MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coof Structured version   Visualization version   GIF version

Theorem coof 7708
Description: The composition of a homomorphism with a function operation. (Contributed by SN, 20-May-2025.)
Hypotheses
Ref Expression
coof.f (𝜑𝐹:𝐴𝐵)
coof.g (𝜑𝐺:𝐴𝐵)
coof.h (𝜑𝐻 Fn 𝐵)
coof.a (𝜑𝐴𝑉)
coof.1 ((𝜑 ∧ (𝑏𝐵𝑐𝐵)) → (𝑏𝑅𝑐) ∈ 𝐵)
coof.2 ((𝜑 ∧ (𝑏𝐵𝑐𝐵)) → (𝐻‘(𝑏𝑅𝑐)) = ((𝐻𝑏)𝑆(𝐻𝑐)))
Assertion
Ref Expression
coof (𝜑 → (𝐻 ∘ (𝐹f 𝑅𝐺)) = ((𝐻𝐹) ∘f 𝑆(𝐻𝐺)))
Distinct variable groups:   𝐵,𝑏,𝑐   𝐹,𝑏,𝑐   𝐺,𝑏,𝑐   𝐻,𝑏,𝑐   𝑅,𝑏,𝑐   𝑆,𝑏,𝑐   𝜑,𝑏,𝑐
Allowed substitution hints:   𝐴(𝑏,𝑐)   𝑉(𝑏,𝑐)

Proof of Theorem coof
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 coof.f . . . . 5 (𝜑𝐹:𝐴𝐵)
21ffvelcdmda 7093 . . . 4 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
3 coof.g . . . . 5 (𝜑𝐺:𝐴𝐵)
43ffvelcdmda 7093 . . . 4 ((𝜑𝑥𝐴) → (𝐺𝑥) ∈ 𝐵)
5 coof.2 . . . . . 6 ((𝜑 ∧ (𝑏𝐵𝑐𝐵)) → (𝐻‘(𝑏𝑅𝑐)) = ((𝐻𝑏)𝑆(𝐻𝑐)))
65ralrimivva 3190 . . . . 5 (𝜑 → ∀𝑏𝐵𝑐𝐵 (𝐻‘(𝑏𝑅𝑐)) = ((𝐻𝑏)𝑆(𝐻𝑐)))
76adantr 479 . . . 4 ((𝜑𝑥𝐴) → ∀𝑏𝐵𝑐𝐵 (𝐻‘(𝑏𝑅𝑐)) = ((𝐻𝑏)𝑆(𝐻𝑐)))
8 fvoveq1 7442 . . . . . 6 (𝑏 = (𝐹𝑥) → (𝐻‘(𝑏𝑅𝑐)) = (𝐻‘((𝐹𝑥)𝑅𝑐)))
9 fveq2 6896 . . . . . . 7 (𝑏 = (𝐹𝑥) → (𝐻𝑏) = (𝐻‘(𝐹𝑥)))
109oveq1d 7434 . . . . . 6 (𝑏 = (𝐹𝑥) → ((𝐻𝑏)𝑆(𝐻𝑐)) = ((𝐻‘(𝐹𝑥))𝑆(𝐻𝑐)))
118, 10eqeq12d 2741 . . . . 5 (𝑏 = (𝐹𝑥) → ((𝐻‘(𝑏𝑅𝑐)) = ((𝐻𝑏)𝑆(𝐻𝑐)) ↔ (𝐻‘((𝐹𝑥)𝑅𝑐)) = ((𝐻‘(𝐹𝑥))𝑆(𝐻𝑐))))
12 oveq2 7427 . . . . . . 7 (𝑐 = (𝐺𝑥) → ((𝐹𝑥)𝑅𝑐) = ((𝐹𝑥)𝑅(𝐺𝑥)))
1312fveq2d 6900 . . . . . 6 (𝑐 = (𝐺𝑥) → (𝐻‘((𝐹𝑥)𝑅𝑐)) = (𝐻‘((𝐹𝑥)𝑅(𝐺𝑥))))
14 fveq2 6896 . . . . . . 7 (𝑐 = (𝐺𝑥) → (𝐻𝑐) = (𝐻‘(𝐺𝑥)))
1514oveq2d 7435 . . . . . 6 (𝑐 = (𝐺𝑥) → ((𝐻‘(𝐹𝑥))𝑆(𝐻𝑐)) = ((𝐻‘(𝐹𝑥))𝑆(𝐻‘(𝐺𝑥))))
1613, 15eqeq12d 2741 . . . . 5 (𝑐 = (𝐺𝑥) → ((𝐻‘((𝐹𝑥)𝑅𝑐)) = ((𝐻‘(𝐹𝑥))𝑆(𝐻𝑐)) ↔ (𝐻‘((𝐹𝑥)𝑅(𝐺𝑥))) = ((𝐻‘(𝐹𝑥))𝑆(𝐻‘(𝐺𝑥)))))
1711, 16rspc2va 3618 . . . 4 ((((𝐹𝑥) ∈ 𝐵 ∧ (𝐺𝑥) ∈ 𝐵) ∧ ∀𝑏𝐵𝑐𝐵 (𝐻‘(𝑏𝑅𝑐)) = ((𝐻𝑏)𝑆(𝐻𝑐))) → (𝐻‘((𝐹𝑥)𝑅(𝐺𝑥))) = ((𝐻‘(𝐹𝑥))𝑆(𝐻‘(𝐺𝑥))))
182, 4, 7, 17syl21anc 836 . . 3 ((𝜑𝑥𝐴) → (𝐻‘((𝐹𝑥)𝑅(𝐺𝑥))) = ((𝐻‘(𝐹𝑥))𝑆(𝐻‘(𝐺𝑥))))
1918mpteq2dva 5249 . 2 (𝜑 → (𝑥𝐴 ↦ (𝐻‘((𝐹𝑥)𝑅(𝐺𝑥)))) = (𝑥𝐴 ↦ ((𝐻‘(𝐹𝑥))𝑆(𝐻‘(𝐺𝑥)))))
