Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpomulnzcnf Structured version   Visualization version   GIF version

Theorem mpomulnzcnf 36234
Description: Multiplication maps nonzero complex numbers to nonzero complex numbers. Version of mulnzcnf 11890 using maps-to notation, which does not require ax-mulf 11216. (Contributed by GG, 18-Apr-2025.)
Assertion
Ref Expression
mpomulnzcnf (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦)):((ℂ ∖ {0}) × (ℂ ∖ {0}))⟶(ℂ ∖ {0})
Distinct variable group:   𝑥,𝑦

Proof of Theorem mpomulnzcnf
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2734 . . 3 (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦)) = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦))
2 ovex 7445 . . 3 (𝑥 · 𝑦) ∈ V
31, 2fnmpoi 8076 . 2 (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦)) Fn ((ℂ ∖ {0}) × (ℂ ∖ {0}))
4 oveq12 7421 . . . . 5 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝑥 · 𝑦) = (𝑢 · 𝑣))
5 ovex 7445 . . . . 5 (𝑢 · 𝑣) ∈ V
64, 1, 5ovmpoa 7569 . . . 4 ((𝑢 ∈ (ℂ ∖ {0}) ∧ 𝑣 ∈ (ℂ ∖ {0})) → (𝑢(𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦))𝑣) = (𝑢 · 𝑣))
7 eldifsn 4766 . . . . . 6 (𝑢 ∈ (ℂ ∖ {0}) ↔ (𝑢 ∈ ℂ ∧ 𝑢 ≠ 0))
8 eldifsn 4766 . . . . . 6 (𝑣 ∈ (ℂ ∖ {0}) ↔ (𝑣 ∈ ℂ ∧ 𝑣 ≠ 0))
9 mulcl 11220 . . . . . . . 8 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) ∈ ℂ)
109ad2ant2r 747 . . . . . . 7 (((𝑢 ∈ ℂ ∧ 𝑢 ≠ 0) ∧ (𝑣 ∈ ℂ ∧ 𝑣 ≠ 0)) → (𝑢 · 𝑣) ∈ ℂ)
11 mulne0 11886 . . . . . . 7 (((𝑢 ∈ ℂ ∧ 𝑢 ≠ 0) ∧ (𝑣 ∈ ℂ ∧ 𝑣 ≠ 0)) → (𝑢 · 𝑣) ≠ 0)
1210, 11jca 511 . . . . . 6 (((𝑢 ∈ ℂ ∧ 𝑢 ≠ 0) ∧ (𝑣 ∈ ℂ ∧ 𝑣 ≠ 0)) → ((𝑢 · 𝑣) ∈ ℂ ∧ (𝑢 · 𝑣) ≠ 0))
137, 8, 12syl2anb 598 . . . . 5 ((𝑢 ∈ (ℂ ∖ {0}) ∧ 𝑣 ∈ (ℂ ∖ {0})) → ((𝑢 · 𝑣) ∈ ℂ ∧ (𝑢 · 𝑣) ≠ 0))
14 eldifsn 4766 . . . . 5 ((𝑢 · 𝑣) ∈ (ℂ ∖ {0}) ↔ ((𝑢 · 𝑣) ∈ ℂ ∧ (𝑢 · 𝑣) ≠ 0))
1513, 14sylibr 234 . . . 4 ((𝑢 ∈ (ℂ ∖ {0}) ∧ 𝑣 ∈ (ℂ ∖ {0})) → (𝑢 · 𝑣) ∈ (ℂ ∖ {0}))
166, 15eqeltrd 2833 . . 3 ((𝑢 ∈ (ℂ ∖ {0}) ∧ 𝑣 ∈ (ℂ ∖ {0})) → (𝑢(𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦))𝑣) ∈ (ℂ ∖ {0}))
1716rgen2 3186 . 2 𝑢 ∈ (ℂ ∖ {0})∀𝑣 ∈ (ℂ ∖ {0})(𝑢(𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦))𝑣) ∈ (ℂ ∖ {0})
18 ffnov 7540 . 2 ((𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦)):((ℂ ∖ {0}) × (ℂ ∖ {0}))⟶(ℂ ∖ {0}) ↔ ((𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦)) Fn ((ℂ ∖ {0}) × (ℂ ∖ {0})) ∧ ∀𝑢 ∈ (ℂ ∖ {0})∀𝑣 ∈ (ℂ ∖ {0})(𝑢(𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦))𝑣) ∈ (ℂ ∖ {0})))
193, 17, 18mpbir2an 711 1 (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦)):((ℂ ∖ {0}) × (ℂ ∖ {0}))⟶(ℂ ∖ {0})
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2107  wne 2931  wral 3050  cdif 3928  {csn 4606   × cxp 5663   Fn wfn 6535  wf 6536  (class class class)co 7412  cmpo 7414  cc 11134  0cc0 11136   · cmul 11141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-po 5572  df-so 5573  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7369  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7995  df-2nd 7996  df-er 8726  df-en 8967  df-dom 8968  df-sdom 8969  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11475  df-neg 11476
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator