485 df-lmod 20774 df-lss 20844 df-sra 21086 df-rgmod 21087 df-lidl 21124 df-2idl 21166 |
| This theorem is referenced by: qusmulcrng 21200 opprqusmulr 33468 qsdrngilem 33471 qsdrnglem2 33473 |
| Copyright terms: Public domain | W3C validator |