201ffnd 6724 . . . . 5 (𝜑𝐹 Fn 𝐴)
213ffnd 6724 . . . . 5 (𝜑𝐺 Fn 𝐴)
22 coof.a . . . . 5 (𝜑𝐴𝑉)
23 inidm 4217 . . . . 5 (𝐴𝐴) = 𝐴
24 eqidd 2726 . . . . 5 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
25 eqidd 2726 . . . . 5 ((𝜑𝑥𝐴) → (𝐺𝑥) = (𝐺𝑥))
2620, 21, 22, 22, 23, 24, 25offval 7694 . . . 4 (𝜑 → (𝐹f 𝑅𝐺) = (𝑥𝐴 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
2726coeq2d 5865 . . 3 (𝜑 → (𝐻 ∘ (𝐹f 𝑅𝐺)) = (𝐻 ∘ (𝑥𝐴 ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))))
28 coof.h . . . . 5 (𝜑𝐻 Fn 𝐵)
29 dffn3 6735 . . . . 5 (𝐻 Fn 𝐵𝐻:𝐵⟶ran 𝐻)
3028, 29sylib 217 . . . 4 (𝜑𝐻:𝐵⟶ran 𝐻)
312, 4jca 510 . . . . 5 ((𝜑𝑥𝐴) → ((𝐹𝑥) ∈ 𝐵 ∧ (𝐺𝑥) ∈ 𝐵))
32 coof.1 . . . . . 6 ((𝜑 ∧ (𝑏𝐵𝑐𝐵)) → (𝑏𝑅𝑐) ∈ 𝐵)
3332caovclg 7613 . . . . 5 ((𝜑 ∧ ((𝐹𝑥) ∈ 𝐵 ∧ (𝐺𝑥) ∈ 𝐵)) → ((𝐹𝑥)𝑅(𝐺𝑥)) ∈ 𝐵)
3431, 33syldan 589 . . . 4 ((𝜑𝑥𝐴) → ((𝐹𝑥)𝑅(𝐺𝑥)) ∈ 𝐵)
3530, 34cofmpt 7141 . . 3 (𝜑 → (𝐻 ∘ (𝑥𝐴 ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))) = (𝑥𝐴 ↦ (𝐻‘((𝐹𝑥)𝑅(𝐺𝑥)))))
3627, 35eqtrd 2765 . 2 (𝜑 → (𝐻 ∘ (𝐹f 𝑅𝐺)) = (𝑥𝐴 ↦ (𝐻‘((𝐹𝑥)𝑅(𝐺𝑥)))))
37 fnfco 6762 . . . 4 ((𝐻 Fn 𝐵𝐹:𝐴𝐵) → (𝐻𝐹) Fn 𝐴)
3828, 1, 37syl2anc 582 . . 3 (𝜑 → (𝐻𝐹) Fn 𝐴)
39 fnfco 6762 . . . 4 ((𝐻 Fn 𝐵𝐺:𝐴𝐵) → (𝐻𝐺) Fn 𝐴)
4028, 3, 39syl2anc 582 . . 3 (𝜑 → (𝐻𝐺) Fn 𝐴)
41 fvco2 6994 . . . 4 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐻𝐹)‘𝑥) = (𝐻‘(𝐹𝑥)))
4220, 41sylan 578 . . 3 ((𝜑𝑥𝐴) → ((𝐻𝐹)‘𝑥) = (𝐻‘(𝐹𝑥)))
43 fvco2 6994 . . . 4 ((𝐺 Fn 𝐴𝑥𝐴) → ((𝐻𝐺)‘𝑥) = (𝐻‘(𝐺𝑥)))
4421, 43sylan 578 . . 3 ((𝜑𝑥𝐴) → ((𝐻𝐺)‘𝑥) = (𝐻‘(𝐺𝑥)))
4538, 40, 22, 22, 23, 42, 44offval 7694 . 2 (𝜑 → ((𝐻𝐹) ∘f 𝑆(𝐻𝐺)) = (𝑥𝐴 ↦ ((𝐻‘(𝐹𝑥))𝑆(𝐻‘(𝐺𝑥)))))
4619, 36, 453eqtr4d 2775 1 (𝜑 → (𝐻 ∘ (𝐹f 𝑅𝐺)) = ((𝐻𝐹) ∘f 𝑆(𝐻𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wral 3050  cmpt 5232  ran crn 5679  ccom 5682   Fn wfn 6544  wf 6545  cfv 6549  (class class class)co 7419  f cof 7683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685
This theorem is referenced by:  rhmply1vsca  22332
  Copyright terms: Public domain W3C validator