| Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvitgvw2 | Structured version Visualization version GIF version | ||
| Description: Change bound variable and domain in an integral, using implicit substitution. (Contributed by GG, 14-Aug-2025.) |
| Ref | Expression |
|---|---|
| cbvitgvw2.1 | ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) |
| cbvitgvw2.2 | ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| cbvitgvw2 | ⊢ ∫𝐴𝐶 d𝑥 = ∫𝐵𝐷 d𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvitgvw2.1 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) | |
| 2 | 1 | fvoveq1d 7435 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (ℜ‘(𝐶 / (i↑𝑡))) = (ℜ‘(𝐷 / (i↑𝑡)))) |
| 3 | id 22 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
| 4 | cbvitgvw2.2 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) | |
| 5 | 3, 4 | eleq12d 2827 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) |
| 6 | 5 | anbi1d 631 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣) ↔ (𝑦 ∈ 𝐵 ∧ 0 ≤ 𝑣))) |
| 7 | 6 | ifbid 4529 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0) = if((𝑦 ∈ 𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0)) |
| 8 | 2, 7 | csbeq12dv 3888 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ⦋(ℜ‘(𝐶 / (i↑𝑡))) / 𝑣⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0) = ⦋(ℜ‘(𝐷 / (i↑𝑡))) / 𝑣⦌if((𝑦 ∈ 𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0)) |
| 9 | 8 | cbvmptv 5235 | . . . . 5 ⊢ (𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑡))) / 𝑣⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)) = (𝑦 ∈ ℝ ↦ ⦋(ℜ‘(𝐷 / (i↑𝑡))) / 𝑣⦌if((𝑦 ∈ 𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0)) |
| 10 | 9 | fveq2i 6889 | . . . 4 ⊢ (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑡))) / 𝑣⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0))) = (∫2‘(𝑦 ∈ ℝ ↦ ⦋(ℜ‘(𝐷 / (i↑𝑡))) / 𝑣⦌if((𝑦 ∈ 𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0))) |
| 11 | 10 | oveq2i 7424 | . . 3 ⊢ ((i↑𝑡) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑡))) / 𝑣⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))) = ((i↑𝑡) · (∫2‘(𝑦 ∈ ℝ ↦ ⦋(ℜ‘(𝐷 / (i↑𝑡))) / 𝑣⦌if((𝑦 ∈ 𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0)))) |
| 12 | 11 | sumeq2si 36162 | . 2 ⊢ Σ𝑡 ∈ (0...3)((i↑𝑡) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑡))) / 𝑣⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))) = Σ𝑡 ∈ (0...3)((i↑𝑡) · (∫2‘(𝑦 ∈ ℝ ↦ ⦋(ℜ‘(𝐷 / (i↑𝑡))) / 𝑣⦌if((𝑦 ∈ 𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0)))) |
| 13 | df-itg 25594 | . 2 ⊢ ∫𝐴𝐶 d𝑥 = Σ𝑡 ∈ (0...3)((i↑𝑡) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑡))) / 𝑣⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))) | |
| 14 | df-itg 25594 | . 2 ⊢ ∫𝐵𝐷 d𝑦 = Σ𝑡 ∈ (0...3)((i↑𝑡) · (∫2‘(𝑦 ∈ ℝ ↦ ⦋(ℜ‘(𝐷 / (i↑𝑡))) / 𝑣⦌if((𝑦 ∈ 𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0)))) | |
| 15 | 12, 13, 14 | 3eqtr4i 2767 | 1 ⊢ ∫𝐴𝐶 d𝑥 = ∫𝐵𝐷 d𝑦 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ⦋csb 3879 ifcif 4505 class class class wbr 5123 ↦ cmpt 5205 ‘cfv 6541 (class class class)co 7413 ℝcr 11136 0cc0 11137 ici 11139 · cmul 11142 ≤ cle 11278 / cdiv 11902 3c3 12304 ...cfz 13529 ↑cexp 14084 ℜcre 15118 Σcsu 15704 ∫2citg2 25587 ∫citg 25589 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-xp 5671 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-iota 6494 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-seq 14025 df-sum 15705 df-itg 25594 |
| This theorem is referenced by: cbvditgvw2 36209 |
| Copyright terms: Public domain | W3C validator |