Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvitgvw2 Structured version   Visualization version   GIF version

Theorem cbvitgvw2 36243
Description: Change bound variable and domain in an integral, using implicit substitution. (Contributed by GG, 14-Aug-2025.)
Hypotheses
Ref Expression
cbvitgvw2.1 (𝑥 = 𝑦𝐶 = 𝐷)
cbvitgvw2.2 (𝑥 = 𝑦𝐴 = 𝐵)
Assertion
Ref Expression
cbvitgvw2 𝐴𝐶 d𝑥 = ∫𝐵𝐷 d𝑦
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑥,𝐵   𝑦,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑦)   𝐶(𝑥)   𝐷(𝑦)

Proof of Theorem cbvitgvw2
Dummy variables 𝑡 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cbvitgvw2.1 . . . . . . . 8 (𝑥 = 𝑦𝐶 = 𝐷)
21fvoveq1d 7460 . . . . . . 7 (𝑥 = 𝑦 → (ℜ‘(𝐶 / (i↑𝑡))) = (ℜ‘(𝐷 / (i↑𝑡))))
3 id 22 . . . . . . . . . 10 (𝑥 = 𝑦𝑥 = 𝑦)
4 cbvitgvw2.2 . . . . . . . . . 10 (𝑥 = 𝑦𝐴 = 𝐵)
53, 4eleq12d 2835 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐵))
65anbi1d 631 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥𝐴 ∧ 0 ≤ 𝑣) ↔ (𝑦𝐵 ∧ 0 ≤ 𝑣)))
76ifbid 4557 . . . . . . 7 (𝑥 = 𝑦 → if((𝑥𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0) = if((𝑦𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0))
82, 7csbeq12dv 3920 . . . . . 6 (𝑥 = 𝑦(ℜ‘(𝐶 / (i↑𝑡))) / 𝑣if((𝑥𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0) = (ℜ‘(𝐷 / (i↑𝑡))) / 𝑣if((𝑦𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0))
98cbvmptv 5264 . . . . 5 (𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑡))) / 𝑣if((𝑥𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)) = (𝑦 ∈ ℝ ↦ (ℜ‘(𝐷 / (i↑𝑡))) / 𝑣if((𝑦𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0))
109fveq2i 6917 . . . 4 (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑡))) / 𝑣if((𝑥𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0))) = (∫2‘(𝑦 ∈ ℝ ↦ (ℜ‘(𝐷 / (i↑𝑡))) / 𝑣if((𝑦𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0)))
1110oveq2i 7449 . . 3 ((i↑𝑡) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑡))) / 𝑣if((𝑥𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))) = ((i↑𝑡) · (∫2‘(𝑦 ∈ ℝ ↦ (ℜ‘(𝐷 / (i↑𝑡))) / 𝑣if((𝑦𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0))))
1211sumeq2si 36197 . 2 Σ𝑡 ∈ (0...3)((i↑𝑡) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑡))) / 𝑣if((𝑥𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))) = Σ𝑡 ∈ (0...3)((i↑𝑡) · (∫2‘(𝑦 ∈ ℝ ↦ (ℜ‘(𝐷 / (i↑𝑡))) / 𝑣if((𝑦𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0))))
13 df-itg 25683 . 2 𝐴𝐶 d𝑥 = Σ𝑡 ∈ (0...3)((i↑𝑡) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑡))) / 𝑣if((𝑥𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0))))
14 df-itg 25683 . 2 𝐵𝐷 d𝑦 = Σ𝑡 ∈ (0...3)((i↑𝑡) · (∫2‘(𝑦 ∈ ℝ ↦ (ℜ‘(𝐷 / (i↑𝑡))) / 𝑣if((𝑦𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0))))
1512, 13, 143eqtr4i 2775 1 𝐴𝐶 d𝑥 = ∫𝐵𝐷 d𝑦
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  csb 3911  ifcif 4534   class class class wbr 5151  cmpt 5234  cfv 6569  (class class class)co 7438  cr 11161  0cc0 11162  ici 11164   · cmul 11167  cle 11303   / cdiv 11927  3c3 12329  ...cfz 13553  cexp 14108  cre 15142  Σcsu 15728  2citg2 25676  citg 25678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-mpt 5235  df-xp 5699  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-iota 6522  df-fv 6577  df-ov 7441  df-oprab 7442  df-mpo 7443  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-seq 14049  df-sum 15729  df-itg 25683
This theorem is referenced by:  cbvditgvw2  36244
  Copyright terms: Public domain W3C validator