Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvditgdavw2 Structured version   Visualization version   GIF version

Theorem cbvditgdavw2 36281
Description: Change bound variable and limits in a directed integral. Deduction form. (Contributed by GG, 14-Aug-2025.)
Hypotheses
Ref Expression
cbvditgdavw2.1 (𝜑𝐴 = 𝐵)
cbvditgdavw2.2 (𝜑𝐶 = 𝐷)
cbvditgdavw2.3 ((𝜑𝑥 = 𝑦) → 𝐸 = 𝐹)
Assertion
Ref Expression
cbvditgdavw2 (𝜑 → ⨜[𝐴𝐶]𝐸 d𝑥 = ⨜[𝐵𝐷]𝐹 d𝑦)
Distinct variable groups:   𝜑,𝑥,𝑦   𝑦,𝐴   𝑥,𝐵   𝑦,𝐶   𝑥,𝐷   𝑦,𝐸   𝑥,𝐹
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑦)   𝐶(𝑥)   𝐷(𝑦)   𝐸(𝑥)   𝐹(𝑦)

Proof of Theorem cbvditgdavw2
StepHypRef Expression
1 cbvditgdavw2.1 . . . 4 (𝜑𝐴 = 𝐵)
2 cbvditgdavw2.2 . . . 4 (𝜑𝐶 = 𝐷)
31, 2breq12d 5122 . . 3 (𝜑 → (𝐴𝐶𝐵𝐷))
4 cbvditgdavw2.3 . . . 4 ((𝜑𝑥 = 𝑦) → 𝐸 = 𝐹)
51adantr 480 . . . . 5 ((𝜑𝑥 = 𝑦) → 𝐴 = 𝐵)
62adantr 480 . . . . 5 ((𝜑𝑥 = 𝑦) → 𝐶 = 𝐷)
75, 6oveq12d 7407 . . . 4 ((𝜑𝑥 = 𝑦) → (𝐴(,)𝐶) = (𝐵(,)𝐷))
84, 7cbvitgdavw2 36280 . . 3 (𝜑 → ∫(𝐴(,)𝐶)𝐸 d𝑥 = ∫(𝐵(,)𝐷)𝐹 d𝑦)
96, 5oveq12d 7407 . . . . 5 ((𝜑𝑥 = 𝑦) → (𝐶(,)𝐴) = (𝐷(,)𝐵))
104, 9cbvitgdavw2 36280 . . . 4 (𝜑 → ∫(𝐶(,)𝐴)𝐸 d𝑥 = ∫(𝐷(,)𝐵)𝐹 d𝑦)
1110negeqd 11421 . . 3 (𝜑 → -∫(𝐶(,)𝐴)𝐸 d𝑥 = -∫(𝐷(,)𝐵)𝐹 d𝑦)
123, 8, 11ifbieq12d 4519 . 2 (𝜑 → if(𝐴𝐶, ∫(𝐴(,)𝐶)𝐸 d𝑥, -∫(𝐶(,)𝐴)𝐸 d𝑥) = if(𝐵𝐷, ∫(𝐵(,)𝐷)𝐹 d𝑦, -∫(𝐷(,)𝐵)𝐹 d𝑦))
13 df-ditg 25754 . 2 ⨜[𝐴𝐶]𝐸 d𝑥 = if(𝐴𝐶, ∫(𝐴(,)𝐶)𝐸 d𝑥, -∫(𝐶(,)𝐴)𝐸 d𝑥)
14 df-ditg 25754 . 2 ⨜[𝐵𝐷]𝐹 d𝑦 = if(𝐵𝐷, ∫(𝐵(,)𝐷)𝐹 d𝑦, -∫(𝐷(,)𝐵)𝐹 d𝑦)
1512, 13, 143eqtr4g 2790 1 (𝜑 → ⨜[𝐴𝐶]𝐸 d𝑥 = ⨜[𝐵𝐷]𝐹 d𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  ifcif 4490   class class class wbr 5109  (class class class)co 7389  cle 11215  -cneg 11412  (,)cioo 13312  citg 25525  cdit 25753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-xp 5646  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-iota 6466  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-neg 11414  df-seq 13973  df-sum 15659  df-itg 25530  df-ditg 25754
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator