Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvitgvw2 Structured version   Visualization version   GIF version

Theorem cbvitgvw2 36209
Description: Change bound variable and domain in an integral, using implicit substitution. (Contributed by GG, 14-Aug-2025.)
Hypotheses
Ref Expression
cbvitgvw2.1 (𝑥 = 𝑦𝐶 = 𝐷)
cbvitgvw2.2 (𝑥 = 𝑦𝐴 = 𝐵)
Assertion
Ref Expression
cbvitgvw2 𝐴𝐶 d𝑥 = ∫𝐵𝐷 d𝑦
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑥,𝐵   𝑦,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑦)   𝐶(𝑥)   𝐷(𝑦)

Proof of Theorem cbvitgvw2
Dummy variables 𝑡 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cbvitgvw2.1 . . . . . . . 8 (𝑥 = 𝑦𝐶 = 𝐷)
21fvoveq1d 7391 . . . . . . 7 (𝑥 = 𝑦 → (ℜ‘(𝐶 / (i↑𝑡))) = (ℜ‘(𝐷 / (i↑𝑡))))
3 id 22 . . . . . . . . . 10 (𝑥 = 𝑦𝑥 = 𝑦)
4 cbvitgvw2.2 . . . . . . . . . 10 (𝑥 = 𝑦𝐴 = 𝐵)
53, 4eleq12d 2822 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐵))
65anbi1d 631 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥𝐴 ∧ 0 ≤ 𝑣) ↔ (𝑦𝐵 ∧ 0 ≤ 𝑣)))
76ifbid 4508 . . . . . . 7 (𝑥 = 𝑦 → if((𝑥𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0) = if((𝑦𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0))
82, 7csbeq12dv 3868 . . . . . 6 (𝑥 = 𝑦(ℜ‘(𝐶 / (i↑𝑡))) / 𝑣if((𝑥𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0) = (ℜ‘(𝐷 / (i↑𝑡))) / 𝑣if((𝑦𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0))
98cbvmptv 5206 . . . . 5 (𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑡))) / 𝑣if((𝑥𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)) = (𝑦 ∈ ℝ ↦ (ℜ‘(𝐷 / (i↑𝑡))) / 𝑣if((𝑦𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0))
109fveq2i 6843 . . . 4 (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑡))) / 𝑣if((𝑥𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0))) = (∫2‘(𝑦 ∈ ℝ ↦ (ℜ‘(𝐷 / (i↑𝑡))) / 𝑣if((𝑦𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0)))
1110oveq2i 7380 . . 3 ((i↑𝑡) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑡))) / 𝑣if((𝑥𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))) = ((i↑𝑡) · (∫2‘(𝑦 ∈ ℝ ↦ (ℜ‘(𝐷 / (i↑𝑡))) / 𝑣if((𝑦𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0))))
1211sumeq2si 36163 . 2 Σ𝑡 ∈ (0...3)((i↑𝑡) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑡))) / 𝑣if((𝑥𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))) = Σ𝑡 ∈ (0...3)((i↑𝑡) · (∫2‘(𝑦 ∈ ℝ ↦ (ℜ‘(𝐷 / (i↑𝑡))) / 𝑣if((𝑦𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0))))
13 df-itg 25500 . 2 𝐴𝐶 d𝑥 = Σ𝑡 ∈ (0...3)((i↑𝑡) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑡))) / 𝑣if((𝑥𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0))))
14 df-itg 25500 . 2 𝐵𝐷 d𝑦 = Σ𝑡 ∈ (0...3)((i↑𝑡) · (∫2‘(𝑦 ∈ ℝ ↦ (ℜ‘(𝐷 / (i↑𝑡))) / 𝑣if((𝑦𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0))))
1512, 13, 143eqtr4i 2762 1 𝐴𝐶 d𝑥 = ∫𝐵𝐷 d𝑦
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  csb 3859  ifcif 4484   class class class wbr 5102  cmpt 5183  cfv 6499  (class class class)co 7369  cr 11043  0cc0 11044  ici 11046   · cmul 11049  cle 11185   / cdiv 11811  3c3 12218  ...cfz 13444  cexp 14002  cre 15039  Σcsu 15628  2citg2 25493  citg 25495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-xp 5637  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-iota 6452  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-seq 13943  df-sum 15629  df-itg 25500
This theorem is referenced by:  cbvditgvw2  36210
  Copyright terms: Public domain W3C validator