Step | Hyp | Ref
| Expression |
1 | | coof.f |
. . . . 5
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
2 | 1 | ffvelcdmda 7118 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) |
3 | | coof.g |
. . . . 5
⊢ (𝜑 → 𝐺:𝐴⟶𝐵) |
4 | 3 | ffvelcdmda 7118 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ 𝐵) |
5 | | coof.2 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → (𝐻‘(𝑏𝑅𝑐)) = ((𝐻‘𝑏)𝑆(𝐻‘𝑐))) |
6 | 5 | ralrimivva 3208 |
. . . . 5
⊢ (𝜑 → ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝐻‘(𝑏𝑅𝑐)) = ((𝐻‘𝑏)𝑆(𝐻‘𝑐))) |
7 | 6 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝐻‘(𝑏𝑅𝑐)) = ((𝐻‘𝑏)𝑆(𝐻‘𝑐))) |
8 | | fvoveq1 7471 |
. . . . . 6
⊢ (𝑏 = (𝐹‘𝑥) → (𝐻‘(𝑏𝑅𝑐)) = (𝐻‘((𝐹‘𝑥)𝑅𝑐))) |
9 | | fveq2 6920 |
. . . . . . 7
⊢ (𝑏 = (𝐹‘𝑥) → (𝐻‘𝑏) = (𝐻‘(𝐹‘𝑥))) |
10 | 9 | oveq1d 7463 |
. . . . . 6
⊢ (𝑏 = (𝐹‘𝑥) → ((𝐻‘𝑏)𝑆(𝐻‘𝑐)) = ((𝐻‘(𝐹‘𝑥))𝑆(𝐻‘𝑐))) |
11 | 8, 10 | eqeq12d 2756 |
. . . . 5
⊢ (𝑏 = (𝐹‘𝑥) → ((𝐻‘(𝑏𝑅𝑐)) = ((𝐻‘𝑏)𝑆(𝐻‘𝑐)) ↔ (𝐻‘((𝐹‘𝑥)𝑅𝑐)) = ((𝐻‘(𝐹‘𝑥))𝑆(𝐻‘𝑐)))) |
12 | | oveq2 7456 |
. . . . . . 7
⊢ (𝑐 = (𝐺‘𝑥) → ((𝐹‘𝑥)𝑅𝑐) = ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) |
13 | 12 | fveq2d 6924 |
. . . . . 6
⊢ (𝑐 = (𝐺‘𝑥) → (𝐻‘((𝐹‘𝑥)𝑅𝑐)) = (𝐻‘((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
14 | | fveq2 6920 |
. . . . . . 7
⊢ (𝑐 = (𝐺‘𝑥) → (𝐻‘𝑐) = (𝐻‘(𝐺‘𝑥))) |
15 | 14 | oveq2d 7464 |
. . . . . 6
⊢ (𝑐 = (𝐺‘𝑥) → ((𝐻‘(𝐹‘𝑥))𝑆(𝐻‘𝑐)) = ((𝐻‘(𝐹‘𝑥))𝑆(𝐻‘(𝐺‘𝑥)))) |
16 | 13, 15 | eqeq12d 2756 |
. . . . 5
⊢ (𝑐 = (𝐺‘𝑥) → ((𝐻‘((𝐹‘𝑥)𝑅𝑐)) = ((𝐻‘(𝐹‘𝑥))𝑆(𝐻‘𝑐)) ↔ (𝐻‘((𝐹‘𝑥)𝑅(𝐺‘𝑥))) = ((𝐻‘(𝐹‘𝑥))𝑆(𝐻‘(𝐺‘𝑥))))) |
17 | 11, 16 | rspc2va 3647 |
. . . 4
⊢ ((((𝐹‘𝑥) ∈ 𝐵 ∧ (𝐺‘𝑥) ∈ 𝐵) ∧ ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝐻‘(𝑏𝑅𝑐)) = ((𝐻‘𝑏)𝑆(𝐻‘𝑐))) → (𝐻‘((𝐹‘𝑥)𝑅(𝐺‘𝑥))) = ((𝐻‘(𝐹‘𝑥))𝑆(𝐻‘(𝐺‘𝑥)))) |
18 | 2, 4, 7, 17 | syl21anc 837 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐻‘((𝐹‘𝑥)𝑅(𝐺‘𝑥))) = ((𝐻‘(𝐹‘𝑥))𝑆(𝐻‘(𝐺‘𝑥)))) |
19 | 18 | mpteq2dva 5266 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐻‘((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) = (𝑥 ∈ 𝐴 ↦ ((𝐻‘(𝐹‘𝑥))𝑆(𝐻‘(𝐺‘𝑥))))) |
20 | 1 | ffnd 6748 |
. . . . 5
⊢ (𝜑 → 𝐹 Fn 𝐴) |
21 | 3 | ffnd 6748 |
. . . . 5
⊢ (𝜑 → 𝐺 Fn 𝐴) |
22 | | coof.a |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
23 | | inidm 4248 |
. . . . 5
⊢ (𝐴 ∩ 𝐴) = 𝐴 |
24 | | eqidd 2741 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) |
25 | | eqidd 2741 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = (𝐺‘𝑥)) |
26 | 20, 21, 22, 22, 23, 24, 25 | offval 7723 |
. . . 4
⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
27 | 26 | coeq2d 5887 |
. . 3
⊢ (𝜑 → (𝐻 ∘ (𝐹 ∘f 𝑅𝐺)) = (𝐻 ∘ (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))))) |
28 | | coof.h |
. . . . 5
⊢ (𝜑 → 𝐻 Fn 𝐵) |
29 | | dffn3 6759 |
. . . . 5
⊢ (𝐻 Fn 𝐵 ↔ 𝐻:𝐵⟶ran 𝐻) |
30 | 28, 29 | sylib 218 |
. . . 4
⊢ (𝜑 → 𝐻:𝐵⟶ran 𝐻) |
31 | 2, 4 | jca 511 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ∈ 𝐵 ∧ (𝐺‘𝑥) ∈ 𝐵)) |
32 | | coof.1 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵)) → (𝑏𝑅𝑐) ∈ 𝐵) |
33 | 32 | caovclg 7642 |
. . . . 5
⊢ ((𝜑 ∧ ((𝐹‘𝑥) ∈ 𝐵 ∧ (𝐺‘𝑥) ∈ 𝐵)) → ((𝐹‘𝑥)𝑅(𝐺‘𝑥)) ∈ 𝐵) |
34 | 31, 33 | syldan 590 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥)𝑅(𝐺‘𝑥)) ∈ 𝐵) |
35 | 30, 34 | cofmpt 7166 |
. . 3
⊢ (𝜑 → (𝐻 ∘ (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) = (𝑥 ∈ 𝐴 ↦ (𝐻‘((𝐹‘𝑥)𝑅(𝐺‘𝑥))))) |
36 | 27, 35 | eqtrd 2780 |
. 2
⊢ (𝜑 → (𝐻 ∘ (𝐹 ∘f 𝑅𝐺)) = (𝑥 ∈ 𝐴 ↦ (𝐻‘((𝐹‘𝑥)𝑅(𝐺‘𝑥))))) |
37 | | fnfco 6786 |
. . . 4
⊢ ((𝐻 Fn 𝐵 ∧ 𝐹:𝐴⟶𝐵) → (𝐻 ∘ 𝐹) Fn 𝐴) |
38 | 28, 1, 37 | syl2anc 583 |
. . 3
⊢ (𝜑 → (𝐻 ∘ 𝐹) Fn 𝐴) |
39 | | fnfco 6786 |
. . . 4
⊢ ((𝐻 Fn 𝐵 ∧ 𝐺:𝐴⟶𝐵) → (𝐻 ∘ 𝐺) Fn 𝐴) |
40 | 28, 3, 39 | syl2anc 583 |
. . 3
⊢ (𝜑 → (𝐻 ∘ 𝐺) Fn 𝐴) |
41 | | fvco2 7019 |
. . . 4
⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐻 ∘ 𝐹)‘𝑥) = (𝐻‘(𝐹‘𝑥))) |
42 | 20, 41 | sylan 579 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐻 ∘ 𝐹)‘𝑥) = (𝐻‘(𝐹‘𝑥))) |
43 | | fvco2 7019 |
. . . 4
⊢ ((𝐺 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐻 ∘ 𝐺)‘𝑥) = (𝐻‘(𝐺‘𝑥))) |
44 | 21, 43 | sylan 579 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐻 ∘ 𝐺)‘𝑥) = (𝐻‘(𝐺‘𝑥))) |
45 | 38, 40, 22, 22, 23, 42, 44 | offval 7723 |
. 2
⊢ (𝜑 → ((𝐻 ∘ 𝐹) ∘f 𝑆(𝐻 ∘ 𝐺)) = (𝑥 ∈ 𝐴 ↦ ((𝐻‘(𝐹‘𝑥))𝑆(𝐻‘(𝐺‘𝑥))))) |
46 | 19, 36, 45 | 3eqtr4d 2790 |
1
⊢ (𝜑 → (𝐻 ∘ (𝐹 ∘f 𝑅𝐺)) = ((𝐻 ∘ 𝐹) ∘f 𝑆(𝐻 ∘ 𝐺))) |