| Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mpomulnzcnf | Structured version Visualization version GIF version | ||
| Description: Multiplication maps nonzero complex numbers to nonzero complex numbers. Version of mulnzcnf 11840 using maps-to notation, which does not require ax-mulf 11166. (Contributed by GG, 18-Apr-2025.) |
| Ref | Expression |
|---|---|
| mpomulnzcnf | ⊢ (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦)):((ℂ ∖ {0}) × (ℂ ∖ {0}))⟶(ℂ ∖ {0}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦)) = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦)) | |
| 2 | ovex 7427 | . . 3 ⊢ (𝑥 · 𝑦) ∈ V | |
| 3 | 1, 2 | fnmpoi 8058 | . 2 ⊢ (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦)) Fn ((ℂ ∖ {0}) × (ℂ ∖ {0})) |
| 4 | oveq12 7403 | . . . . 5 ⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (𝑥 · 𝑦) = (𝑢 · 𝑣)) | |
| 5 | ovex 7427 | . . . . 5 ⊢ (𝑢 · 𝑣) ∈ V | |
| 6 | 4, 1, 5 | ovmpoa 7551 | . . . 4 ⊢ ((𝑢 ∈ (ℂ ∖ {0}) ∧ 𝑣 ∈ (ℂ ∖ {0})) → (𝑢(𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦))𝑣) = (𝑢 · 𝑣)) |
| 7 | eldifsn 4758 | . . . . . 6 ⊢ (𝑢 ∈ (ℂ ∖ {0}) ↔ (𝑢 ∈ ℂ ∧ 𝑢 ≠ 0)) | |
| 8 | eldifsn 4758 | . . . . . 6 ⊢ (𝑣 ∈ (ℂ ∖ {0}) ↔ (𝑣 ∈ ℂ ∧ 𝑣 ≠ 0)) | |
| 9 | mulcl 11170 | . . . . . . . 8 ⊢ ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) ∈ ℂ) | |
| 10 | 9 | ad2ant2r 747 | . . . . . . 7 ⊢ (((𝑢 ∈ ℂ ∧ 𝑢 ≠ 0) ∧ (𝑣 ∈ ℂ ∧ 𝑣 ≠ 0)) → (𝑢 · 𝑣) ∈ ℂ) |
| 11 | mulne0 11836 | . . . . . . 7 ⊢ (((𝑢 ∈ ℂ ∧ 𝑢 ≠ 0) ∧ (𝑣 ∈ ℂ ∧ 𝑣 ≠ 0)) → (𝑢 · 𝑣) ≠ 0) | |
| 12 | 10, 11 | jca 511 | . . . . . 6 ⊢ (((𝑢 ∈ ℂ ∧ 𝑢 ≠ 0) ∧ (𝑣 ∈ ℂ ∧ 𝑣 ≠ 0)) → ((𝑢 · 𝑣) ∈ ℂ ∧ (𝑢 · 𝑣) ≠ 0)) |
| 13 | 7, 8, 12 | syl2anb 598 | . . . . 5 ⊢ ((𝑢 ∈ (ℂ ∖ {0}) ∧ 𝑣 ∈ (ℂ ∖ {0})) → ((𝑢 · 𝑣) ∈ ℂ ∧ (𝑢 · 𝑣) ≠ 0)) |
| 14 | eldifsn 4758 | . . . . 5 ⊢ ((𝑢 · 𝑣) ∈ (ℂ ∖ {0}) ↔ ((𝑢 · 𝑣) ∈ ℂ ∧ (𝑢 · 𝑣) ≠ 0)) | |
| 15 | 13, 14 | sylibr 234 | . . . 4 ⊢ ((𝑢 ∈ (ℂ ∖ {0}) ∧ 𝑣 ∈ (ℂ ∖ {0})) → (𝑢 · 𝑣) ∈ (ℂ ∖ {0})) |
| 16 | 6, 15 | eqeltrd 2829 | . . 3 ⊢ ((𝑢 ∈ (ℂ ∖ {0}) ∧ 𝑣 ∈ (ℂ ∖ {0})) → (𝑢(𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦))𝑣) ∈ (ℂ ∖ {0})) |
| 17 | 16 | rgen2 3179 | . 2 ⊢ ∀𝑢 ∈ (ℂ ∖ {0})∀𝑣 ∈ (ℂ ∖ {0})(𝑢(𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦))𝑣) ∈ (ℂ ∖ {0}) |
| 18 | ffnov 7522 | . 2 ⊢ ((𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦)):((ℂ ∖ {0}) × (ℂ ∖ {0}))⟶(ℂ ∖ {0}) ↔ ((𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦)) Fn ((ℂ ∖ {0}) × (ℂ ∖ {0})) ∧ ∀𝑢 ∈ (ℂ ∖ {0})∀𝑣 ∈ (ℂ ∖ {0})(𝑢(𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦))𝑣) ∈ (ℂ ∖ {0}))) | |
| 19 | 3, 17, 18 | mpbir2an 711 | 1 ⊢ (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦)):((ℂ ∖ {0}) × (ℂ ∖ {0}))⟶(ℂ ∖ {0}) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2109 ≠ wne 2927 ∀wral 3046 ∖ cdif 3919 {csn 4597 × cxp 5644 Fn wfn 6514 ⟶wf 6515 (class class class)co 7394 ∈ cmpo 7396 ℂcc 11084 0cc0 11086 · cmul 11091 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-po 5554 df-so 5555 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-1st 7977 df-2nd 7978 df-er 8682 df-en 8923 df-dom 8924 df-sdom 8925 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |