Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpomulnzcnf Structured version   Visualization version   GIF version

Theorem mpomulnzcnf 36284
Description: Multiplication maps nonzero complex numbers to nonzero complex numbers. Version of mulnzcnf 11840 using maps-to notation, which does not require ax-mulf 11166. (Contributed by GG, 18-Apr-2025.)
Assertion
Ref Expression
mpomulnzcnf (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦)):((ℂ ∖ {0}) × (ℂ ∖ {0}))⟶(ℂ ∖ {0})
Distinct variable group:   𝑥,𝑦

Proof of Theorem mpomulnzcnf
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . 3 (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦)) = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦))
2 ovex 7427 . . 3 (𝑥 · 𝑦) ∈ V
31, 2fnmpoi 8058 . 2 (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦)) Fn ((ℂ ∖ {0}) × (ℂ ∖ {0}))
4 oveq12 7403 . . . . 5 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝑥 · 𝑦) = (𝑢 · 𝑣))
5 ovex 7427 . . . . 5 (𝑢 · 𝑣) ∈ V
64, 1, 5ovmpoa 7551 . . . 4 ((𝑢 ∈ (ℂ ∖ {0}) ∧ 𝑣 ∈ (ℂ ∖ {0})) → (𝑢(𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦))𝑣) = (𝑢 · 𝑣))
7 eldifsn 4758 . . . . . 6 (𝑢 ∈ (ℂ ∖ {0}) ↔ (𝑢 ∈ ℂ ∧ 𝑢 ≠ 0))
8 eldifsn 4758 . . . . . 6 (𝑣 ∈ (ℂ ∖ {0}) ↔ (𝑣 ∈ ℂ ∧ 𝑣 ≠ 0))
9 mulcl 11170 . . . . . . . 8 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) ∈ ℂ)
109ad2ant2r 747 . . . . . . 7 (((𝑢 ∈ ℂ ∧ 𝑢 ≠ 0) ∧ (𝑣 ∈ ℂ ∧ 𝑣 ≠ 0)) → (𝑢 · 𝑣) ∈ ℂ)
11 mulne0 11836 . . . . . . 7 (((𝑢 ∈ ℂ ∧ 𝑢 ≠ 0) ∧ (𝑣 ∈ ℂ ∧ 𝑣 ≠ 0)) → (𝑢 · 𝑣) ≠ 0)
1210, 11jca 511 . . . . . 6 (((𝑢 ∈ ℂ ∧ 𝑢 ≠ 0) ∧ (𝑣 ∈ ℂ ∧ 𝑣 ≠ 0)) → ((𝑢 · 𝑣) ∈ ℂ ∧ (𝑢 · 𝑣) ≠ 0))
137, 8, 12syl2anb 598 . . . . 5 ((𝑢 ∈ (ℂ ∖ {0}) ∧ 𝑣 ∈ (ℂ ∖ {0})) → ((𝑢 · 𝑣) ∈ ℂ ∧ (𝑢 · 𝑣) ≠ 0))
14 eldifsn 4758 . . . . 5 ((𝑢 · 𝑣) ∈ (ℂ ∖ {0}) ↔ ((𝑢 · 𝑣) ∈ ℂ ∧ (𝑢 · 𝑣) ≠ 0))
1513, 14sylibr 234 . . . 4 ((𝑢 ∈ (ℂ ∖ {0}) ∧ 𝑣 ∈ (ℂ ∖ {0})) → (𝑢 · 𝑣) ∈ (ℂ ∖ {0}))
166, 15eqeltrd 2829 . . 3 ((𝑢 ∈ (ℂ ∖ {0}) ∧ 𝑣 ∈ (ℂ ∖ {0})) → (𝑢(𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦))𝑣) ∈ (ℂ ∖ {0}))
1716rgen2 3179 . 2 𝑢 ∈ (ℂ ∖ {0})∀𝑣 ∈ (ℂ ∖ {0})(𝑢(𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦))𝑣) ∈ (ℂ ∖ {0})
18 ffnov 7522 . 2 ((𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦)):((ℂ ∖ {0}) × (ℂ ∖ {0}))⟶(ℂ ∖ {0}) ↔ ((𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦)) Fn ((ℂ ∖ {0}) × (ℂ ∖ {0})) ∧ ∀𝑢 ∈ (ℂ ∖ {0})∀𝑣 ∈ (ℂ ∖ {0})(𝑢(𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦))𝑣) ∈ (ℂ ∖ {0})))
193, 17, 18mpbir2an 711 1 (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦)):((ℂ ∖ {0}) × (ℂ ∖ {0}))⟶(ℂ ∖ {0})
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2109  wne 2927  wral 3046  cdif 3919  {csn 4597   × cxp 5644   Fn wfn 6514  wf 6515  (class class class)co 7394  cmpo 7396  cc 11084  0cc0 11086   · cmul 11091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-resscn 11143  ax-1cn 11144  ax-icn 11145  ax-addcl 11146  ax-addrcl 11147  ax-mulcl 11148  ax-mulrcl 11149  ax-mulcom 11150  ax-addass 11151  ax-mulass 11152  ax-distr 11153  ax-i2m1 11154  ax-1ne0 11155  ax-1rid 11156  ax-rnegex 11157  ax-rrecex 11158  ax-cnre 11159  ax-pre-lttri 11160  ax-pre-lttrn 11161  ax-pre-ltadd 11162  ax-pre-mulgt0 11163
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-po 5554  df-so 5555  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-1st 7977  df-2nd 7978  df-er 8682  df-en 8923  df-dom 8924  df-sdom 8925  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231  df-le 11232  df-sub 11425  df-neg 11426
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator