| Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvitgvw2 | Structured version Visualization version GIF version | ||
| Description: Change bound variable and domain in an integral, using implicit substitution. (Contributed by GG, 14-Aug-2025.) |
| Ref | Expression |
|---|---|
| cbvitgvw2.1 | ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) |
| cbvitgvw2.2 | ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| cbvitgvw2 | ⊢ ∫𝐴𝐶 d𝑥 = ∫𝐵𝐷 d𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvitgvw2.1 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) | |
| 2 | 1 | fvoveq1d 7391 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (ℜ‘(𝐶 / (i↑𝑡))) = (ℜ‘(𝐷 / (i↑𝑡)))) |
| 3 | id 22 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
| 4 | cbvitgvw2.2 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) | |
| 5 | 3, 4 | eleq12d 2822 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) |
| 6 | 5 | anbi1d 631 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣) ↔ (𝑦 ∈ 𝐵 ∧ 0 ≤ 𝑣))) |
| 7 | 6 | ifbid 4508 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0) = if((𝑦 ∈ 𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0)) |
| 8 | 2, 7 | csbeq12dv 3868 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ⦋(ℜ‘(𝐶 / (i↑𝑡))) / 𝑣⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0) = ⦋(ℜ‘(𝐷 / (i↑𝑡))) / 𝑣⦌if((𝑦 ∈ 𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0)) |
| 9 | 8 | cbvmptv 5206 | . . . . 5 ⊢ (𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑡))) / 𝑣⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)) = (𝑦 ∈ ℝ ↦ ⦋(ℜ‘(𝐷 / (i↑𝑡))) / 𝑣⦌if((𝑦 ∈ 𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0)) |
| 10 | 9 | fveq2i 6843 | . . . 4 ⊢ (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑡))) / 𝑣⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0))) = (∫2‘(𝑦 ∈ ℝ ↦ ⦋(ℜ‘(𝐷 / (i↑𝑡))) / 𝑣⦌if((𝑦 ∈ 𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0))) |
| 11 | 10 | oveq2i 7380 | . . 3 ⊢ ((i↑𝑡) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑡))) / 𝑣⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))) = ((i↑𝑡) · (∫2‘(𝑦 ∈ ℝ ↦ ⦋(ℜ‘(𝐷 / (i↑𝑡))) / 𝑣⦌if((𝑦 ∈ 𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0)))) |
| 12 | 11 | sumeq2si 36163 | . 2 ⊢ Σ𝑡 ∈ (0...3)((i↑𝑡) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑡))) / 𝑣⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))) = Σ𝑡 ∈ (0...3)((i↑𝑡) · (∫2‘(𝑦 ∈ ℝ ↦ ⦋(ℜ‘(𝐷 / (i↑𝑡))) / 𝑣⦌if((𝑦 ∈ 𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0)))) |
| 13 | df-itg 25500 | . 2 ⊢ ∫𝐴𝐶 d𝑥 = Σ𝑡 ∈ (0...3)((i↑𝑡) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑡))) / 𝑣⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))) | |
| 14 | df-itg 25500 | . 2 ⊢ ∫𝐵𝐷 d𝑦 = Σ𝑡 ∈ (0...3)((i↑𝑡) · (∫2‘(𝑦 ∈ ℝ ↦ ⦋(ℜ‘(𝐷 / (i↑𝑡))) / 𝑣⦌if((𝑦 ∈ 𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0)))) | |
| 15 | 12, 13, 14 | 3eqtr4i 2762 | 1 ⊢ ∫𝐴𝐶 d𝑥 = ∫𝐵𝐷 d𝑦 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⦋csb 3859 ifcif 4484 class class class wbr 5102 ↦ cmpt 5183 ‘cfv 6499 (class class class)co 7369 ℝcr 11043 0cc0 11044 ici 11046 · cmul 11049 ≤ cle 11185 / cdiv 11811 3c3 12218 ...cfz 13444 ↑cexp 14002 ℜcre 15039 Σcsu 15628 ∫2citg2 25493 ∫citg 25495 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-xp 5637 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-iota 6452 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-seq 13943 df-sum 15629 df-itg 25500 |
| This theorem is referenced by: cbvditgvw2 36210 |
| Copyright terms: Public domain | W3C validator |