Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpomulnzcnf Structured version   Visualization version   GIF version

Theorem mpomulnzcnf 36294
Description: Multiplication maps nonzero complex numbers to nonzero complex numbers. Version of mulnzcnf 11916 using maps-to notation, which does not require ax-mulf 11242. (Contributed by GG, 18-Apr-2025.)
Assertion
Ref Expression
mpomulnzcnf (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦)):((ℂ ∖ {0}) × (ℂ ∖ {0}))⟶(ℂ ∖ {0})
Distinct variable group:   𝑥,𝑦

Proof of Theorem mpomulnzcnf
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . 3 (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦)) = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦))
2 ovex 7471 . . 3 (𝑥 · 𝑦) ∈ V
31, 2fnmpoi 8103 . 2 (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦)) Fn ((ℂ ∖ {0}) × (ℂ ∖ {0}))
4 oveq12 7447 . . . . 5 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝑥 · 𝑦) = (𝑢 · 𝑣))
5 ovex 7471 . . . . 5 (𝑢 · 𝑣) ∈ V
64, 1, 5ovmpoa 7595 . . . 4 ((𝑢 ∈ (ℂ ∖ {0}) ∧ 𝑣 ∈ (ℂ ∖ {0})) → (𝑢(𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦))𝑣) = (𝑢 · 𝑣))
7 eldifsn 4794 . . . . . 6 (𝑢 ∈ (ℂ ∖ {0}) ↔ (𝑢 ∈ ℂ ∧ 𝑢 ≠ 0))
8 eldifsn 4794 . . . . . 6 (𝑣 ∈ (ℂ ∖ {0}) ↔ (𝑣 ∈ ℂ ∧ 𝑣 ≠ 0))
9 mulcl 11246 . . . . . . . 8 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) ∈ ℂ)
109ad2ant2r 747 . . . . . . 7 (((𝑢 ∈ ℂ ∧ 𝑢 ≠ 0) ∧ (𝑣 ∈ ℂ ∧ 𝑣 ≠ 0)) → (𝑢 · 𝑣) ∈ ℂ)
11 mulne0 11912 . . . . . . 7 (((𝑢 ∈ ℂ ∧ 𝑢 ≠ 0) ∧ (𝑣 ∈ ℂ ∧ 𝑣 ≠ 0)) → (𝑢 · 𝑣) ≠ 0)
1210, 11jca 511 . . . . . 6 (((𝑢 ∈ ℂ ∧ 𝑢 ≠ 0) ∧ (𝑣 ∈ ℂ ∧ 𝑣 ≠ 0)) → ((𝑢 · 𝑣) ∈ ℂ ∧ (𝑢 · 𝑣) ≠ 0))
137, 8, 12syl2anb 598 . . . . 5 ((𝑢 ∈ (ℂ ∖ {0}) ∧ 𝑣 ∈ (ℂ ∖ {0})) → ((𝑢 · 𝑣) ∈ ℂ ∧ (𝑢 · 𝑣) ≠ 0))
14 eldifsn 4794 . . . . 5 ((𝑢 · 𝑣) ∈ (ℂ ∖ {0}) ↔ ((𝑢 · 𝑣) ∈ ℂ ∧ (𝑢 · 𝑣) ≠ 0))
1513, 14sylibr 234 . . . 4 ((𝑢 ∈ (ℂ ∖ {0}) ∧ 𝑣 ∈ (ℂ ∖ {0})) → (𝑢 · 𝑣) ∈ (ℂ ∖ {0}))
166, 15eqeltrd 2841 . . 3 ((𝑢 ∈ (ℂ ∖ {0}) ∧ 𝑣 ∈ (ℂ ∖ {0})) → (𝑢(𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦))𝑣) ∈ (ℂ ∖ {0}))
1716rgen2 3199 . 2 𝑢 ∈ (ℂ ∖ {0})∀𝑣 ∈ (ℂ ∖ {0})(𝑢(𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦))𝑣) ∈ (ℂ ∖ {0})
18 ffnov 7566 . 2 ((𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦)):((ℂ ∖ {0}) × (ℂ ∖ {0}))⟶(ℂ ∖ {0}) ↔ ((𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦)) Fn ((ℂ ∖ {0}) × (ℂ ∖ {0})) ∧ ∀𝑢 ∈ (ℂ ∖ {0})∀𝑣 ∈ (ℂ ∖ {0})(𝑢(𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦))𝑣) ∈ (ℂ ∖ {0})))
193, 17, 18mpbir2an 711 1 (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦)):((ℂ ∖ {0}) × (ℂ ∖ {0}))⟶(ℂ ∖ {0})
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2108  wne 2940  wral 3061  cdif 3963  {csn 4634   × cxp 5691   Fn wfn 6564  wf 6565  (class class class)co 7438  cmpo 7440  cc 11160  0cc0 11162   · cmul 11167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-po 5601  df-so 5602  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-1st 8022  df-2nd 8023  df-er 8753  df-en 8994  df-dom 8995  df-sdom 8996  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator