| Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvitgvw2 | Structured version Visualization version GIF version | ||
| Description: Change bound variable and domain in an integral, using implicit substitution. (Contributed by GG, 14-Aug-2025.) |
| Ref | Expression |
|---|---|
| cbvitgvw2.1 | ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) |
| cbvitgvw2.2 | ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| cbvitgvw2 | ⊢ ∫𝐴𝐶 d𝑥 = ∫𝐵𝐷 d𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvitgvw2.1 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) | |
| 2 | 1 | fvoveq1d 7363 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (ℜ‘(𝐶 / (i↑𝑡))) = (ℜ‘(𝐷 / (i↑𝑡)))) |
| 3 | id 22 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
| 4 | cbvitgvw2.2 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) | |
| 5 | 3, 4 | eleq12d 2825 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) |
| 6 | 5 | anbi1d 631 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣) ↔ (𝑦 ∈ 𝐵 ∧ 0 ≤ 𝑣))) |
| 7 | 6 | ifbid 4494 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0) = if((𝑦 ∈ 𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0)) |
| 8 | 2, 7 | csbeq12dv 3854 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ⦋(ℜ‘(𝐶 / (i↑𝑡))) / 𝑣⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0) = ⦋(ℜ‘(𝐷 / (i↑𝑡))) / 𝑣⦌if((𝑦 ∈ 𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0)) |
| 9 | 8 | cbvmptv 5190 | . . . . 5 ⊢ (𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑡))) / 𝑣⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)) = (𝑦 ∈ ℝ ↦ ⦋(ℜ‘(𝐷 / (i↑𝑡))) / 𝑣⦌if((𝑦 ∈ 𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0)) |
| 10 | 9 | fveq2i 6820 | . . . 4 ⊢ (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑡))) / 𝑣⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0))) = (∫2‘(𝑦 ∈ ℝ ↦ ⦋(ℜ‘(𝐷 / (i↑𝑡))) / 𝑣⦌if((𝑦 ∈ 𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0))) |
| 11 | 10 | oveq2i 7352 | . . 3 ⊢ ((i↑𝑡) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑡))) / 𝑣⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))) = ((i↑𝑡) · (∫2‘(𝑦 ∈ ℝ ↦ ⦋(ℜ‘(𝐷 / (i↑𝑡))) / 𝑣⦌if((𝑦 ∈ 𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0)))) |
| 12 | 11 | sumeq2si 36236 | . 2 ⊢ Σ𝑡 ∈ (0...3)((i↑𝑡) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑡))) / 𝑣⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))) = Σ𝑡 ∈ (0...3)((i↑𝑡) · (∫2‘(𝑦 ∈ ℝ ↦ ⦋(ℜ‘(𝐷 / (i↑𝑡))) / 𝑣⦌if((𝑦 ∈ 𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0)))) |
| 13 | df-itg 25546 | . 2 ⊢ ∫𝐴𝐶 d𝑥 = Σ𝑡 ∈ (0...3)((i↑𝑡) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑡))) / 𝑣⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))) | |
| 14 | df-itg 25546 | . 2 ⊢ ∫𝐵𝐷 d𝑦 = Σ𝑡 ∈ (0...3)((i↑𝑡) · (∫2‘(𝑦 ∈ ℝ ↦ ⦋(ℜ‘(𝐷 / (i↑𝑡))) / 𝑣⦌if((𝑦 ∈ 𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0)))) | |
| 15 | 12, 13, 14 | 3eqtr4i 2764 | 1 ⊢ ∫𝐴𝐶 d𝑥 = ∫𝐵𝐷 d𝑦 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⦋csb 3845 ifcif 4470 class class class wbr 5086 ↦ cmpt 5167 ‘cfv 6476 (class class class)co 7341 ℝcr 11000 0cc0 11001 ici 11003 · cmul 11006 ≤ cle 11142 / cdiv 11769 3c3 12176 ...cfz 13402 ↑cexp 13963 ℜcre 14999 Σcsu 15588 ∫2citg2 25539 ∫citg 25541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-xp 5617 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-iota 6432 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-seq 13904 df-sum 15589 df-itg 25546 |
| This theorem is referenced by: cbvditgvw2 36283 |
| Copyright terms: Public domain | W3C validator |